백서

A Guide to Scaling Tableau Server for Self-Service Analytics

작성자
Neelesh Kamkolkar, 제품 관리자, Tableau Software

Business intelligence is a mission-critical function for the modern organization. The more accessible your organization makes self-service analytics, the more users in your organization will be empowered to make informed business decisions.

Teams rely on rapid-fire analytics to make decisions that matter right now not in hours or days. This reliance on data requires systems that are fast and easy to configure to meet the availability needs of the enterprise.

This paper provides an overview and recommendations for deploying Tableau Server 9.0 at scale. It includes example deployment scenarios and planning considerations to help you ensure that you size your deployment for success. The recommendations covered in this paper are informed by scale testing we have performed and published in the more extensive Tableau Server 9.0 Scalability: Powering Self-Service Analytics at Scale white paper.

We've also pulled out the first several pages of the whitepaper for you to read. Download the PDF on the right to read the rest.


Why self-service analytics at scale?

The more access that your organization provides to self-service analytics, the more users in your organization can make informed business decisions.

This concept is illustrated in Figure 1. The origin of the horizontal axis is an organization where data and analytics are created and managed in a traditional BI report factory. At the furthest end of the horizontal axis, users are empowered. They rely on self-service analytics to understand, view, and pivot data as primary input when they make business decisions.

The vertical axis shows the range of data access and availability within the organization. When you restrict access to data, keeping it under centralized control, your organization cannot realize the potential of self service at scale.

Users must have access to relevant and timely data to support real-time analytic business decisions.

Conversely, if you open up data without any controls, shadow IT might become the norm and bring with it a destabilizing culture of data anarchy.

A successful self-service analytical culture is a balance of managed data access and empowered business users. Tableau Server provides secure, scalable access to your business data. Tableau Desktop provides the powerful analytic client experience that your employees can use to evaluate, pivot, interrogate, visualize, and share data.

Land and expand

When you think about scaling a Tableau Server deployment, it’s useful to understand how Tableau often grows through an organization. We call this the “land and expand” phenomenon. A “land” is an entry point where someone in an organization discovers Tableau and downloads a single desktop or champions a Tableau Server installation for a pioneer group.

Using Tableau Server combined with larger Tableau Desktop penetration (the “expand”), more groups share content securely and easily without needing a lot of help from IT.

As use expands, IT engages to support the business in deploying, maintaining, and supporting the Tableau user community.

In addition, Tableau Drive provides a methodology to allow larger teams to successfully adopt Tableau with Agile best practices in mind. As customers grow, they often invest in Tableau Server to support their user community at a larger scale, globally.

Figure 2 shows how Tableau can scale up in an organization to meet the business requirements for self-service analytics, while effectively managing data access.

Want to read more? Download the rest of the whitepaper!

계속 읽기...

양식을 작성하는 데 15초밖에 걸리지 않습니다. 이미 등록된 사용자라면, 로그인하십시오.

작성자 정보

image

Neelesh Kamkolkar

제품 관리자, Tableau Software

Tableau의 제품 관리자인 Neelesh Kamkolkar는 엔터프라이즈 고객 요구 사항에 초점을 맞춘 제품 계획 및 실행 측면을 담당하고 있습니다. Neelesh는 Tableau의 vNext 엔터프라이즈 기능 실행과 전략적 비전을 구성하는 데 있어 고객 및 파트너의 소리를 대변하는 역할을 맡고 있습니다. Tableau에서 일하기 전에는 Doyenz, Microsoft, Hewlett Packard, Mercury Interactive에서 다양한 제품 관리 및 엔지니어링 부문 경영진으로 일했습니다.