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ABSTRACT 
The rapid increase in data volumes and complexity of applied 
analytical tasks poses a big challenge for visualization solutions. 
It is important to keep the experience highly interactive, so that 
users stay engaged and can perform insightful data exploration. 

Query processing usually dominates the cost of visualization 
generation. Therefore, in order to achieve acceptable response 
times, one needs to utilize backend capabilities to the fullest and 
apply techniques, such as caching or prefetching. In this paper we 
discuss key data processing components in Tableau: the query 
processor, query caches, Tableau Data Engine [1, 2] and Data 
Server. Furthermore, we cover recent performance improvements 
related to the number and quality of remote queries, broader reuse of 
cached data, and application of inter and intra query parallelism. 

1. INTRODUCTION 
Data visualization and big data processing have become key 
elements of modern analytic platforms. Lower hardware prices 
allow customers to purchase powerful computational clusters, 
collect high volumes of detailed data and perform sophisticated ad 
hoc analysis. Moreover, there is a growing demand for 
standardized solutions in related areas, such as: data federation, 
exploration of semi-structured and graph data sets, and data 
preparation or knowledge discovery. The increasing popularity of 
visual analytics is driving development in these fields and 
provides the research community with new data processing and 
usability challenges. 

In the past years, Tableau has become a leader in providing easy-
to-use data visualization tools. It currently connects to over 40 
different data sources, from simple file-based sources, through 
SQL/MDX databases or web data sources, to Hadoop clusters. In 
a common intuitive interface, it allows for rich analysis of 
different areas of data, including filtering, custom calculations – 
potentially at different levels of detail, window and statistical 
functions and many others. 

Tableau aims to provide a fast interactive environment for data 
exploration. A key challenge, both today and as we continue to 
add more sophisticated data analysis, is maintaining high 

responsiveness of the interface. To achieve that across all the 
supported data sources, one often needs to apply dedicated 
optimization techniques to alleviate efficiency and capability 
shortcomings of various architectures.  

During data exploration, each user interaction with the application 
generates an adhoc query workload. This workload is difficult to 
predict and requires powerful analytic databases, e.g. column 
stores, to process requests with low latencies. Additionally, we 
leverage caching and query optimization techniques to provide 
high levels of interactivity. 

Sharing the results of data exploration via Tableau Server in the 
intranet or Tableau Online, in the cloud, presents a different set of 
workload challenges. Users can combine visualizations created 
during data exploration into dashboards and publish them to 
Server. A dashboard consists of multiple visualizations; they are 
often linked by actions, such as filtering of one view based on 
selection in another.  

The query workload generated by published dashboards is easier 
to predict than the adhoc workload generated during exploratory 
analysis. This is because queries are generated by interacting with 
schema components already defined in the dashboard. Moreover, 
caching is more efficient as it can be applied across multiple users 
accessing the same dashboards. 

Although with different emphasis, providing a highly interactive 
experience in both aforementioned scenarios depends upon the 
efficient retrieval of new data from external sources and maximal 
utilization of previously obtained results.  In this paper, we 
present recent performance improvements focused on increasing 
product interactivity, including: 

 Query batch preparation and concurrent query 
execution to improve dashboard generation; 

 Persisted and distributed intelligent cache to improve 
response times across users and their interactions; 

 Parallel plans and fast scanning of RLE encoded 
columns in Tableau Data Engine; 

 Managing data models and extracts in Data Server 
along with temporary table support. 

The text is organized accordingly. Section 2 covers the general 
background. In Sect. 3 we describe how dashboards are generated 
focusing on query processing and caching. Section 4 gives an 
overview of the Tableau Data Engine and its recent performance 
features. In Sect. 5 we look at connection and data model 
management in the Data Server. Section 6 covers related work. 
Future plans are given in Sect. 7 and the paper is concluded in 
Sect. 8. 
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Figure 1: Sample dashboard for the FAA Flights On-Time dataset 

 

2. BACKGROUND 
Tableau is an application for rapid interrogation of structured 
data. The application has a simple, intuitive drag-and-drop 
interface that generates queries against a wide spectrum of data 
sources. The application has a large number of built-in chart 
types. Users are offered a rich environment for analyzing their 
data, including defining new calculations, forecasting, filtering, 
and combining data from heterogeneous data sources [47]. 

User actions that add and remove items in a worksheet are 
represented with VizQL [40], a set of specialized algebraic 
operations. This representation is used to automatically generate 
queries against a specified data source. Queries are issued and the 
results are interpreted to produce the requested visualization. As 
the user interacts with elements of the visualization, additional 
queries may be issued to the underlying database. 

The Tableau Data Engine (TDE) is a proprietary column store 
database that can be used to allow users to extract data from an 
existing database or text file. When a TDE extract is incorporated 
into a user's workbook, a user can continue to interrogate their 
data when a network connection to the database is not available. 
Additionally, the extract reduces the query load on the backing 
database. Users can easily switch from an extract back to a live 
connection, and extracts can be refreshed when appropriate. 

Tableau Server allows users to easily share their visualizations 
with others. Users publish data sources or visualizations to Server 
and specify sharing permissions for them. These visualizations 
can be viewed and interacted with via another Tableau 
application, or simply through a Web browser. If visualizations 
are published with accompanying TDE extracts, a schedule can be 
created to automatically refresh the extracts, ensuring the data is 
always current. 

3. QUERY PROCESSING FOR 
DASHBOARDS 
Dashboards are a vital element of many data visualization 
platforms. Each covers a certain area of data and allows users to 

view it from different angles. Quality of experience depends on 
the degree of interactivity, a factor that distinguishes dashboards 
from old-fashioned static reports. 

A dashboard is a collection of zones organized according to a 
certain layout. Different zone types include various charts, maps, 
filters, calculated text, images etc. One defines the behavior of 
individual zones first and then specifies dependencies between 
them. Complicated scenarios might involve tens or even hundreds 
of zones. 

Let us consider a simple example of a dashboard (Fig. 1) defined 
for the popular FAA Flights On-time dataset [43]. It covers all the 
flights in the US in the past decade. The two upper maps show the 
number of flight origins and destination by state and, at the same 
time, allow specifying origins and destinations for the slave charts 
at the bottom. Each chart is annotated with average delays and 
flights per day. The bottom charts cover airlines operating the 
flights, destination airports, breakdown of cancellations and 
delays by weekdays, and distribution of arrival delays broken 
down by hours of a day. The right-hand side has filtering, total 
count of visible records and static legends. 

Rendering a dashboard requires retrieving necessary data and 
post-processing it for visualization. Due to dependencies between 
zones, the entire process might take several iterations in which 
obtained responses are used to specify subsequent requests; the 
process is discussed in detail in Sect. 3.3. 

Most zones require data from one or more data sources in order to 
be rendered.  The requests are specified internally by queries with 
expressiveness matching the capabilities of the data sources. 
These internal queries eventually get turned into textual queries in 
appropriate dialects and sent to the corresponding data sources. 

In the next section we discuss efficient data retrieval and 
generation of high-quality remote queries as both vastly 
contribute to the latency of dashboard interactions. 

3.1 Single Query Processing 
The internal queries formulated by components in Tableau closely 
follow the concepts of the application. In general, the queries 



express aggregate-select-project scenarios, with potential 
subqueries for computed columns of different levels of detail and 
more sophisticated filters, such as top-n.  

A query gets executed against a certain view on the data of a 
single data source. Users can specify views as single tables (e.g. 
denormalized SQL relations, OData sources, and text files), multi-
table joins (often star or snowflake schemas), parameterized 
custom SQL queries, stored procedures or cubes.  

Before a query can be sent to a relevant backend, it undergoes a 
compilation process consisting of structural simplification and 
implementation. First, a query is translated into a tree of 
elementary operations to facilitate subsequent transformations. 
Numerous optimizations are applied to the tree, including join 
culling, predicate simplification and externalization of large 
enumerations with temporary secondary structures. The query 
compiler incorporates information about cardinalities, domains, 
and overall capabilities of the data source, such as support for 
subqueries, temporary table creation and indexing, or insertion 
over selection. 

A simplified query is subsequently translated into a textual 
representation that matches the dialect of the underlying data 
source. While most supported data sources speak a variant of SQL 
or MDX, each has their own exceptions to the standard and non-
compliances. Moreover, out of the wide spectrum of scalar and 
aggregate functions available in the system, the native 
implementations might vary a lot due to type promotion and 
casting, function efficiency or even feasibility. As a result, some 
operations may need to be locally applied in the post-processing 
stage. 

Tableau communicates with remote data sources by means of 
connections. Most often a connection maps to a database server 
connection maintained over a network stack. In some cases it 
might be entirely handled on the side of the application, e.g. 
parsing of text or Excel files. Communication with the drivers is 
encapsulated in external processes to isolate failures in the third-
party software and potentially greedy resource allocation from the 
rest of the system. Retrieved results are streamed back in a tabular 
format. 

3.2 Query Caching 
Generating visualizations is expensive, therefore, Tableau utilizes 
several levels of caching. In this section we focus on the product’s 
use of query-related caches, as data retrieval is the most time-
consuming stage of the entire process. Other examples include 
caching entire visualizations, image and map tiles, etc. 

As a user interacts with a dashboard, it is likely that identical or 
similar visualizations will be requested at each refresh of the 
view.  In a multi-user scenario, it is even more common to get 
identical or similar requests, since different users are working 
with the same shared dashboards. An extreme example of this is 
seen in Tableau Public, which allows for publishing visualizations 
and data, and referencing them in personal articles or blogs. The 
user-generated traffic is saturated by initial load requests, as many 
viewers just read content with the initial state of a dashboard and 
make further interactions rarely. 

Tableau incorporates two levels of query caching: intelligent and 
literal. The intelligent cache maps the internal query structure to a 
key that is associated with the query results [48]. When a new 
query is to be executed, a cache key is generated and the 
intelligent cache is searched for a match. When looking for 

matches, we attempt to prove that results of the stored query 
subsume the requested data [19, 20]. While currently we accept 
the first match, in the future release, we plan to choose the entry 
that requires the least post-processing. Also, even though the 
matching logic is designed to be fast, we are planning to maintain 
an index over the cache to minimize the lookup time. 

The applicability of the intelligent cache is limited by proving 
capabilities and efficiency, e.g. analyzing implications of 
predicates, potentially large or formulated in different equivalent 
ways, and by post-processing capabilities. The latter includes roll-
up, filtering, calculation projection, and column restriction. It is 
worth noting that certain operations cannot be performed locally, 
in particular, if they involve native function calls or collation 
conflicts. 

The intelligent cache can be treated as a database view-matching 
component. It keeps the application highly responsive as long as 
covering data is available and can be post-processed. The 
additional post-processing usually does not require much time as 
we retrieve data in small, pre-filtered and pre-aggregated 
volumes. For many queries, the number of tuples returned is of 
smaller size than the number of un-aggregated, unfiltered rows in 
the database. Local post-processing occurs on this relatively small 
set of aggregated data. The query processor might choose to 
adjust queries before sending, in order to make the results more 
useful for future reuse. 

The literal query cache contains low-level queries that are not 
directly related to visualization generation; it is keyed on the 
query text. It is used to match internal queries that end up having 
the same textual representation but where a match could not be 
proven upfront without performing complete query compilation. 
Predicate simplification based on domains or join culling are 
some examples of this scenario.  

Cache entries in both the literal and intelligent cache are purged 
based upon a combination of entry age, usage, and the expense of 
re-evaluating the query. Entries are also purged when a 
connection to a data source is closed or refreshed. 

Let us revisit the sample dashboard in Fig. 1 in the context of 
caching. Note that the queries for the domains of filters on the 
right need to be sent only once. Further interactions might change 
the selection but not the domains. Furthermore, data for other 
charts got cached with all the filtering values selected. If a user 
deselects some of the values on the right, the intelligent cache will 
be able to filter out the necessary rows for the results for other 
charts, as long as the filtering columns are included. 

In Tableau Desktop query caches get persisted to enable fast 
response times across different sessions with the application. 
Tableau Server does not persist the caches but it utilizes a 
distributed layer based on REDIS [41] or Cassandra [42] 
depending on the configuration. This allows sharing data across 
nodes in the cluster and keeping data warm regardless of which 
node handles particular requests. For efficiency, recent entries are 
also stored in memory on the nodes processing particular queries. 
In general, we cache all the query results unless computation time 
is comparable with a cache lookup time or the results are 
excessively large  

3.3 Query Batch Processing 
From a user’s perspective, the ultimate goal is to immediately 
load an entire dashboard or refresh it after a given interaction. 
Therefore, the data retrieval task is not formulated with respect to 



individual queries but in terms of minimizing the latency of 
processing all of them. 

Due to dependencies between zones, rendering of a dashboard 
might require several iterations to complete. Consider the 
dashboard in Fig. 2, which shows the Flights/Day for a Market, 
Carrier, and Airline Name for the FAA Flights data from Figure 
1. The Carrier zone is filtered to the top 5 carriers, based upon 
number of flights, that have more than 1,400 Flights/Day. The 
dashboard has two interactive filter actions defined:  (1) selecting 
a field in the Market zone will filter the results in the Carrier and 
Airline Name zones, and (2) selecting a carrier in the Carrier zone 
will filter the Airline Name zone. In Figure 2, the user has already 
selected a Market (LAX-SFO) and a Carrier (AA).  

 

Figure 2: A dashboard with three zones, linked by two 
interactive filter actions. Selecting items in either the Market 
or Carrier zones filters the viz results. 

If the user selects HNL-OGG in Market, the interactive filter 
actions will cause the Airline Name and Carrier zones to be 
updated with a filter on HNL-OGG. One side-effect of these 
updated results is that the previous user-selection (AA) in the 
Carrier zone is eliminated, as AA is not a carrier for the HNL-
OGG market. Subsequently, the interactive filter action will cause 
a query without a filter on Carrier to be generated to update the 
Airline Name zone. 

Zones that participate in an iteration generate queries that together 
comprise a query batch of this iteration. As the iteration and, thus, 
the corresponding batches are processed independently, here we 
examine the optimization of a single query batch. 

 

Figure 3: Sample cache hit opportunities graph with partition 
of queries into local and remote 

Consider a query batch B=[q1, .. , qn] and assume that the target 
data sources are all idle and have all the resources available. In 
addition, to express cache hit opportunities, consider a directed 
graph G with the queries as nodes and edges pointing from qi to qj 
iff the result of qj can be computed from the results of qi (Fig. 3). 
The latter is determined by the matching logic of the intelligent 
query cache. 

One way of executing these queries is to send them one by one in 
a certain order, and each time wait for the query to complete. This 

way each query has all the resources for itself and its processing 
time is the shortest. Note that the query execution order matters 
and topological orders in G are most beneficial, as the queries 
with incoming edges will be answered from the cache. This 
strategy roughly corresponds to processing zones serially. 

Serial execution of queries minimizes their individual processing 
times but does not utilize available resources to the fullest. 
Therefore, executing queries concurrently might reduce the 
overall rendering time of a dashboard. In order to maximize cache 
usage we process the batch in two phases. First, we analyze it and 
partition the nodes of G into two sets. One set contains queries 
that need to be sent to the remote back-ends; they correspond to 
the source nodes, i.e. the nodes without incoming edges. The 
second set contains queries that are cache hits that can be 
processed locally. In the second phase, remote queries are 
submitted for execution concurrently and the local ones are 
processed as soon as any of their predecessors in G finishes. 

3.4 Query fusion 
Grouping queries in batches creates an opportunity to utilize 
multi-query optimization techniques. One basic optimization we 
apply across queries before executing a query batch is combining 
groups of queries defined over the same relation and potentially 
different with respect to their top-level projection lists. Strictly 
speaking, we replace a group of queries of the form [πP1(R), .. , 
πPn(R)] with a single query πP(R), where R is the common 
relation, P1, .., Pn are respective projection lists and P= i=1,..,n Pi . 
We refer to this transformation as query fusion. 

One obvious advantage of this approach is a reduction of the 
number of queries in a batch and, thus, the overall overhead of 
dispatching queries in corresponding data sources and necessary 
communication. Since it is quite common for different zones of a 
dashboard to share the same filters but request different columns, 
the reduction might be substantial. 

More importantly processing of a fused query is often much more 
efficient than processing of the individual queries that were fused, 
as the underlying relation needs to be computed only once. 
Although it is possible that a physical layout of the data can lead 
to a performance regression, this optimization brings significant 
gains in our visualization benchmarks. 

3.5 Concurrent Execution of Queries 
In order to process dashboards in parallel, Tableau needs to 
concurrently execute queries against external data sources. Since 
the capabilities, stability and efficiency of the many supported 
back-ends often vary dramatically, the communication and 
execution layers need to be universal. This section explains the 
design choices and their consequences for different data source 
architectures. 

As noted in Sect. 3.1, Tableau uses the abstraction of a connection 
to communicate with external data sources. There are basically 
two strategies to submit queries concurrently: by using a single or 
multiple connections. The first route is rarely supported by 
databases and usually comes with functional or performance 
limitations. SQL Server with MARS enabled is one example here. 
On the contrary, maintaining separate connections to allow for 
concurrent access from independent clients belongs to a basic 
repertoire of most database servers. Their responsibility is to 
govern resources appropriately across the corresponding 
workloads and make sure none gets starved. 
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Tableau manages a certain number of active connections to each 
data source to implement concurrent execution of remote queries. 
The process of opening a connection, retrieving configuration 
information and metadata are costly, therefore, connections are 
pooled and kept around even if idle. 

In addition, connection pooling plays an important role in 
preserving and reusing temporary structures stored in remote 
sessions. For example, temporary tables created for large filters or 
multi-dimensional sets during query processing are likely to be 
useful while formulating queries within the same query batch or 
within batches originating from interactions with the same 
dashboard. An age-wise eviction policy is used in case of local 
memory pressure or to release remote resources unused for longer 
periods of time. 

Queries submitted by different components of the system are 
multiplexed across connections regardless of their remote state. 
That means that popular temporary structures will be duplicated 
in several connections. While this adds a certain overhead to the 
backend, it also makes the connections potentially more useful for 
subsequent queries. Some architectures allow to alleviate this 
overhead and share a single remote session across multiple 
connections, however, this comes at a price of more complicated 
locking on the server side to resolve concurrent changes across 
the participating connections. 

While Tableau generates a highly parallel workload, the overall 
efficiency of the system depends on the processing ability of the 
back-ends. The latter is determined by several aspects of the 
database architecture and the underlying hardware. First of all, the 
sooner a database server receives a workload the better it can 
schedule execution of the participating queries. Generally, 
databases do not perform cross-query optimization with respect to 
query plans. This would require substantial pre-processing and 
affect short-running queries. Nonetheless, certain optimizations 
might be applied in lower layers. One example is the shared scans 
feature [45] present in several systems, including SQL Server. It 
allows the storage layer to pipe pages of a single table scan to 
multiple concurrently handled execution plans. 

Resource allocation on the remote side plays a pivotal role in 
handling a concurrent workload efficiently. While some queries 
are already being executed, an arrival of a new query might cause 
the previously assigned resources to be reclaimed. Furthermore, 
even though clients might be sending a high number of concurrent 
queries, the database is likely to throttle them based on available 
resources or a hard-coded threshold. One might need to tune the 
system to appropriately manage resources of the entire cluster or 
their allocation across connections. Also, it is worth noting that 
some systems impose limitations on the overall number of 
connections or the number of concurrently executed queries. 

Moreover, the way a database allocates CPU in the single query 
execution substantially affects performance. Many architectures 
use a single thread per query. That means that a serial execution 
of a query batch would leave a tremendous amount of processing 
power idle. On the contrary, massively parallel clusters or non-
clusters solutions that support parallel plans, such as SQL Server, 
the TDE (see 3.2) and many others, will attempt to allocate many 
machines/CPUs to reduce the individual latencies. This makes the 
resource allocation harder, as it needs to take into account 
overheads of parallelism, data migration, etc. Also, scalability 
limitations, such as restricting query execution or its certain 
stages, e.g. aggregation, to a single node, allow for higher 
performance of a more concurrent workload. 

Our experiments show that using multiple connections to handle 
concurrent workloads boosts performance, often dramatically, 
across the architectures supported by Tableau. Obviously, the 
positive effect is observable if idle resources are available and can 
be utilized. Note that some resources can be shared easily, such as 
CPU, and some not, such as memory. In addition, any bottleneck 
in the system can slow down the entire pipeline. For example, in 
certain databases, session-local DDL operations for temporary 
structures take a high-level lock. We have also observed higher 
contention on disc controllers to affect the overall performance. 

4. Tableau Data Engine 
The Tableau Data Engine (TDE) is a read-only column store 
implemented by Tableau. It has been described in [1] and [2]. 
Most features described in the above papers have been shipped 
before Tableau 9.0, except for the new performance 
improvements covered in Sect. 4.2 and 4.3. The TDE is used both 
in the client environment with Tableau Desktop and in the server 
environment with Tableau Server. This section first gives an 
overview of the TDE, and then discusses these improvements. 

4.1 TDE Overview 
The TDE is designed to support the Extract scenario: extracting a 
fraction of or the entire dataset from the lively connected data 
source for offline analysis. Popular use cases include reducing the 
workload to a live database, getting better performance for 
analysis, making a snapshot and without worrying about data 
change, working on an airplane, etc. This scenario imposes a few 
requirements that are not fully satisfied by existing open-source 
and commercial systems: support fast execution of complex 
analytical queries, column level collated strings, 32-bit hardware 
with limited resource, single database file, and small installation 
footprint. The single database file is an important convenience 
feature for users to move, share, and publish the data. The TDE is 
also used in the Tableau Server environment, where it is deployed 
as a cluster of nodes through either shared-nothing or shared-
everything architecture. The TDE’s design is largely influenced 
by the extensive research work around MonetDB [3]. And it has a 
few advantages over existing systems: 

1. The TDE supports all popular platforms, such as 
Windows, Mac and Linux. It also supports both 32bit 
and 64 bit systems. 

2. As an analytical engine, the TDE supports column level 
collated strings. 

3. The TDE models column decompression using regular 
logical operators. Special logical operators are also 
introduced to utilize the compression to speed up the 
query execution. This provides a uniform view for all 
the operations in the TDE. 

4. The TDE has a very small installation package. It is 
easy to download and install. 

5. The TDE is able to run as a client application on cheap 
hardware and limited resource. It can also be deployed 
as a shared-nothing or shared-everything cluster in the 
server environment. 

6. The TDE is specially tuned for interactive analysis of 
complicated analytical queries. Features such as fact 
table culling directly address this kind of a workload 



7. The TDE is able to compact a database into a single 
file. 

This section gives an overview of the TDE. We focus on the 
following aspects of its architecture: 

 the storage layer 

 the compiler and optimizer 

 the execution engine. 

We also discuss how TDE is deployed in both the client and 
server environment. 

4.1.1 Storage Layer  
Like most database systems, the TDE has a three-layer namespace 
for logical objects in a database: schema, table and column. It has 
a simple on-disk storage layout, which makes packing the entire 
database into a single file easy. The three-layer namespace 
matches on-disk storage layout: each database is a top-level 
directory that contains schemas. Each schema is the next level 
directory that contains tables. Each table is a directory that 
contains columns. Each column is a set of related files. The 
metadata is stored in the reserved SYS schema. This directory is 
packaged into a single file once created. 

The TDE implements column-level compression. Each column 
stores uncompressed fixed-width data, or compressed fixed length 
or variable-length data. The TDE uses a dictionary-based 
compression. When data is compressed, the fixed tokens are 
stored in the original column. Each compressed column also owns 
an associated dictionary for the original fixed length (array 
compression) or variable length (heap compression) values. The 
TDE also employs lightweight compression storage format, such 
as run-length or delta encodings, for storing fixed-width data. 
This form of compression is called encoding in the TDE. The 
dictionary-compression is visible to the outside of the storage 
layer while encoding is a storage format that is typically invisible 
outside this layer.  

Unlike most analytical databases, the TDE supports column-level 
collated strings. This is important for keeping behavior in the live 
and Extract scenario in Tableau consistent, as most live databases 
do support column-level collated strings.  

4.1.2 Compiler and Optimizer 
The TDE uses a logical tree style language called Tableau Query 
Language (TQL). It supports logical operators present in most 
databases, such as TableScan, Select, Project, Join, Aggregate, 
Order, and TopN. It has a classic query compiler that accepts a 
TQL query as text and translates it into some logical operator tree 
structure. The compiler does parsing, syntax checking, binding 
and semantic analysis. In addition, the compiler also performs 
classic rewrites of the tree, for example, expressing SELECT 
DISTINCT as a GROUP BY query. It also rewrites the tree to 
model the decompression as a normal join and introduces special 
logical operators to speed up query execution by utilizing the 
compression. This will be further discussed in Sect. 3.3.  

The TDE optimizer is a rule-based optimizer. It derives 
properties, such as column dependencies, equivalence sets, 
uniqueness, sorting properties and utilizes them to perform a 
series of optimizations, such as filter and project push-down/pull-
up, removal of unnecessary joins, removal of unnecessary 
orderings, common sub-expression elimination etc. The TDE 
optimizer is specially optimized for interactive analysis of 

complicated analytical queries. For example, removal of the fact 
table from a join is critical for performance of domain queries, 
frequently sent by Tableau. 

4.1.3 Execution Engine 
The TDE execution engine is based on the Volcano execution 
framework. It has implementations for a set of operators such as 
filter, join, etc. Each query is compiled into an execution tree by 
the compiler and optimizer. The query tree is executed by 
iterating over all the rows of the root of the tree. Operators are of 
two types: streaming, and stop-and-go. The first type of operators 
can immediately generate output rows while consuming input 
rows. The second type of operator needs to consume the entire 
input before generating any output. 

4.1.4 TDE Deployment in the Client and Server 
Environments  
The TDE is a part of any Tableau Desktop deployment and gets 
executed as a separate process in its process tree. When the TDE 
is used in the server environment, it is deployed either as a 
shared-nothing architecture or shared-everything architecture. 
Each node in the cluster is a separate TDE program. In the shared-
everything architecture, storage is shared across all the nodes. A 
load balancer dispatches queries to different nodes in the TDE 
cluster. 

In both cases Tableau, treats the TDE like any other supported 
database. It pre-processes query batches, compiles queries in TQL 
and executes them against the engine.  

4.2 Parallel Query Execution 
The TDE is able to run different queries in parallel on a single 
host. For a single query, however, the first version of the TDE did 
not use multiple parallel threads. In Tableau 8.1, we introduced a 
limited implementation that targeted expensive calculations in 
filters and projections. In the current release, we redesigned the 
parallel execution in the TDE to use parallel scans, which 
provides a much greater degree of parallelism. This section 
discusses the implementation of parallel execution. 

4.2.1 Parallel Execution Runtime Operators 
Like most database systems, the TDE execution engine uses the 
Exchange operator [4] to handle the parallel part of the query 
plan. The TDE has an implementation of the Exchange operator 
that is able to take N inputs and produce M outputs. It has a 
capability to repartition the data and can preserve the order of the 
input if needed.  

Besides the Exchange operator, the TDE implements parallelism 
by means of additional operators: SharedTable and FractionTable. 
SharedTable is used to share access to a table across multiple 
threads and handles synchronization. FractionTable enables the 
TDE to read the table in parallel, since each fraction can be read 
by a separate thread.  

4.2.2 Parallel Plan Generation Algorithm 
Like VectorWise [9], the TDE optimizer takes a serial plan, and 
transforms it into a parallel plan by determining the degree of 
parallelism, and inserting Exchange operators [4] into the tree. In 
Tableau 9.0, we limited the usage of the Exchange operator to 
only support N inputs and one output. This means that the parallel 
plans we consider do not support repartitioning. The only data 
partitioning happens in TableScan. We also do not utilize the 
order preserving capability in the Exchange operator. In the 



coming releases, we will explore how repartitioning and order-
preservation can benefit the performance of Tableau’s workloads. 

For brevity, we first describe the parallel plan generation for the 
case of a query without any joins. The algorithm to parallelize 
such a serial query follows the bottom-up scheme: 

1. Leaf nodes are TableScan operators. At the TableScan 
operator the optimizer looks at the metadata, and makes 
a decision to partition the table into N fractions, where 
N is at least one. 

2. If the parent is a flow operator such as Select or Project, 
the parent inherits the degree of parallelism from the 
child. 

3. If the parent is a stop-and-go operator, such as 
Aggregate, Order or TopN, the optimizer inserts an 
Exchange operator between the child and the parent. 

4. If the root has a degree of parallelism that is larger than 
one, the optimizer inserts an Exchange operator to close 
the parallelism. 

Figure 3 shows some parallel plan examples generated by the 
algorithm. 

 

Figure 3: Parallel Plan Examples 

We notice that because the Exchange operator has only one 
output, once the optimizer decides to put an Exchange operator to 
close the parallelism, the entire tree above the Exchange operator 
runs in serial. This is a limitation that we plan to explore and 
alleviate in the next release. 

Determining the degree of parallelism in TableScan relies on 
metadata, such as data volume stored in a table. The TDE also has 
a cost profile for different supported elementary functions. The 
cost constants are obtained by empirical measuring. Certain 
operations, such as string manipulations, are much more 
expensive than others, even though the engine employs 
vectorization in expression evaluation. The cost profile is used to 
determine how expensive an expression could be. This further 
affects the decision of the parallelization. 

Since joins in Tableau are usually between the fact table and 
multiple dimension tables, the TDE uses a left-deep tree to 
represent the joins, where the leftmost leaf table is the fact table. 
The TDE’s execution engine processes the join by building a hash 
table for the right-side input, and probing the left-side input for 
matches.  

Extending the parallel plan generation algorithms to handle join is 
straightforward and can be described as follows: 

1. The left sub-tree of the join participates in the main 
parallelism  

2. The right sub-tree forms a separate and independent 
parallel unit, and the resulting table is shared between 
threads. 

3. A single hash table is built from the shared table and 
then shared for every left-hand block to probe. 

Figure 4 shows a parallel plan example with join. 

 

Figure 4: Parallel Plan with Join 

4.2.3 Optimizing Aggregations in the Parallel Plan 
Aggregations are very common in TQL queries. The simple 
parallel plan generation algorithm puts an Exchange operator to 
close a parallelized block and then applies the aggregation 
function serially on top of the output of the Exchange operator. 

This approach can be improved by using local/global aggregation. 
The basic idea is simple: we apply the aggregate on each partition 
in parallel, let the Exchange operator to merge those partially 
aggregated results, and again apply the aggregate on top of the 
output of the Exchange operator. The local/global aggregation 
approach reduces the total size of data that goes into the Exchange 
operator. The same approach can also be applied to the TopN 
operator. Figure 5 shows how the parallel plan looks like when 
local/global aggregation is applied. 

 

Figure 5: Parallel Plan with Local/Global Aggregation 

 

Even if we apply local/global aggregation to the query tree, 
aggregation is still a serialization point. We can do even better by 
removing the Exchange operator and the global aggregation 
completely from the tree and keep the plan in parallel. This 
requires a more careful partitioning of the data. If we can 
guarantee that all the records of each unique group appear in one 
and exactly one partition, the global aggregation is redundant. In 
the remaining part of this section, we explore how to make this 
possible. 

Typically, database systems use three types of partitioning: hash 
partitioning, range partitioning, and random partitioning. Random 
partitioning means that there is no constraint on which record 
goes to which partition. The system just sends records to 
partitions in an arbitrary fashion. The TDE is able to perform 
random partitioning for any table. Most tables are sorted 
according to one or more columns, and for those tables, the TDE 
is also able to perform range partitioning on the major sort. 
Performing range partitioning sometimes is important because 
interesting orders [13] on columns involved in the partitioning 
may be helpful in optimizing the query. 

In this section, we discuss the conditions when the global 
aggregate and the associated Exchange operator can be removed, 
under the constraint that the TDE is either able to perform a 
random partitioning, or a range partitioning on a sorted table. A 
sufficient condition for removing the global aggregation is: if 
there exists a subset of GROUP BY columns such that a 
permutation of these columns is a prefix of the sorted column list, 



a range partition is able to be delivered for removing the global 
aggregation and the associated Exchange operator. We briefly 
prove this through the following lemmas: 

Lemma 1: A sorted table on an ordered set of columns {c1, .. , cn} 
can be range partitioned on a prefix of the ordered set. 

Proof. If a table is sorted on an ordered set, it is also sorted on 
any prefix of the ordered set. Therefore, we are able to range 
partition on any prefix.                                                                 ▄ 

Lemma 2: If a table is range partitioned on a subset of group by 
columns, the partition guarantees that each unique group appears 
in one and only one of the partitions. 

Proof. If a table is range partitioned on a subset of group by 
columns, the partition guarantees each unique group with respect 
to the subset appears in one and only one of these partitions. Since 
any group according to the full column set is a subset of some 
group according to the subset, all the records of such a group must 
be in one and only one of the partitions.                                      ▄ 

Lemma 3: If some permutation of a subset of the group by 
columns is a prefix of a sorted table’s ordered column set, there 
exists at least one range partitioning scheme that allows 
aggregates to be computed in parallel. 

Proof. Lemma 1 says that we can range partition on a prefix of 
the ordered set. Lemma 2 says that range partitioning on a subset 
of group by columns enables parallel execution for aggregates. By 
combining the two lemmas, Lemma 3 is proved.                          
▄ 

The TDE today implements range partitioning by allowing the 
Aggregate operator to push down the partitioning requirements. 
TableScan can then utilize this information along with the 
metadata that indicates whether the table is sorted on one or more 
columns, to make a decision whether a range partitioning is 
appropriate. Multiple layers of Aggregates may accumulate more 
than one partition requirements along the tree from the root to the 
leaf. Inferring the relationship and finding a best partition is an 
interesting topic. In Tableau 9.0, we did not explore this problem 
space. Instead, the TableScan only gets the partition requirements 
from the nearest Aggregate operator. 

Data skew and low cardinality are other concerns related to range 
partitioning. Namely, if the data is skewed or if the partition key 
has very low cardinality (e.g. partitioning on gender), range 
partitioning may be slower than the local/global aggregation 
approach. Therefore, range partitioning in the TDE is applied 
conservatively today.  

4.2.4 Interaction between Parallelization and Other 
Query Optimizations 
The TDE query optimizer performs a series of optimizations. 
Some of them are affected by the introduction of parallelism to 
the plans. For example, the optimizer derives sorting properties 
that are used in certain rewrites. One of the usages is to determine 
whether a streaming implementation can be used for an aggregate 
function. Strictly speaking, if the data is grouped according to the 
group by columns, streaming aggregates can be applied. The TDE 
only tracks sorting properties but sorting is a sufficient (but not a 
necessary) condition to satisfy the grouping requirements. 

The Exchange operator disturbs the sorting properties. Choosing 
between a streaming aggregate while the query is running in 
serial, and the parallel plan while we need to use a normal 
aggregate (currently based on hashing only in the TDE) is a cost-

based decision. One can also consider variations of the parallel 
plans with resorting or order-preserving Exchange but both 
strategies performed badly on our testing workloads. In general, 
parallelization introduces more alternatives into the search space 
and the current rule-based query optimizer does not explore all 
the additional ones. 

4.3 Leverage Encoding for Query Execution 
The TDE optimizer is able to utilize the encoding information to 
speed up query execution. Such techniques have been discussed 
in [2]. The implementation has now become part of the Tableau 
9.0 release. This section gives a quick overview of one specific 
technique and is largely a summary of Sect. 5.2 from [2]. 

For a run length encoded column, the optimizer can generate an 
IndexTable, which consists of three columns: value, count and 
start. The IndexTable can then be joined back to the main table on 
a range predicate: 

Index.start <= Main.rank < Index.start + Index.count. 

While this join by itself is not interesting, combining with the 
operator pushdown allows the optimizer to push a filter condition 
on the run length encoded column to the IndexTable. As a result, 
it produces a much smaller output that normally only contains a 
few rows. This join then significantly reduces the output of the 
TableScan. Furthermore, since this is a special join, we 
implement the join that translates the range specifications directly 
into disk accesses. This approach allows us to express range 
skipping simply as a join in the query plan. Parallel execution is 
implemented by distributing the result from the IndexTable across 
multiple threads. These threads then scan different ranges of the 
same input table. 

Given the parallel plan introduced in Tableau 9.0, the specific 
approach described above does not always make the query 
execution faster. Although it reduces the total amount of data to 
be read from the disk, it may also reduce the degree of 
parallelism. Furthermore, this approach can introduce data skew 
among different threads in the parallel execution. We are looking 
into how to better choose the best plan among different 
alternatives. We are also looking for different ways to utilize the 
encoding for faster query execution. 

4.4 Shadow Extract for Text and Excel Files 
Tableau is able to connect to a wide range of data sources, 
including text and Microsoft Excel files. Both text and Excel files 
are highly popular file formats for storing data.  

In the past Tableau used Microsoft Jet/Ace drivers to query text 
and Excel files. This approach had a number of drawbacks, such 
as lack of portability to other operating systems and a 4GB 
parsing limit. Furthermore, running analytical queries over these 
data sources was inherently slow because the system had to parse 
the file for every query.  

Shadow extracts have been introduced to speed up the query 
execution and overcome the Jet limitations. When a text or excel 
file is connected, Tableau extracts the data from the file, and 
stores them in temporary tables in the TDE. Subsequently, all 
queries are executed by the TDE instead of parsing the entire file 
each time. This greatly improves the query execution time, 
however, we need to pay a one-time cost of creating the 
temporary database. Last but not least, the system can persist 
extracts in workbooks to avoid recreating temporary tables at 
every load.  



In order to effectively extract data from text and Excel files, and 
overcome the Jet/Ace limitations, Tableau uses an in-house parser 
for parsing text files and LibXL [6] for parsing Excel files. These 
parsers are both more efficient, do not have the 4GB limitation, 
and are cross-platform. The text parser accepts a schema file as 
additional input if one is available. Otherwise, it attempts to 
discover the metadata by performing type and column name 
inference.  

5. Improving Interactivity of Tableau Server 
Tableau Server enables users to share their visualizations in an 
organization. Tableau 9.0 has improved the interactivity of 
Tableau Server significantly. In this section, we first discuss the 
limitations of using Tableau Server for sharing. We then present 
the Data Server component, which was introduced to address 
these problems. The rest of this section discusses the performance 
improvements in Tableau Server for interactivity. 

5.1 Sharing Visualizations in Tableau Server 
Tableau users share their data visualizations by publishing them 
to Tableau Server as collections of visualizations, called 
workbooks. Users interact with these published visualizations via 
a Web browser. The visualizations may rely on either live 
connections to data sources or data extracts. Extracts can be 
automatically refreshed by Server to prevent stale data. 

Except for their connections to live data sources, Tableau 
workbooks are self-contained. Customized calculations and fields 
are defined within the workbook. TDE extracts are contained in 
the workbook.  

Bundling all data source definitions and extracts within a 
workbook makes sharing a workbook simple, but prevents other 
workbooks from sharing the contained calculations and extracts.  
Users wishing to use the same calculations and fields defined in a 
published workbook must manually copy the definitions into their 
own workbooks. If a calculation needs to be modified, all 
workbooks containing the calculation must also be updated. 

Similarly, TDE extracts must be generated and included in each 
workbook that references it. If hundreds of workbooks all use the 
same large extract, considerable disk resources are consumed by 
redundant data. Refreshing the workbooks' extracts daily to 
prevent stale data incurs a significant and redundant load on the 
underlying database. 

5.2 Tableau Data Server Overview 
The Tableau Data Server is a part Tableau Server that reduces the 
overhead of sharing calculations and extracts across workbooks. 
Data Server also allows filters to be applied to a published data 
source to restrict individual users' access to the data. For example, 
an individual salesperson may only be able to see customers in 
their region, while their manager can see customers in all regions.  

Users publish data sources that can be leveraged, without 
duplication, by multiple workbooks to Data Server. By publishing 
a data source to Data Server, a complex calculation in a data 
source can be defined once and used everywhere. Categorical bins 
and multi-dimensional sets of thousands of constants can be 
manually defined once. Modifications to a published data source 
affect all visualizations that refer to it. 

TDE extracts can be published with a data source. Instead of 100 
workbooks with distinct copies of the same extract, a single 
extract is created. Refreshing a single extract daily -- rather than 

all copies of it – significantly reduces the query load on the 
underlying database. 

 

Figure 6 depicts Data Server in the larger Tableau eco-system. 
Clients can directly connect to databases or connect to data 
sources published to Data Server, which acts as a proxy between 
clients and the underlying database. 

When a client connects to a published data source, it receives 
metadata (e.g. schema) about the published data source from Data 
Server. The client populates its data window with this 
information. As the user drags fields on to the visualization, 
queries are dispatched from the client to Data Server. 

Data Server parses the query into an internal representation, 
optimizes it and generates the query for the specific underlying 
database. Databases have different capabilities and the query 
optimization and generation process takes these capabilities into 
account. The generated query is evaluated against the underlying 
database and the retrieved results are returned to the client for 
display. 

5.3 Improving Interactivity of Published Data 
Sources  
Data Server as any other proxy adds on a certain overhead. 
However, other than imposing data permissions, there is 
conceptually no reason why proxied interactions with underlying 
data sources would be different from the ones against equivalent 
direct connections. 

In the past, in certain cases the queries from Data Server could be 
less optimal. This is because Data Server was using a separate 
optimization pipeline from the one in Tableau Desktop (Sect. 
3.1). In Tableau 9.0, these pipelines got unified, which allows 
both applications to take advantage of the same rich 
optimizations. Another shortcoming was related to managing a 
remote state. Namely, when a client directly connects to a 
database, Tableau creates temporary data structures on the 
database to improve interactivity. For example, a filter on a large 
cardinality database field may be stored as a temporary table on 
the database. Instead of issuing a query with a very long and 
complicated filter to the database, the temporary table is used in 
the query. 

We have introduced temporary tables to the Data Server to 
improve the user experience for published data sources. The 
temporary data structures provide two different performance 
improvements: (1) reduced network traffic between the client and 
the Data Server if a temporary data structure is used repeatedly in 

Figure 6: Data Server in the Tableau eco-system 



subsequent queries, and (2) improved query execution times on 
the database. 

When a client connects to a published data source on Data Server, 
the Data Server establishes a connection to the underlying 
database and determines if it supports the creation of temporary 
tables. This information is conveyed back to the client with the 
data source metadata. 

As fields are dragged to the visualization, the client issues a series 
of requests to Data Server to create and populate a temporary 
table, causing the Data Server to construct an in-memory 
temporary table. Subsequent queries from the client to the Data 
Server may reference this temporary table. On the Data Server, 
the temporary table’s definition is incorporated during query 
optimization, compilation, and evaluation. In some cases, the 
query may be evaluated without interacting with the underlying 
database. 

If the generated query must be evaluated by the underlying 
database, the Data Server will create a temporary table on the 
database. The generated query is modified to use the temporary 
table on the database and executed. If the Data Server fails to 
create a temporary table on the database, the query is rewritten to 
produce a query that can be evaluated without it. 

5.4 State Management 
Temporary table state is maintained in two different places in 
Data Server: in memory and on the underlying database. In both 
cases, this state is maintained while the client connection to Data 
Server remains active; it is reclaimed when the connection is 
closed or expired due to inactivity. 

To alleviate the in-memory cost of temporary tables, temporary 
table definitions are shared across client connections. These 
definitions are updated as clients create and drop temporary 
tables. The definitions are removed when all references to them 
are removed. 

If desired, in-memory temporary tables on Data Server can be 
disabled. While network traffic between the client and Data 
Server will increase, users will still benefit from improved query 
execution times on the underlying database. 

6. RELATED WORK 
The TDE is a column store for analytical queries. C-store [7] is a 
column store that has been commercialized as Vertica. MonetDB 
[3, 8] from CWI is another column store that has wide impact. 
Vectorwise [9] is the commercialized MonetDB/X100 [3] project 
that has an Ingres front-end and many additional improvements. 
Also, SAP Hana [11] is a column store that supports both OLTP 
and analytical queries.  

A parallel database has a long history of research and commercial 
development since early 1990s. It is beyond the scope of this 
section to give an overview of this area, for details see [10]. The 
TDE’s execution model is based on the Volcano system [4]. In 
particular, it uses the Exchange operator to perform parallel 
execution. Vectorwise’s parallel optimizer [12] provides some 
good data structure to track the requests from the parents to the 
children and the delivery from the children to the parents. The 
TDE’s parallelizer has largely borrowed the notations from 
Vectorwise’s optimizer. Property derivation has a long history. 
System R [13] pioneered this technique by tracking the ordering 
information for intermediate query results. Partition property 
derivation was first discussed in [5]. 

Eliminating redundant operations, such as joins has been widely 
studied [14, 15, 16, 17, 18]. In particular, elimination of 
redundant joins in [14, 15] is based on the concept of tableaux and 
is only able to treat a sub-class of relational algebras. [16] 
enhanced the tableaux approach by using so-called tagged 
selection tableaux. Removing redundant joins in queries involving 
views has been studied in [17]. The approach uses functional 
dependencies and source level transformations of SQL to remove 
redundant joins. Join culling is widely applied in Tableau and the 
TDE to improve query execution latency for better interactive 
experience. 

Query matching plays an important role in Tableau’s caching 
infrastructure. It has been widely studied in the database 
literature, mostly in the context of database views. Giving an 
overview of the research for database views is beyond the scope 
of this section. A good survey is provided in [13]. Query 
containment and query equivalence are two important concepts in 
the research literature. They enable comparison between different 
queries. The theory of query containment and equivalence has 
been widely studied [18, 21, 22, 23, 24, 25]. GMAP [26, 27] 
pioneered the view matching approach in the database system. In 
[28], the authors provide a similar algorithm for view matching. A 
transformation rule based approach for view matching in the SQL 
Server’s optimizer is discussed in [29]. This approach introduces 
the filter-tree index to dramatically speed up the matching 
process. 

Multiple query processing has been widely studied in the database 
literature, mostly in the context of multiple query optimization 
[30, 31, 32, 33, 34, 35]. Much of the work [30, 31, 34] has 
focused on finding common subexpressions and materializing the 
results temporarily for sharing among these queries. Researchers 
also studied multiple query processing beyond the common 
subexpression detection. For example, Tan and Lu [36, 37] 
investigated how to schedule query fragments to better share the 
data in memory and across multiprocessors. Pipelining the data 
between processes to share the same data is studied in [38]. 
Furthermore, scheduling the queries carefully using a middleware 
to improve sharing between queries has been studied in [39]. 

7. FUTURE PLANS 
Tableau constantly adds new data sources and types of analysis, 
which often requires implementation of dedicated performance 
features. In particular, we are planning to add end-to-end support 
for federated and semi-structured data sources, where appropriate 
optimization techniques, efficient extraction and management in 
Data Server play important roles. 

Regarding the query processing pipeline we plan to apply more 
multi-query processing techniques to take advantage of 
sophisticated commonalities between queries in a batch. That fits 
well with incorporating more classic optimizations to improve our 
plans and generated remote queries. Furthermore, in order to 
alleviate frequently substantial local post-processing, we are 
going to explore multi-level caching similar to [44]. 

Substantial sizes of federated datasets and rapidly growing 
popularity of our SaaS platform put more pressure on the Tableau 
Data Engine to process larger extracts. Therefore, we are 
considering using data partitioning in a distributed architecture. 

Last but not least, both data exploration and dashboard generation 
could become more responsive if requested data has been 
accurately predicted and prefetched. Materialization of secondary 



structures and prediction approaches such as DICE [46], are good 
examples in this field. 

8. SUMMARY 
In this paper we have discussed several performance 
improvements that contribute to high interactivity of visual data 
analysis. They are available in the new release of the product, 
Tableau 9.0. 

Most of all, in dashboard generation, we have suggested query 
batch processing with an initial batch optimization phase, query 
fusion and concurrent query submission. Using two levels of 
query caches, intelligent and literal, that can be persisted on the 
client or distributed in the server environment, further magnifies 
the responsiveness. Furthermore, performance of the TDE has 
been improved thanks to addition of parallel plans and index 
scans for RLE-encoded columns. Last but not least, temporary 
table support has been added to Tableau Data Server to improve 
performance of published data sources. 
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