
On Improving User Response Times in Tableau
Pawel Terlecki
Tableau Software

pterlecki@tableau.com

Fei Xu
Tableau Software

fxu@tableau.com

Marianne Shaw
Tableau Software

mshaw@tableau.com

Valeri Kim
Tableau Software

vkim@tableau.com

Richard Wesley
Tableau Software

hawkfish@tableau.com

ABSTRACT
The rapid increase in data volumes and complexity of applied
analytical tasks poses a big challenge for visualization solutions.
It is important to keep the experience highly interactive, so that
users stay engaged and can perform insightful data exploration.

Query processing usually dominates the cost of visualization
generation. Therefore, in order to achieve acceptable response
times, one needs to utilize backend capabilities to the fullest and
apply techniques, such as caching or prefetching. In this paper we
discuss key data processing components in Tableau: the query
processor, query caches, Tableau Data Engine [1, 2] and Data
Server. Furthermore, we cover recent performance improvements
related to the number and quality of remote queries, broader reuse of
cached data, and application of inter and intra query parallelism.

1. INTRODUCTION
Data visualization and big data processing have become key
elements of modern analytic platforms. Lower hardware prices
allow customers to purchase powerful computational clusters,
collect high volumes of detailed data and perform sophisticated ad
hoc analysis. Moreover, there is a growing demand for
standardized solutions in related areas, such as: data federation,
exploration of semi-structured and graph data sets, and data
preparation or knowledge discovery. The increasing popularity of
visual analytics is driving development in these fields and
provides the research community with new data processing and
usability challenges.

In the past years, Tableau has become a leader in providing easy-
to-use data visualization tools. It currently connects to over 40
different data sources, from simple file-based sources, through
SQL/MDX databases or web data sources, to Hadoop clusters. In
a common intuitive interface, it allows for rich analysis of
different areas of data, including filtering, custom calculations –
potentially at different levels of detail, window and statistical
functions and many others.

Tableau aims to provide a fast interactive environment for data
exploration. A key challenge, both today and as we continue to
add more sophisticated data analysis, is maintaining high

responsiveness of the interface. To achieve that across all the
supported data sources, one often needs to apply dedicated
optimization techniques to alleviate efficiency and capability
shortcomings of various architectures.

During data exploration, each user interaction with the application
generates an adhoc query workload. This workload is difficult to
predict and requires powerful analytic databases, e.g. column
stores, to process requests with low latencies. Additionally, we
leverage caching and query optimization techniques to provide
high levels of interactivity.

Sharing the results of data exploration via Tableau Server in the
intranet or Tableau Online, in the cloud, presents a different set of
workload challenges. Users can combine visualizations created
during data exploration into dashboards and publish them to
Server. A dashboard consists of multiple visualizations; they are
often linked by actions, such as filtering of one view based on
selection in another.

The query workload generated by published dashboards is easier
to predict than the adhoc workload generated during exploratory
analysis. This is because queries are generated by interacting with
schema components already defined in the dashboard. Moreover,
caching is more efficient as it can be applied across multiple users
accessing the same dashboards.

Although with different emphasis, providing a highly interactive
experience in both aforementioned scenarios depends upon the
efficient retrieval of new data from external sources and maximal
utilization of previously obtained results. In this paper, we
present recent performance improvements focused on increasing
product interactivity, including:

 Query batch preparation and concurrent query
execution to improve dashboard generation;

 Persisted and distributed intelligent cache to improve
response times across users and their interactions;

 Parallel plans and fast scanning of RLE encoded
columns in Tableau Data Engine;

 Managing data models and extracts in Data Server
along with temporary table support.

The text is organized accordingly. Section 2 covers the general
background. In Sect. 3 we describe how dashboards are generated
focusing on query processing and caching. Section 4 gives an
overview of the Tableau Data Engine and its recent performance
features. In Sect. 5 we look at connection and data model
management in the Data Server. Section 6 covers related work.
Future plans are given in Sect. 7 and the paper is concluded in
Sect. 8.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright © 2015 ACM 978-1-4503-2758-9/15/05…$15.00.
http://dx.doi.org/10.1145/2723372.2742799

Figure 1: Sample dashboard for the FAA Flights On-Time dataset

2. BACKGROUND
Tableau is an application for rapid interrogation of structured
data. The application has a simple, intuitive drag-and-drop
interface that generates queries against a wide spectrum of data
sources. The application has a large number of built-in chart
types. Users are offered a rich environment for analyzing their
data, including defining new calculations, forecasting, filtering,
and combining data from heterogeneous data sources [47].

User actions that add and remove items in a worksheet are
represented with VizQL [40], a set of specialized algebraic
operations. This representation is used to automatically generate
queries against a specified data source. Queries are issued and the
results are interpreted to produce the requested visualization. As
the user interacts with elements of the visualization, additional
queries may be issued to the underlying database.

The Tableau Data Engine (TDE) is a proprietary column store
database that can be used to allow users to extract data from an
existing database or text file. When a TDE extract is incorporated
into a user's workbook, a user can continue to interrogate their
data when a network connection to the database is not available.
Additionally, the extract reduces the query load on the backing
database. Users can easily switch from an extract back to a live
connection, and extracts can be refreshed when appropriate.

Tableau Server allows users to easily share their visualizations
with others. Users publish data sources or visualizations to Server
and specify sharing permissions for them. These visualizations
can be viewed and interacted with via another Tableau
application, or simply through a Web browser. If visualizations
are published with accompanying TDE extracts, a schedule can be
created to automatically refresh the extracts, ensuring the data is
always current.

3. QUERY PROCESSING FOR
DASHBOARDS
Dashboards are a vital element of many data visualization
platforms. Each covers a certain area of data and allows users to

view it from different angles. Quality of experience depends on
the degree of interactivity, a factor that distinguishes dashboards
from old-fashioned static reports.

A dashboard is a collection of zones organized according to a
certain layout. Different zone types include various charts, maps,
filters, calculated text, images etc. One defines the behavior of
individual zones first and then specifies dependencies between
them. Complicated scenarios might involve tens or even hundreds
of zones.

Let us consider a simple example of a dashboard (Fig. 1) defined
for the popular FAA Flights On-time dataset [43]. It covers all the
flights in the US in the past decade. The two upper maps show the
number of flight origins and destination by state and, at the same
time, allow specifying origins and destinations for the slave charts
at the bottom. Each chart is annotated with average delays and
flights per day. The bottom charts cover airlines operating the
flights, destination airports, breakdown of cancellations and
delays by weekdays, and distribution of arrival delays broken
down by hours of a day. The right-hand side has filtering, total
count of visible records and static legends.

Rendering a dashboard requires retrieving necessary data and
post-processing it for visualization. Due to dependencies between
zones, the entire process might take several iterations in which
obtained responses are used to specify subsequent requests; the
process is discussed in detail in Sect. 3.3.

Most zones require data from one or more data sources in order to
be rendered. The requests are specified internally by queries with
expressiveness matching the capabilities of the data sources.
These internal queries eventually get turned into textual queries in
appropriate dialects and sent to the corresponding data sources.

In the next section we discuss efficient data retrieval and
generation of high-quality remote queries as both vastly
contribute to the latency of dashboard interactions.

3.1 Single Query Processing
The internal queries formulated by components in Tableau closely
follow the concepts of the application. In general, the queries

express aggregate-select-project scenarios, with potential
subqueries for computed columns of different levels of detail and
more sophisticated filters, such as top-n.

A query gets executed against a certain view on the data of a
single data source. Users can specify views as single tables (e.g.
denormalized SQL relations, OData sources, and text files), multi-
table joins (often star or snowflake schemas), parameterized
custom SQL queries, stored procedures or cubes.

Before a query can be sent to a relevant backend, it undergoes a
compilation process consisting of structural simplification and
implementation. First, a query is translated into a tree of
elementary operations to facilitate subsequent transformations.
Numerous optimizations are applied to the tree, including join
culling, predicate simplification and externalization of large
enumerations with temporary secondary structures. The query
compiler incorporates information about cardinalities, domains,
and overall capabilities of the data source, such as support for
subqueries, temporary table creation and indexing, or insertion
over selection.

A simplified query is subsequently translated into a textual
representation that matches the dialect of the underlying data
source. While most supported data sources speak a variant of SQL
or MDX, each has their own exceptions to the standard and non-
compliances. Moreover, out of the wide spectrum of scalar and
aggregate functions available in the system, the native
implementations might vary a lot due to type promotion and
casting, function efficiency or even feasibility. As a result, some
operations may need to be locally applied in the post-processing
stage.

Tableau communicates with remote data sources by means of
connections. Most often a connection maps to a database server
connection maintained over a network stack. In some cases it
might be entirely handled on the side of the application, e.g.
parsing of text or Excel files. Communication with the drivers is
encapsulated in external processes to isolate failures in the third-
party software and potentially greedy resource allocation from the
rest of the system. Retrieved results are streamed back in a tabular
format.

3.2 Query Caching
Generating visualizations is expensive, therefore, Tableau utilizes
several levels of caching. In this section we focus on the product’s
use of query-related caches, as data retrieval is the most time-
consuming stage of the entire process. Other examples include
caching entire visualizations, image and map tiles, etc.

As a user interacts with a dashboard, it is likely that identical or
similar visualizations will be requested at each refresh of the
view. In a multi-user scenario, it is even more common to get
identical or similar requests, since different users are working
with the same shared dashboards. An extreme example of this is
seen in Tableau Public, which allows for publishing visualizations
and data, and referencing them in personal articles or blogs. The
user-generated traffic is saturated by initial load requests, as many
viewers just read content with the initial state of a dashboard and
make further interactions rarely.

Tableau incorporates two levels of query caching: intelligent and
literal. The intelligent cache maps the internal query structure to a
key that is associated with the query results [48]. When a new
query is to be executed, a cache key is generated and the
intelligent cache is searched for a match. When looking for

matches, we attempt to prove that results of the stored query
subsume the requested data [19, 20]. While currently we accept
the first match, in the future release, we plan to choose the entry
that requires the least post-processing. Also, even though the
matching logic is designed to be fast, we are planning to maintain
an index over the cache to minimize the lookup time.

The applicability of the intelligent cache is limited by proving
capabilities and efficiency, e.g. analyzing implications of
predicates, potentially large or formulated in different equivalent
ways, and by post-processing capabilities. The latter includes roll-
up, filtering, calculation projection, and column restriction. It is
worth noting that certain operations cannot be performed locally,
in particular, if they involve native function calls or collation
conflicts.

The intelligent cache can be treated as a database view-matching
component. It keeps the application highly responsive as long as
covering data is available and can be post-processed. The
additional post-processing usually does not require much time as
we retrieve data in small, pre-filtered and pre-aggregated
volumes. For many queries, the number of tuples returned is of
smaller size than the number of un-aggregated, unfiltered rows in
the database. Local post-processing occurs on this relatively small
set of aggregated data. The query processor might choose to
adjust queries before sending, in order to make the results more
useful for future reuse.

The literal query cache contains low-level queries that are not
directly related to visualization generation; it is keyed on the
query text. It is used to match internal queries that end up having
the same textual representation but where a match could not be
proven upfront without performing complete query compilation.
Predicate simplification based on domains or join culling are
some examples of this scenario.

Cache entries in both the literal and intelligent cache are purged
based upon a combination of entry age, usage, and the expense of
re-evaluating the query. Entries are also purged when a
connection to a data source is closed or refreshed.

Let us revisit the sample dashboard in Fig. 1 in the context of
caching. Note that the queries for the domains of filters on the
right need to be sent only once. Further interactions might change
the selection but not the domains. Furthermore, data for other
charts got cached with all the filtering values selected. If a user
deselects some of the values on the right, the intelligent cache will
be able to filter out the necessary rows for the results for other
charts, as long as the filtering columns are included.

In Tableau Desktop query caches get persisted to enable fast
response times across different sessions with the application.
Tableau Server does not persist the caches but it utilizes a
distributed layer based on REDIS [41] or Cassandra [42]
depending on the configuration. This allows sharing data across
nodes in the cluster and keeping data warm regardless of which
node handles particular requests. For efficiency, recent entries are
also stored in memory on the nodes processing particular queries.
In general, we cache all the query results unless computation time
is comparable with a cache lookup time or the results are
excessively large

3.3 Query Batch Processing
From a user’s perspective, the ultimate goal is to immediately
load an entire dashboard or refresh it after a given interaction.
Therefore, the data retrieval task is not formulated with respect to

individual queries but in terms of minimizing the latency of
processing all of them.

Due to dependencies between zones, rendering of a dashboard
might require several iterations to complete. Consider the
dashboard in Fig. 2, which shows the Flights/Day for a Market,
Carrier, and Airline Name for the FAA Flights data from Figure
1. The Carrier zone is filtered to the top 5 carriers, based upon
number of flights, that have more than 1,400 Flights/Day. The
dashboard has two interactive filter actions defined: (1) selecting
a field in the Market zone will filter the results in the Carrier and
Airline Name zones, and (2) selecting a carrier in the Carrier zone
will filter the Airline Name zone. In Figure 2, the user has already
selected a Market (LAX-SFO) and a Carrier (AA).

Figure 2: A dashboard with three zones, linked by two
interactive filter actions. Selecting items in either the Market
or Carrier zones filters the viz results.

If the user selects HNL-OGG in Market, the interactive filter
actions will cause the Airline Name and Carrier zones to be
updated with a filter on HNL-OGG. One side-effect of these
updated results is that the previous user-selection (AA) in the
Carrier zone is eliminated, as AA is not a carrier for the HNL-
OGG market. Subsequently, the interactive filter action will cause
a query without a filter on Carrier to be generated to update the
Airline Name zone.

Zones that participate in an iteration generate queries that together
comprise a query batch of this iteration. As the iteration and, thus,
the corresponding batches are processed independently, here we
examine the optimization of a single query batch.

Figure 3: Sample cache hit opportunities graph with partition
of queries into local and remote

Consider a query batch B=[q1, .. , qn] and assume that the target
data sources are all idle and have all the resources available. In
addition, to express cache hit opportunities, consider a directed
graph G with the queries as nodes and edges pointing from qi to qj
iff the result of qj can be computed from the results of qi (Fig. 3).
The latter is determined by the matching logic of the intelligent
query cache.

One way of executing these queries is to send them one by one in
a certain order, and each time wait for the query to complete. This

way each query has all the resources for itself and its processing
time is the shortest. Note that the query execution order matters
and topological orders in G are most beneficial, as the queries
with incoming edges will be answered from the cache. This
strategy roughly corresponds to processing zones serially.

Serial execution of queries minimizes their individual processing
times but does not utilize available resources to the fullest.
Therefore, executing queries concurrently might reduce the
overall rendering time of a dashboard. In order to maximize cache
usage we process the batch in two phases. First, we analyze it and
partition the nodes of G into two sets. One set contains queries
that need to be sent to the remote back-ends; they correspond to
the source nodes, i.e. the nodes without incoming edges. The
second set contains queries that are cache hits that can be
processed locally. In the second phase, remote queries are
submitted for execution concurrently and the local ones are
processed as soon as any of their predecessors in G finishes.

3.4 Query fusion
Grouping queries in batches creates an opportunity to utilize
multi-query optimization techniques. One basic optimization we
apply across queries before executing a query batch is combining
groups of queries defined over the same relation and potentially
different with respect to their top-level projection lists. Strictly
speaking, we replace a group of queries of the form [πP1(R), .. ,
πPn(R)] with a single query πP(R), where R is the common
relation, P1, .., Pn are respective projection lists and P= i=1,..,n Pi .
We refer to this transformation as query fusion.

One obvious advantage of this approach is a reduction of the
number of queries in a batch and, thus, the overall overhead of
dispatching queries in corresponding data sources and necessary
communication. Since it is quite common for different zones of a
dashboard to share the same filters but request different columns,
the reduction might be substantial.

More importantly processing of a fused query is often much more
efficient than processing of the individual queries that were fused,
as the underlying relation needs to be computed only once.
Although it is possible that a physical layout of the data can lead
to a performance regression, this optimization brings significant
gains in our visualization benchmarks.

3.5 Concurrent Execution of Queries
In order to process dashboards in parallel, Tableau needs to
concurrently execute queries against external data sources. Since
the capabilities, stability and efficiency of the many supported
back-ends often vary dramatically, the communication and
execution layers need to be universal. This section explains the
design choices and their consequences for different data source
architectures.

As noted in Sect. 3.1, Tableau uses the abstraction of a connection
to communicate with external data sources. There are basically
two strategies to submit queries concurrently: by using a single or
multiple connections. The first route is rarely supported by
databases and usually comes with functional or performance
limitations. SQL Server with MARS enabled is one example here.
On the contrary, maintaining separate connections to allow for
concurrent access from independent clients belongs to a basic
repertoire of most database servers. Their responsibility is to
govern resources appropriately across the corresponding
workloads and make sure none gets starved.

Local Re
m
ot
e

q1

q2

q3

q4

q5

q6

q7

q8

Tableau manages a certain number of active connections to each
data source to implement concurrent execution of remote queries.
The process of opening a connection, retrieving configuration
information and metadata are costly, therefore, connections are
pooled and kept around even if idle.

In addition, connection pooling plays an important role in
preserving and reusing temporary structures stored in remote
sessions. For example, temporary tables created for large filters or
multi-dimensional sets during query processing are likely to be
useful while formulating queries within the same query batch or
within batches originating from interactions with the same
dashboard. An age-wise eviction policy is used in case of local
memory pressure or to release remote resources unused for longer
periods of time.

Queries submitted by different components of the system are
multiplexed across connections regardless of their remote state.
That means that popular temporary structures will be duplicated
in several connections. While this adds a certain overhead to the
backend, it also makes the connections potentially more useful for
subsequent queries. Some architectures allow to alleviate this
overhead and share a single remote session across multiple
connections, however, this comes at a price of more complicated
locking on the server side to resolve concurrent changes across
the participating connections.

While Tableau generates a highly parallel workload, the overall
efficiency of the system depends on the processing ability of the
back-ends. The latter is determined by several aspects of the
database architecture and the underlying hardware. First of all, the
sooner a database server receives a workload the better it can
schedule execution of the participating queries. Generally,
databases do not perform cross-query optimization with respect to
query plans. This would require substantial pre-processing and
affect short-running queries. Nonetheless, certain optimizations
might be applied in lower layers. One example is the shared scans
feature [45] present in several systems, including SQL Server. It
allows the storage layer to pipe pages of a single table scan to
multiple concurrently handled execution plans.

Resource allocation on the remote side plays a pivotal role in
handling a concurrent workload efficiently. While some queries
are already being executed, an arrival of a new query might cause
the previously assigned resources to be reclaimed. Furthermore,
even though clients might be sending a high number of concurrent
queries, the database is likely to throttle them based on available
resources or a hard-coded threshold. One might need to tune the
system to appropriately manage resources of the entire cluster or
their allocation across connections. Also, it is worth noting that
some systems impose limitations on the overall number of
connections or the number of concurrently executed queries.

Moreover, the way a database allocates CPU in the single query
execution substantially affects performance. Many architectures
use a single thread per query. That means that a serial execution
of a query batch would leave a tremendous amount of processing
power idle. On the contrary, massively parallel clusters or non-
clusters solutions that support parallel plans, such as SQL Server,
the TDE (see 3.2) and many others, will attempt to allocate many
machines/CPUs to reduce the individual latencies. This makes the
resource allocation harder, as it needs to take into account
overheads of parallelism, data migration, etc. Also, scalability
limitations, such as restricting query execution or its certain
stages, e.g. aggregation, to a single node, allow for higher
performance of a more concurrent workload.

Our experiments show that using multiple connections to handle
concurrent workloads boosts performance, often dramatically,
across the architectures supported by Tableau. Obviously, the
positive effect is observable if idle resources are available and can
be utilized. Note that some resources can be shared easily, such as
CPU, and some not, such as memory. In addition, any bottleneck
in the system can slow down the entire pipeline. For example, in
certain databases, session-local DDL operations for temporary
structures take a high-level lock. We have also observed higher
contention on disc controllers to affect the overall performance.

4. Tableau Data Engine
The Tableau Data Engine (TDE) is a read-only column store
implemented by Tableau. It has been described in [1] and [2].
Most features described in the above papers have been shipped
before Tableau 9.0, except for the new performance
improvements covered in Sect. 4.2 and 4.3. The TDE is used both
in the client environment with Tableau Desktop and in the server
environment with Tableau Server. This section first gives an
overview of the TDE, and then discusses these improvements.

4.1 TDE Overview
The TDE is designed to support the Extract scenario: extracting a
fraction of or the entire dataset from the lively connected data
source for offline analysis. Popular use cases include reducing the
workload to a live database, getting better performance for
analysis, making a snapshot and without worrying about data
change, working on an airplane, etc. This scenario imposes a few
requirements that are not fully satisfied by existing open-source
and commercial systems: support fast execution of complex
analytical queries, column level collated strings, 32-bit hardware
with limited resource, single database file, and small installation
footprint. The single database file is an important convenience
feature for users to move, share, and publish the data. The TDE is
also used in the Tableau Server environment, where it is deployed
as a cluster of nodes through either shared-nothing or shared-
everything architecture. The TDE’s design is largely influenced
by the extensive research work around MonetDB [3]. And it has a
few advantages over existing systems:

1. The TDE supports all popular platforms, such as
Windows, Mac and Linux. It also supports both 32bit
and 64 bit systems.

2. As an analytical engine, the TDE supports column level
collated strings.

3. The TDE models column decompression using regular
logical operators. Special logical operators are also
introduced to utilize the compression to speed up the
query execution. This provides a uniform view for all
the operations in the TDE.

4. The TDE has a very small installation package. It is
easy to download and install.

5. The TDE is able to run as a client application on cheap
hardware and limited resource. It can also be deployed
as a shared-nothing or shared-everything cluster in the
server environment.

6. The TDE is specially tuned for interactive analysis of
complicated analytical queries. Features such as fact
table culling directly address this kind of a workload

7. The TDE is able to compact a database into a single
file.

This section gives an overview of the TDE. We focus on the
following aspects of its architecture:

 the storage layer

 the compiler and optimizer

 the execution engine.

We also discuss how TDE is deployed in both the client and
server environment.

4.1.1 Storage Layer
Like most database systems, the TDE has a three-layer namespace
for logical objects in a database: schema, table and column. It has
a simple on-disk storage layout, which makes packing the entire
database into a single file easy. The three-layer namespace
matches on-disk storage layout: each database is a top-level
directory that contains schemas. Each schema is the next level
directory that contains tables. Each table is a directory that
contains columns. Each column is a set of related files. The
metadata is stored in the reserved SYS schema. This directory is
packaged into a single file once created.

The TDE implements column-level compression. Each column
stores uncompressed fixed-width data, or compressed fixed length
or variable-length data. The TDE uses a dictionary-based
compression. When data is compressed, the fixed tokens are
stored in the original column. Each compressed column also owns
an associated dictionary for the original fixed length (array
compression) or variable length (heap compression) values. The
TDE also employs lightweight compression storage format, such
as run-length or delta encodings, for storing fixed-width data.
This form of compression is called encoding in the TDE. The
dictionary-compression is visible to the outside of the storage
layer while encoding is a storage format that is typically invisible
outside this layer.

Unlike most analytical databases, the TDE supports column-level
collated strings. This is important for keeping behavior in the live
and Extract scenario in Tableau consistent, as most live databases
do support column-level collated strings.

4.1.2 Compiler and Optimizer
The TDE uses a logical tree style language called Tableau Query
Language (TQL). It supports logical operators present in most
databases, such as TableScan, Select, Project, Join, Aggregate,
Order, and TopN. It has a classic query compiler that accepts a
TQL query as text and translates it into some logical operator tree
structure. The compiler does parsing, syntax checking, binding
and semantic analysis. In addition, the compiler also performs
classic rewrites of the tree, for example, expressing SELECT
DISTINCT as a GROUP BY query. It also rewrites the tree to
model the decompression as a normal join and introduces special
logical operators to speed up query execution by utilizing the
compression. This will be further discussed in Sect. 3.3.

The TDE optimizer is a rule-based optimizer. It derives
properties, such as column dependencies, equivalence sets,
uniqueness, sorting properties and utilizes them to perform a
series of optimizations, such as filter and project push-down/pull-
up, removal of unnecessary joins, removal of unnecessary
orderings, common sub-expression elimination etc. The TDE
optimizer is specially optimized for interactive analysis of

complicated analytical queries. For example, removal of the fact
table from a join is critical for performance of domain queries,
frequently sent by Tableau.

4.1.3 Execution Engine
The TDE execution engine is based on the Volcano execution
framework. It has implementations for a set of operators such as
filter, join, etc. Each query is compiled into an execution tree by
the compiler and optimizer. The query tree is executed by
iterating over all the rows of the root of the tree. Operators are of
two types: streaming, and stop-and-go. The first type of operators
can immediately generate output rows while consuming input
rows. The second type of operator needs to consume the entire
input before generating any output.

4.1.4 TDE Deployment in the Client and Server
Environments
The TDE is a part of any Tableau Desktop deployment and gets
executed as a separate process in its process tree. When the TDE
is used in the server environment, it is deployed either as a
shared-nothing architecture or shared-everything architecture.
Each node in the cluster is a separate TDE program. In the shared-
everything architecture, storage is shared across all the nodes. A
load balancer dispatches queries to different nodes in the TDE
cluster.

In both cases Tableau, treats the TDE like any other supported
database. It pre-processes query batches, compiles queries in TQL
and executes them against the engine.

4.2 Parallel Query Execution
The TDE is able to run different queries in parallel on a single
host. For a single query, however, the first version of the TDE did
not use multiple parallel threads. In Tableau 8.1, we introduced a
limited implementation that targeted expensive calculations in
filters and projections. In the current release, we redesigned the
parallel execution in the TDE to use parallel scans, which
provides a much greater degree of parallelism. This section
discusses the implementation of parallel execution.

4.2.1 Parallel Execution Runtime Operators
Like most database systems, the TDE execution engine uses the
Exchange operator [4] to handle the parallel part of the query
plan. The TDE has an implementation of the Exchange operator
that is able to take N inputs and produce M outputs. It has a
capability to repartition the data and can preserve the order of the
input if needed.

Besides the Exchange operator, the TDE implements parallelism
by means of additional operators: SharedTable and FractionTable.
SharedTable is used to share access to a table across multiple
threads and handles synchronization. FractionTable enables the
TDE to read the table in parallel, since each fraction can be read
by a separate thread.

4.2.2 Parallel Plan Generation Algorithm
Like VectorWise [9], the TDE optimizer takes a serial plan, and
transforms it into a parallel plan by determining the degree of
parallelism, and inserting Exchange operators [4] into the tree. In
Tableau 9.0, we limited the usage of the Exchange operator to
only support N inputs and one output. This means that the parallel
plans we consider do not support repartitioning. The only data
partitioning happens in TableScan. We also do not utilize the
order preserving capability in the Exchange operator. In the

coming releases, we will explore how repartitioning and order-
preservation can benefit the performance of Tableau’s workloads.

For brevity, we first describe the parallel plan generation for the
case of a query without any joins. The algorithm to parallelize
such a serial query follows the bottom-up scheme:

1. Leaf nodes are TableScan operators. At the TableScan
operator the optimizer looks at the metadata, and makes
a decision to partition the table into N fractions, where
N is at least one.

2. If the parent is a flow operator such as Select or Project,
the parent inherits the degree of parallelism from the
child.

3. If the parent is a stop-and-go operator, such as
Aggregate, Order or TopN, the optimizer inserts an
Exchange operator between the child and the parent.

4. If the root has a degree of parallelism that is larger than
one, the optimizer inserts an Exchange operator to close
the parallelism.

Figure 3 shows some parallel plan examples generated by the
algorithm.

Figure 3: Parallel Plan Examples

We notice that because the Exchange operator has only one
output, once the optimizer decides to put an Exchange operator to
close the parallelism, the entire tree above the Exchange operator
runs in serial. This is a limitation that we plan to explore and
alleviate in the next release.

Determining the degree of parallelism in TableScan relies on
metadata, such as data volume stored in a table. The TDE also has
a cost profile for different supported elementary functions. The
cost constants are obtained by empirical measuring. Certain
operations, such as string manipulations, are much more
expensive than others, even though the engine employs
vectorization in expression evaluation. The cost profile is used to
determine how expensive an expression could be. This further
affects the decision of the parallelization.

Since joins in Tableau are usually between the fact table and
multiple dimension tables, the TDE uses a left-deep tree to
represent the joins, where the leftmost leaf table is the fact table.
The TDE’s execution engine processes the join by building a hash
table for the right-side input, and probing the left-side input for
matches.

Extending the parallel plan generation algorithms to handle join is
straightforward and can be described as follows:

1. The left sub-tree of the join participates in the main
parallelism

2. The right sub-tree forms a separate and independent
parallel unit, and the resulting table is shared between
threads.

3. A single hash table is built from the shared table and
then shared for every left-hand block to probe.

Figure 4 shows a parallel plan example with join.

Figure 4: Parallel Plan with Join

4.2.3 Optimizing Aggregations in the Parallel Plan
Aggregations are very common in TQL queries. The simple
parallel plan generation algorithm puts an Exchange operator to
close a parallelized block and then applies the aggregation
function serially on top of the output of the Exchange operator.

This approach can be improved by using local/global aggregation.
The basic idea is simple: we apply the aggregate on each partition
in parallel, let the Exchange operator to merge those partially
aggregated results, and again apply the aggregate on top of the
output of the Exchange operator. The local/global aggregation
approach reduces the total size of data that goes into the Exchange
operator. The same approach can also be applied to the TopN
operator. Figure 5 shows how the parallel plan looks like when
local/global aggregation is applied.

Figure 5: Parallel Plan with Local/Global Aggregation

Even if we apply local/global aggregation to the query tree,
aggregation is still a serialization point. We can do even better by
removing the Exchange operator and the global aggregation
completely from the tree and keep the plan in parallel. This
requires a more careful partitioning of the data. If we can
guarantee that all the records of each unique group appear in one
and exactly one partition, the global aggregation is redundant. In
the remaining part of this section, we explore how to make this
possible.

Typically, database systems use three types of partitioning: hash
partitioning, range partitioning, and random partitioning. Random
partitioning means that there is no constraint on which record
goes to which partition. The system just sends records to
partitions in an arbitrary fashion. The TDE is able to perform
random partitioning for any table. Most tables are sorted
according to one or more columns, and for those tables, the TDE
is also able to perform range partitioning on the major sort.
Performing range partitioning sometimes is important because
interesting orders [13] on columns involved in the partitioning
may be helpful in optimizing the query.

In this section, we discuss the conditions when the global
aggregate and the associated Exchange operator can be removed,
under the constraint that the TDE is either able to perform a
random partitioning, or a range partitioning on a sorted table. A
sufficient condition for removing the global aggregation is: if
there exists a subset of GROUP BY columns such that a
permutation of these columns is a prefix of the sorted column list,

a range partition is able to be delivered for removing the global
aggregation and the associated Exchange operator. We briefly
prove this through the following lemmas:

Lemma 1: A sorted table on an ordered set of columns {c1, .. , cn}
can be range partitioned on a prefix of the ordered set.

Proof. If a table is sorted on an ordered set, it is also sorted on
any prefix of the ordered set. Therefore, we are able to range
partition on any prefix. ▄

Lemma 2: If a table is range partitioned on a subset of group by
columns, the partition guarantees that each unique group appears
in one and only one of the partitions.

Proof. If a table is range partitioned on a subset of group by
columns, the partition guarantees each unique group with respect
to the subset appears in one and only one of these partitions. Since
any group according to the full column set is a subset of some
group according to the subset, all the records of such a group must
be in one and only one of the partitions. ▄

Lemma 3: If some permutation of a subset of the group by
columns is a prefix of a sorted table’s ordered column set, there
exists at least one range partitioning scheme that allows
aggregates to be computed in parallel.

Proof. Lemma 1 says that we can range partition on a prefix of
the ordered set. Lemma 2 says that range partitioning on a subset
of group by columns enables parallel execution for aggregates. By
combining the two lemmas, Lemma 3 is proved.
▄

The TDE today implements range partitioning by allowing the
Aggregate operator to push down the partitioning requirements.
TableScan can then utilize this information along with the
metadata that indicates whether the table is sorted on one or more
columns, to make a decision whether a range partitioning is
appropriate. Multiple layers of Aggregates may accumulate more
than one partition requirements along the tree from the root to the
leaf. Inferring the relationship and finding a best partition is an
interesting topic. In Tableau 9.0, we did not explore this problem
space. Instead, the TableScan only gets the partition requirements
from the nearest Aggregate operator.

Data skew and low cardinality are other concerns related to range
partitioning. Namely, if the data is skewed or if the partition key
has very low cardinality (e.g. partitioning on gender), range
partitioning may be slower than the local/global aggregation
approach. Therefore, range partitioning in the TDE is applied
conservatively today.

4.2.4 Interaction between Parallelization and Other
Query Optimizations
The TDE query optimizer performs a series of optimizations.
Some of them are affected by the introduction of parallelism to
the plans. For example, the optimizer derives sorting properties
that are used in certain rewrites. One of the usages is to determine
whether a streaming implementation can be used for an aggregate
function. Strictly speaking, if the data is grouped according to the
group by columns, streaming aggregates can be applied. The TDE
only tracks sorting properties but sorting is a sufficient (but not a
necessary) condition to satisfy the grouping requirements.

The Exchange operator disturbs the sorting properties. Choosing
between a streaming aggregate while the query is running in
serial, and the parallel plan while we need to use a normal
aggregate (currently based on hashing only in the TDE) is a cost-

based decision. One can also consider variations of the parallel
plans with resorting or order-preserving Exchange but both
strategies performed badly on our testing workloads. In general,
parallelization introduces more alternatives into the search space
and the current rule-based query optimizer does not explore all
the additional ones.

4.3 Leverage Encoding for Query Execution
The TDE optimizer is able to utilize the encoding information to
speed up query execution. Such techniques have been discussed
in [2]. The implementation has now become part of the Tableau
9.0 release. This section gives a quick overview of one specific
technique and is largely a summary of Sect. 5.2 from [2].

For a run length encoded column, the optimizer can generate an
IndexTable, which consists of three columns: value, count and
start. The IndexTable can then be joined back to the main table on
a range predicate:

Index.start <= Main.rank < Index.start + Index.count.

While this join by itself is not interesting, combining with the
operator pushdown allows the optimizer to push a filter condition
on the run length encoded column to the IndexTable. As a result,
it produces a much smaller output that normally only contains a
few rows. This join then significantly reduces the output of the
TableScan. Furthermore, since this is a special join, we
implement the join that translates the range specifications directly
into disk accesses. This approach allows us to express range
skipping simply as a join in the query plan. Parallel execution is
implemented by distributing the result from the IndexTable across
multiple threads. These threads then scan different ranges of the
same input table.

Given the parallel plan introduced in Tableau 9.0, the specific
approach described above does not always make the query
execution faster. Although it reduces the total amount of data to
be read from the disk, it may also reduce the degree of
parallelism. Furthermore, this approach can introduce data skew
among different threads in the parallel execution. We are looking
into how to better choose the best plan among different
alternatives. We are also looking for different ways to utilize the
encoding for faster query execution.

4.4 Shadow Extract for Text and Excel Files
Tableau is able to connect to a wide range of data sources,
including text and Microsoft Excel files. Both text and Excel files
are highly popular file formats for storing data.

In the past Tableau used Microsoft Jet/Ace drivers to query text
and Excel files. This approach had a number of drawbacks, such
as lack of portability to other operating systems and a 4GB
parsing limit. Furthermore, running analytical queries over these
data sources was inherently slow because the system had to parse
the file for every query.

Shadow extracts have been introduced to speed up the query
execution and overcome the Jet limitations. When a text or excel
file is connected, Tableau extracts the data from the file, and
stores them in temporary tables in the TDE. Subsequently, all
queries are executed by the TDE instead of parsing the entire file
each time. This greatly improves the query execution time,
however, we need to pay a one-time cost of creating the
temporary database. Last but not least, the system can persist
extracts in workbooks to avoid recreating temporary tables at
every load.

In order to effectively extract data from text and Excel files, and
overcome the Jet/Ace limitations, Tableau uses an in-house parser
for parsing text files and LibXL [6] for parsing Excel files. These
parsers are both more efficient, do not have the 4GB limitation,
and are cross-platform. The text parser accepts a schema file as
additional input if one is available. Otherwise, it attempts to
discover the metadata by performing type and column name
inference.

5. Improving Interactivity of Tableau Server
Tableau Server enables users to share their visualizations in an
organization. Tableau 9.0 has improved the interactivity of
Tableau Server significantly. In this section, we first discuss the
limitations of using Tableau Server for sharing. We then present
the Data Server component, which was introduced to address
these problems. The rest of this section discusses the performance
improvements in Tableau Server for interactivity.

5.1 Sharing Visualizations in Tableau Server
Tableau users share their data visualizations by publishing them
to Tableau Server as collections of visualizations, called
workbooks. Users interact with these published visualizations via
a Web browser. The visualizations may rely on either live
connections to data sources or data extracts. Extracts can be
automatically refreshed by Server to prevent stale data.

Except for their connections to live data sources, Tableau
workbooks are self-contained. Customized calculations and fields
are defined within the workbook. TDE extracts are contained in
the workbook.

Bundling all data source definitions and extracts within a
workbook makes sharing a workbook simple, but prevents other
workbooks from sharing the contained calculations and extracts.
Users wishing to use the same calculations and fields defined in a
published workbook must manually copy the definitions into their
own workbooks. If a calculation needs to be modified, all
workbooks containing the calculation must also be updated.

Similarly, TDE extracts must be generated and included in each
workbook that references it. If hundreds of workbooks all use the
same large extract, considerable disk resources are consumed by
redundant data. Refreshing the workbooks' extracts daily to
prevent stale data incurs a significant and redundant load on the
underlying database.

5.2 Tableau Data Server Overview
The Tableau Data Server is a part Tableau Server that reduces the
overhead of sharing calculations and extracts across workbooks.
Data Server also allows filters to be applied to a published data
source to restrict individual users' access to the data. For example,
an individual salesperson may only be able to see customers in
their region, while their manager can see customers in all regions.

Users publish data sources that can be leveraged, without
duplication, by multiple workbooks to Data Server. By publishing
a data source to Data Server, a complex calculation in a data
source can be defined once and used everywhere. Categorical bins
and multi-dimensional sets of thousands of constants can be
manually defined once. Modifications to a published data source
affect all visualizations that refer to it.

TDE extracts can be published with a data source. Instead of 100
workbooks with distinct copies of the same extract, a single
extract is created. Refreshing a single extract daily -- rather than

all copies of it – significantly reduces the query load on the
underlying database.

Figure 6 depicts Data Server in the larger Tableau eco-system.
Clients can directly connect to databases or connect to data
sources published to Data Server, which acts as a proxy between
clients and the underlying database.

When a client connects to a published data source, it receives
metadata (e.g. schema) about the published data source from Data
Server. The client populates its data window with this
information. As the user drags fields on to the visualization,
queries are dispatched from the client to Data Server.

Data Server parses the query into an internal representation,
optimizes it and generates the query for the specific underlying
database. Databases have different capabilities and the query
optimization and generation process takes these capabilities into
account. The generated query is evaluated against the underlying
database and the retrieved results are returned to the client for
display.

5.3 Improving Interactivity of Published Data
Sources
Data Server as any other proxy adds on a certain overhead.
However, other than imposing data permissions, there is
conceptually no reason why proxied interactions with underlying
data sources would be different from the ones against equivalent
direct connections.

In the past, in certain cases the queries from Data Server could be
less optimal. This is because Data Server was using a separate
optimization pipeline from the one in Tableau Desktop (Sect.
3.1). In Tableau 9.0, these pipelines got unified, which allows
both applications to take advantage of the same rich
optimizations. Another shortcoming was related to managing a
remote state. Namely, when a client directly connects to a
database, Tableau creates temporary data structures on the
database to improve interactivity. For example, a filter on a large
cardinality database field may be stored as a temporary table on
the database. Instead of issuing a query with a very long and
complicated filter to the database, the temporary table is used in
the query.

We have introduced temporary tables to the Data Server to
improve the user experience for published data sources. The
temporary data structures provide two different performance
improvements: (1) reduced network traffic between the client and
the Data Server if a temporary data structure is used repeatedly in

Figure 6: Data Server in the Tableau eco-system

subsequent queries, and (2) improved query execution times on
the database.

When a client connects to a published data source on Data Server,
the Data Server establishes a connection to the underlying
database and determines if it supports the creation of temporary
tables. This information is conveyed back to the client with the
data source metadata.

As fields are dragged to the visualization, the client issues a series
of requests to Data Server to create and populate a temporary
table, causing the Data Server to construct an in-memory
temporary table. Subsequent queries from the client to the Data
Server may reference this temporary table. On the Data Server,
the temporary table’s definition is incorporated during query
optimization, compilation, and evaluation. In some cases, the
query may be evaluated without interacting with the underlying
database.

If the generated query must be evaluated by the underlying
database, the Data Server will create a temporary table on the
database. The generated query is modified to use the temporary
table on the database and executed. If the Data Server fails to
create a temporary table on the database, the query is rewritten to
produce a query that can be evaluated without it.

5.4 State Management
Temporary table state is maintained in two different places in
Data Server: in memory and on the underlying database. In both
cases, this state is maintained while the client connection to Data
Server remains active; it is reclaimed when the connection is
closed or expired due to inactivity.

To alleviate the in-memory cost of temporary tables, temporary
table definitions are shared across client connections. These
definitions are updated as clients create and drop temporary
tables. The definitions are removed when all references to them
are removed.

If desired, in-memory temporary tables on Data Server can be
disabled. While network traffic between the client and Data
Server will increase, users will still benefit from improved query
execution times on the underlying database.

6. RELATED WORK
The TDE is a column store for analytical queries. C-store [7] is a
column store that has been commercialized as Vertica. MonetDB
[3, 8] from CWI is another column store that has wide impact.
Vectorwise [9] is the commercialized MonetDB/X100 [3] project
that has an Ingres front-end and many additional improvements.
Also, SAP Hana [11] is a column store that supports both OLTP
and analytical queries.

A parallel database has a long history of research and commercial
development since early 1990s. It is beyond the scope of this
section to give an overview of this area, for details see [10]. The
TDE’s execution model is based on the Volcano system [4]. In
particular, it uses the Exchange operator to perform parallel
execution. Vectorwise’s parallel optimizer [12] provides some
good data structure to track the requests from the parents to the
children and the delivery from the children to the parents. The
TDE’s parallelizer has largely borrowed the notations from
Vectorwise’s optimizer. Property derivation has a long history.
System R [13] pioneered this technique by tracking the ordering
information for intermediate query results. Partition property
derivation was first discussed in [5].

Eliminating redundant operations, such as joins has been widely
studied [14, 15, 16, 17, 18]. In particular, elimination of
redundant joins in [14, 15] is based on the concept of tableaux and
is only able to treat a sub-class of relational algebras. [16]
enhanced the tableaux approach by using so-called tagged
selection tableaux. Removing redundant joins in queries involving
views has been studied in [17]. The approach uses functional
dependencies and source level transformations of SQL to remove
redundant joins. Join culling is widely applied in Tableau and the
TDE to improve query execution latency for better interactive
experience.

Query matching plays an important role in Tableau’s caching
infrastructure. It has been widely studied in the database
literature, mostly in the context of database views. Giving an
overview of the research for database views is beyond the scope
of this section. A good survey is provided in [13]. Query
containment and query equivalence are two important concepts in
the research literature. They enable comparison between different
queries. The theory of query containment and equivalence has
been widely studied [18, 21, 22, 23, 24, 25]. GMAP [26, 27]
pioneered the view matching approach in the database system. In
[28], the authors provide a similar algorithm for view matching. A
transformation rule based approach for view matching in the SQL
Server’s optimizer is discussed in [29]. This approach introduces
the filter-tree index to dramatically speed up the matching
process.

Multiple query processing has been widely studied in the database
literature, mostly in the context of multiple query optimization
[30, 31, 32, 33, 34, 35]. Much of the work [30, 31, 34] has
focused on finding common subexpressions and materializing the
results temporarily for sharing among these queries. Researchers
also studied multiple query processing beyond the common
subexpression detection. For example, Tan and Lu [36, 37]
investigated how to schedule query fragments to better share the
data in memory and across multiprocessors. Pipelining the data
between processes to share the same data is studied in [38].
Furthermore, scheduling the queries carefully using a middleware
to improve sharing between queries has been studied in [39].

7. FUTURE PLANS
Tableau constantly adds new data sources and types of analysis,
which often requires implementation of dedicated performance
features. In particular, we are planning to add end-to-end support
for federated and semi-structured data sources, where appropriate
optimization techniques, efficient extraction and management in
Data Server play important roles.

Regarding the query processing pipeline we plan to apply more
multi-query processing techniques to take advantage of
sophisticated commonalities between queries in a batch. That fits
well with incorporating more classic optimizations to improve our
plans and generated remote queries. Furthermore, in order to
alleviate frequently substantial local post-processing, we are
going to explore multi-level caching similar to [44].

Substantial sizes of federated datasets and rapidly growing
popularity of our SaaS platform put more pressure on the Tableau
Data Engine to process larger extracts. Therefore, we are
considering using data partitioning in a distributed architecture.

Last but not least, both data exploration and dashboard generation
could become more responsive if requested data has been
accurately predicted and prefetched. Materialization of secondary

structures and prediction approaches such as DICE [46], are good
examples in this field.

8. SUMMARY
In this paper we have discussed several performance
improvements that contribute to high interactivity of visual data
analysis. They are available in the new release of the product,
Tableau 9.0.

Most of all, in dashboard generation, we have suggested query
batch processing with an initial batch optimization phase, query
fusion and concurrent query submission. Using two levels of
query caches, intelligent and literal, that can be persisted on the
client or distributed in the server environment, further magnifies
the responsiveness. Furthermore, performance of the TDE has
been improved thanks to addition of parallel plans and index
scans for RLE-encoded columns. Last but not least, temporary
table support has been added to Tableau Data Server to improve
performance of published data sources.

9. REFERENCES
[1] Richard Wesley, Matthew Eldridge, and Pawel T. Terlecki.

2011. An analytic data engine for visualization in tableau. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data (SIGMOD '11). ACM,
New York, NY, USA, 1185-1194. DOI=
http://doi.acm.org/10.1145/1989323.1989449

[2] Richard Michael Grantham Wesley and Pawel Terlecki.
2014. Leveraging compression in the tableau data engine. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data (SIGMOD '14). ACM,
New York, NY, USA, 563-573.
DOI=http://doi.acm.org/10.1145/2588555.2595639

[3] Boncz, P., Zukowski, M., and Nes, N. MonetDB/X100:
Hyper-Pipelining Query Execution. In International
Conference on Innovative Data Systems Research (CIDR),
Jan. 2005, 225-237.

[4] G. Graefe, "Volcano: An extensible and parallel query
evaluation system," IEEE Transactions on Knowledge and
Data Engineering, 120-135, 1994.

[5] J. Zhou, P. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the SCOPE optimizer. In
ICDE, 2010.

[6] LibXL http://www.libxl.com/

[7] Abadi, D. J., Madden, S. R., and Hachem, N. 2008. Column-
stores vs. row-stores: how different are they really? In
Proceedings of the 2008 ACM SIGMOD international
Conference on Management of Data (Vancouver, Canada,
June 09 - 12, 2008). SIGMOD '08. ACM, New York, NY,
967-980.

[8] Boncz, P. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. Doctoral Thesis, Universiteit
van Amsterdam, Amsterdam, The Netherlands, May 2002.

[9] Zukowski, Marcin, and Peter A. Boncz. "Vectorwise:
Beyond column stores."IEEE Data Engineering
Bulletin 35.1 (2012): 21-27.

[10] Shivnath Babu and Herodotos Herodotou (2013), "Massively
Parallel Databases and MapReduce Systems", Foundations
and Trends® in Databases: Vol. 5: No. 1, pp 1-104.
http://dx.doi.org/10.1561/1900000036

[11] Franz Färber, Norman May, Wolfgang Lehner, Philipp
Große, Ingo Müller, Hannes Rauhe, and Jonathan Dees. The
SAP HANA Database – An Architecture Overview. IEEE
Data Engineering Bulletin, 35(1):28–33, 2012.

[12] Anikiej K. Multi-core Parallelization of Vectorized Queries
[dissertation]. University of Warsaw and VU University of
Amsterdam, 2010.

[13] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proceedings of SIGMOD
Conference, 1979.

[14] M. Majster-Cederbaum. Elimination of redundant operations
in relational queries with general selection operators.
Computing, 34(4):303-323, 1984.

[15] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in
relational databases. ACM Trans. on Database Systems, 4(3):
297-314, 1979.

[16] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient
optimization of a class of relational expression. ACM Trans.
on Database Systems, 4(4):435-454, 1979.

[17] Nikolaus Ott, Klaus Horländer, Removing redundant join
operations in queries involving views, Information Systems,
Volume 10, Issue 3, 1985, Pages 279-288

[18] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operator. Journal
of the ACM, 27(4):633-655, 1980.

[19] Halevy, Alon Y. "Answering queries using views: A
survey." The VLDB Journal 10.4 (2001): 270-294.

[20] Sara Cohen, Werner Nutt, and Yehoshua Sagiv. 2003.
Containment of Aggregate Queries. In Proceedings of the
9th International Conference on Database Theory (ICDT
'03), Diego Calvanese, Maurizio Lenzerini, and Rajeev
Motwani (Eds.). Springer-Verlag, London, UK, UK, 111-
125.

[21] Chandra A.K., Merlin P.M. Optimal implementation of
conjunctive queries in relational databases. In: Proc. Ninth
AnnualACMSymposium on Theory of Computing.pp 77–90,
1977

[22] Zhang X., Ozsoyoglu M.Z. On efficient reasoning with
implication constraints. In: Proc. of DOOD. pp 236–252,
1993

[23] Chaudhuri S., Vardi M. Optimizing real conjunctive queries.
In: Proc. of PODS. pp 59–70, Washington D.C., USA, 1993

[24] Chaudhuri S., Vardi M. On the complexity of equivalence
between recursive and nonrecursive datalog programs. In:
Proc. of PODS. pp 55–66, Minneapolis, Minn., USA, 1994

[25] Kolaitis P., Martin D., Thakur M. On the complexity of the
containment problem for conjunctive queries with built-in
predicates. In: Proc. of PODS. pp 197–204, Seattle,Wash.,
USA, 1998

[26] Tsatalos O.G., Solomon M.H., Ioannidis Y.E. The GMAP: a
versatile tool for physical data independence. In: Proc. of
VLDB. pp 367–378, Santiago, Chile, 1994

[27] Tsatalos O.G., Solomon M.H., Ioannidis Y.E. The GMAP: a
versatile tool for physical data independence. VLDB J.
(2):101–118, 1996

[28] Chaudhuri, S., Krishnamurthy, R., Potamianos, S., & Shim,
K. (1995, March). Optimizing queries with materialized
views. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE) (pp. 190-190). IEEE Computer Society.

[29] Goldstein J., Larson P.A. Optimizing queries using
materialized views: a practical, scalable solution. In: Proc. of
SIGMOD. pp 331–342, 2001

[30] JarkeM. Common subexpression isolation in multiple query
optimization. Query Processing in Database Systems,
KimW, Reiner DS, Batory DS (eds.). Springer: Berlin, 1985

[31] Park J, Segev A. Using common subexpressions to optimize
multiple queries. Proceedings of the 4th International
Conference on Data Engineering. IEEE Computer Society:
Washington, DC, 1988; 311–319.

[32] Sellis T. Multiple query optimization. ACM Transactions on
Database Systems 1988; 13(1):23–52.

[33] Cosar A, Lim E, Srivastava J. Multiple query optimization
with depth-first branch-and-bound and dynamic query
ordering. CIKM 93, Proceedings of the Second International
Conference on Information and Knowledge Management.
ACM, 1993; 433–438.

[34] Chen F, Dunham M. Common subexpression processing in
multiple-query processing. IEEE Transactions on Knowledge
and Data Engineering 1988; 10(3):493–499.

[35] Roy P et al. Efficient and extensible algorithms for multi
query optimization. Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data. ACM
Press: New York, 2000; 249–260.

[36] Tan K, Lu H. Workload scheduling for multiple query
processing. Information Processing Letters 1995; 55(5):251–
257.

[37] Tan K, Lu H. Scheduling multiple queries in symmetric
multiprocessors. Information Sciences 1996; 95(1/2):125–
153.

[38] Dalvi N et al. Pipelining in multi-query optimization. J.
Comput. Syst. Sci. 2003; 66(4):728–762.

[39] O'Gorman, Kevin, Amr El Abbadi, and Divyakant Agrawal.
"Multiple query optimization in middleware using query

teamwork." Software: Practice and Experience 35.4 (2005):
361-391.

[40] Stolte, C., Tang, D., and Hanrahan, P. 2008. Polaris: a
system for query, analysis, and visualization of
multidimensional databases. Commun. ACM 51, 11 (Nov.
2008), 75-84.

[41] http://redis.io/

[42] Lakshman, Avinash, and Prashant Malik. "Cassandra: a
decentralized structured storage system." ACM SIGOPS
Operating Systems Review 44.2 (2010): 35-40.

[43] https://www.faa.gov/data_research/

[44] Milena G. Ivanova, Martin L. Kersten, Niels J. Nes, and
Romulo A.P. Gonçalves. 2009. An architecture for recycling
intermediates in a column-store. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of
data (SIGMOD '09), Carsten Binnig and Benoit Dageville
(Eds.). ACM, New York, NY, USA, 309-320

[45] Parag Agrawal , Daniel Kifer , Christopher Olston,
Scheduling shared scans of large data files, Proceedings of
the VLDB Endowment, v.1 n.1, August 2008

[46] Prasanth Jayachandran, Karthik Tunga, Niranjan Kamat,
Arnab Nandi. Combining User Interaction, Speculative
Query Execution and Sampling in the DICE System.
PVLDB 7(13): 1697-1700 (2014)

[47] Kristi Morton, Ross Bunker, Jock Mackinlay, Robert
Morton, and Chris Stolte. 2012. Dynamic workload driven
data integration in tableau. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data
(SIGMOD '12). ACM, New York, NY, USA, 807-816.
http://doi.acm.org/10.1145/2213836.2213961

[48] Shaul Dar , Michael J. Franklin , Björn Þór Jónsson , Divesh
Srivastava , Michael Tan. Semantic Data Caching and
Replacement, Proceedings of the 22th International
Conference on Very Large Data Bases, p.330-341,
September 03-06, 1996

