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1. INTRODUCTION

Analysts often need to work with large datasets in which some of the data is uncertain,
often because the data is connected to hypothetical or future events. For example, the
data of interest might be the customer order sizes for some product under a hypothetical
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Fig. 1. Basic query processing framework supported by MCDB.

price increase of 5%. Data uncertainty is frequently modeled as a probability distri-
bution over possible data values. Such probabilities are usually specified by means of
a complex stochastic model, for example, a stochastic demand model that predicts the
probability distribution of a customer’s order size at a given price level. Various system
characteristics of interest to the analyst can be viewed as answers to queries over the
uncertain data values. In our example, the total product revenue under the stochastic
demand model is computed by multiplying each customer’s (uncertain) order quantity
by the price and summing over all customers. Because the data is uncertain, there
is a probability distribution over the possible results of running a given query, and
the analysis of the underlying stochastic model amounts to studying the features
(mean, variance, and so forth) of the query-result distribution. The query-result
distribution is often very complex, and must be analyzed using Monte Carlo methods.
Such analysis is key to assessing enterprise risk, as well as making decisions under
uncertainty.

This article introduces a prototype relational DBMS called the Monte Carlo Database
System, or MCDB. MCDB allows an analyst to attach arbitrary stochastic models to
a database, thereby specifying, in addition to the ordinary relations in the database,
“random” relations that contain uncertain data. These stochastic models are imple-
mented as user- and system-defined libraries of external C++ programs called Variable
Generation functions, or VG functions for short. A call to a VG function generates a
pseudorandom sample from a data-value probability distribution; VG functions are
usually parameterized on the current state of the nonrandom relations (tables of his-
torical sales data in our example). Generating a sample of each uncertain data value in
the database creates a database instance, that is, a realization of an ordinary database.
Running a SQL query over the database instance generates a sample from the query-
result distribution. Iterating this process N times generates N samples from this latter
distribution, which can then be used to estimate distribution features of interest. The
process is illustrated in Figure 1. In our “price increase” example, we might estimate
the expected value of the total revenue by the average of the total revenue values over
the N query results.

Motivation: Why Does Anyone Need MCDB? Data models and databases for uncertain
and/or probabilistic data are a hot topic in data management research; see Section 2.
MCDB is related to the extent that the goal is to incorporate management of un-
certainty into the database system. Thus, a reasonable question is: why do we need
another system designed for the management of uncertain data?

In fact, MCDB is quite different from these systems in terms of motivation, design,
and application space; we would not call MCDB a “probabilistic database system.”
We elaborate on this point in Section 2. It is more useful to conceive of MCDB as an
alternative for the following workflow often found in large data warehouse installations.
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Fig. 2. Stochastic generation of customer demand functions.

First, an analyst (perhaps a PhD-level statistician or econometrician) decides to
use the data stored in the warehouse to make some sort of statistical prediction
based on both the warehoused data and additional data values that are unknown
or unavailable, hence uncertain. In our example, the goal would be to use the
warehoused data to predict what a part supplier’s revenue would have been last
year, had the supplier’s prices for a given part been increased by 5%.

A stochastic model for the uncertain data is then conceived. In our example,
one might define a model where a simple linear demand curve is generated by
sampling the demand at a price of zero from a Gamma distribution; that is,
Dy ~ Gammal(ky, 6;), where k; and 6; are the “shape” and “scale” parameters.
Similarly, the price at which zero units are purchased is Py ~ Gammal(k,, 6,,). This
is exemplified in Figure 2. Under this model of random demand curves, each fixed
price yields a probability distribution over the order amount.

Data (or appropriate summaries of the data) are then extracted from the database,
and used to train or tailor the model to the data in the database. In our example,
this might take the form of “learning” the four parameters kq, 04, k,, and 6,—
perhaps using maximum likelihood estimation [Lehmann and Casella 1998] based
on the historical data presently in the database. In the parlance of Bayesian statis-
tics [O'Hagan and Forster 2004], the result of the learning step is a “prior” distri-
bution on the customer’s demand curve for a specific item. This learning typically
takes place in an external tool, such as R or Matlab.

In combination with the database data, the trained model is used to answer the
original question. In our example, this might require going through each of the
sales transactions for 2010 that are stored in the database. For an observed sale of
d* units of a given part at price p*, we want to guess the number of units D, that
would have been sold at the new price p. To do this, we sample a (Dy, Py) pair from
the “posterior” distribution.

(Dy, Py) ~ (Gamma(kg, 63), Gammal(ky, 6,,)) | (Do/Po)(Py — p*) =d¥)

In Bayesian parlance, the prior distribution on the demand curve has been updated
to take into account the known fact that the demand curve passes through the
point (p*, d*). Once the pair (Dy, Py) has been sampled, then D, can be computed as
D, = (Dy/Py)(Py — p). After generating the new sales quantity for every 2010 sale,
a new total revenue value is computed. Iterating this process N times, we obtain
N samples from the total revenue distribution.

Using current technology for such a workflow is exceedingly problematic for several
reasons.
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(1) The process of writing code to extract data from the database in order to train
the model is buggy, error-prone, and slow. This difficulty in moving data between
the database and the analysis environment discourages sensitivity and what-if
analysis for the model.

(2) Because the model is external to the database, the model’s level of granularity is
limited. In fact, realizing the example workflow described before is likely impossible
for a large organization, because one cannot apply the learned models 100 million
times to 100 million different prior-year sales that are stored in the database.
Extracting hundreds of millions of records from a database system to feed models
that live in Matlab is quite unrealistic. Instead, the model must be applied at
a coarser level of granularity, for example, by lumping customers together, and
thereby losing predictive power.

(3) There is no encapsulation of the model. In the revenue prediction scenario, for ex-
ample, it is not possible to attach the model to the database and allow subsequent
queries from a nonexpert analyst who does not understand stochastic models but
does understand demand functions. The PhD-level statistician or econometrician
who defined the model must either leave detailed instructions on how to repeat the
training/usage workflow, or (more likely) be involved in every subsequent applica-
tion of the model.

(4) One cannot easily “relink” the results of the modeling process back to the existing
data. In our example, it would be difficult to use the new, simulated sales to compute
new profits, because this computation requires joining the modeling results with
cost information that is only available back in the database.

(5) Because it is external to the database, the model must be reparameterized every
time the data are updated.

MCDB addresses the preceding shortcomings by pushing the entire stochastic mod-
eling process (both training, and application) down into the database system. This
simplifies model development, testing, training, and deployment, and facilitates sensi-
tivity analysis for assessing the robustness of model results to model assumptions.

Our Contributions. The article’s contributions are as follows.

—We propose the first “pure” Monte Carlo approach toward managing complex models
of uncertain data. Although others have suggested the possibility of Monte Carlo
techniques in probabilistic databases [Ré et al. 2007], ours is the first system for
which the Monte Carlo approach is fundamental to the entire system design.

—We propose a powerful and flexible representation of data uncertainty via schemas,
VG functions, and parameter tables (Section 4).

—We provide a syntax for specifying the use of random relations that requires only
a slight modification of SQL, and hence is easily understood by database program-
mers (Section 4). The specification of VG functions (Section 5) is very similar to
specification of User-Defined Functions (UDFs) in current database systems.

—To ensure acceptable practical performance, we provide new query processing al-
gorithms (Sections 6, 8, 9, and 10) that execute a query plan only once, processing
“tuple bundles” rather than ordinary tuples. A tuple bundle encapsulates the in-
stantiations of a tuple over a set of Monte Carlo iterations (Section 7). We exploit
properties of pseudorandom number generators to maintain the tuple bundles in
highly compressed form whenever possible.

—We show, by running a collection of interesting benchmark queries on our prototype
system, that MCDB can provide novel functionality with acceptable performance
overheads (Section 13).
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This article, an extended version of Jampani et al. [2008], focuses on the overall design
of MCDB, potential applications, and the implementation of the query-processing en-
gine. Issues of query plan generation and optimization—which are being addressed in
ongoing work—will be discussed in a subsequent paper. (Section 11.4 touches briefly
on this topic.)

The new material in this article includes additional examples of MCDB usage (Sec-
tion 4), discussion of additional relational operations (Section 9), a detailed example of
query evaluation in MCDB (Section 10), a discussion of implementation details such
as random variate generation and query plan manipulation (Section 11), as well as
how the accuracy of inferences made using MCDB might be controlled by the user
(Section 12). In addition, seven of the eleven benchmarking/demonstration queries are
new (Section 13). An online appendix contains material from Jampani et al. [2008] that
was excluded here due to space constraints, as well as a formal grammar for MCDB
SQL and additional examples of the use of MCDB for statistical estimation. The online
appendix can be found in the ACM Digital Library.

2. RELATED WORK

The MCDB system was inspired by several efforts to push analytic capabilities into
the database (or, more generally, “close to the data”). Some very simple statistical
regression technology has been natively supported by relational database systems for
about a decade, and has been incorporated into the SQL standard [Alur et al. 2002].
A more recent effort, and a major inspiration for our work, is MauveDB [Deshpande
and Madden 2006], which supports “model-based views” over streaming sensor data.
These ideas have been further developed in subsequent systems such as FunctionDB
[Thiagarajan and Madden 2008], which allows native querying of statistical regression
functions, and the recent SciDB project [Stonebraker et al. 2009]. SciDB overhauls the
relational data model—using multidimensional arrays for storage and making vectors
and arrays first-class objects—and executes functions and procedures in parallel and
as close to the data as possible. A recent discussion of analytics in the database can
also be found in Cohen et al. [2009], where matrix operations in a relational database
are implemented using UDFs. There have been a number of efforts to push various
kinds of statistical analysis into Map-Reduce data processing environments; see, for
example, ApacheMahout [2010], Chu et al. [2006a], and Guha [2010]. All of this work
has primarily focused on interpolation and smoothing, statistical model fitting, and
data mining. In contrast, MCDB is focused on Monte Carlo analysis of stochastic
models; indeed, MCDB is the first DBMS for which the Monte Carlo approach is
fundamental to the entire system design.!

As mentioned previously, MCDB is also related to work on probabilistic database
systems (ProbDBs), although MCDB is not primarily designed to be used as such a
system. Work in ProbDBs dates back at least to the 1990’s [Barbara et al. 1992; Fuhr
and Rolleke 19971, and the past few years have seen a great deal of research on this
topic. In particular, a number of ProbDB prototypes have been developed, including
Trio [Agrawal et al. 2006; Das Sarma et al. 2008], MayBMS [Antova et al. 2007, 2008;
Koch and Olteanu 2008], MystiQ [Ré and Suciu 2008; Wang et al. 2008b], ORION
[Cheng et al. 2005; Singh et al. 2008], PrDb [Sen et al. 2009], and BayesStore [Wang
et al. 2008a]. Some recent overviews of the area are given in Benjelloun et al. [2008],
Dalvi and Suciu [2007c], Dalvi et al. [2009], and Das Sarma et al. [2009], and extensions
to uncertain XML data can be found in Kimelfeld et al. [2009].

IThe recent PIP system of Kennedy and Koch [2010] combines PrDB and Monte Carlo techniques, and can
yield superior performance for certain MCDB-style queries focusing on expected values and having simple
VG-function parameterizations.
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Like MCDB, ProbDBs assume a probability distribution over uncertain data values,
and hence over possible DBs (“possible-world semantics”). Unlike MCDB’s emphasis
on complex (often predictive) stochastic models, however, ProbDBs focus on handling
uncertainty that is “lurking in the data warehouse,” typically arising from sources
such as integration of inconsistent or dirty data [Andritsos et al. 2006; Dong et al.
2009], information extraction from text [Gupta and Sarawagi 2006; Michelakis et al.
2009], and noisy sensor readings [Chu et al. 2006b]. Consequently, the most common
“stochastic model” simply comprises, for each tuple, a discrete probability distribution
over possible attribute values for the tuple (including the possibility that the tuple
is not present in the relation). These probabilities are stored with the tuple, and are
treated as first-class objects; a typical example of such an extended tuple is an “x-tuple”
in the Trio system. (In MCDB, such probabilities would be viewed as parameters of the
DiscreteChoice VG function that generates values according to specified probabilities,
and would be stored in a separate “parameter table”—there is no notion of “enhanced”
tuples.)

Thus, in a ProbDB, the basic relational model is extended to operate on enhanced
tuples. Systems such as MayBMS, PrDB, and BayesStore reduce the number of prob-
abilities that need to be stored, using denormalization techniques and exploitation of
symmetries in the probability distribution. ProbDBs therefore attach uncertainty to a
“deterministic skeleton”—that is, each tuple in the database directly (or in concert with
other tuples) produces at most one tuple in each database instance. This restriction
seems to preclude some of the most common stochastic models, such as a random walk
with a random stopping time. On the other hand, MCDB can trivially implement a
host of stochastic models—including VARTA processes [Biller and Nelson 2003], copu-
las [Nelsen 2006], Indian Buffet Processes [Griffiths and Ghahramani 2005], Dirichlet
Processes [Teh et al. 2003], Chinese Restaurant Processes [Blei et al. 2003]—that seem
difficult or impossible to handle using ProbDBs. The experimental section of this article
offers eleven queries that are all quite realistic; as far as we can tell, the majority of
them cannot be run on a ProbDB system. Moreover, MCDB does not extend the stan-
dard relational model, but rather puts an uncertainty “wrapper” around the relational
model.

Another difference is that, unlike MCDB, most ProbDB systems focus on exact com-
putation of query-result distribution features, such as tuple-inclusion probabilities.
Such computation can be performed efficiently under certain conditions on the data
and query [Dalvi and Suciu 2007a; Ré and Suciu 2009], but common query types such as
aggregation queries can pose a challenge to these systems [Murthy and Widom 2007].
In contrast, the extreme generality of the stochastic models considered by MCDB man-
dates the use of Monte Carlo methods to infer the effect of the stochastic model on the
result of the query, and to determine the accuracy of those inferences.

MCDB’s generality does come at a price. If ProbDB systems that rely on analytic
methods or special-purpose Monte Carlo algorithms such as Luby-Karp [Ré et al. 2007;
Dalvi and Suciu 2007b] can be used to answer a particular query, then we fully expect
that they will far outperform MCDB. For example, existing probabilistic databases are
undoubtedly far superior for “needle in a haystack” computations, where the goal is
to find a key tuple with a one-in-a-million chance of appearing in a result set. To find
such a rare tuple, MCDB would need to execute on the order of one million Monte
Carlo iterations, which is usually infeasible. Still, MCDB seems to present the easiest
mechanism for incorporating general-purpose stochastic modeling into the database
in a way that presents a genuine alternative to R, Arena, or Matlab in the sort of
application described in the previous section.

We conclude this section by pointing to the other major body of literature related to
MCDB, namely, the massive 65-year old literature on Monte Carlo methods. Recent
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references on the topic include Asmussen and Glynn [2007], Gentle [2003], and Robert
and Casella [2004]. MCDB inherits both the strengths—generality, ability to deal with
complex high-dimensional probability distributions—and the weaknesses—“needle in
a haystack” problems, potentially slow response time—of Monte Carlo technology.

3. ANOTE ON TERMINOLOGY

The individual data-value probability distributions for a random database induce a
probability distribution over the set of possible database instances; this set is called
the set of possible worlds in the literature but we use the terminology possible DBs
here. The possible-DB distribution then induces a probability distribution over the
result of a query over the random database, that is, the query-result distribution.
MCDB pseudorandomly generates N database instances that represent independent
samples from the possible-DB distribution. The term Monte Carlo iteration refers to
the process of generating one database instance and running the query of interest over
the instance; thus MCDB executes N Monte Carlo iterations. An MCDB relation is
deterministic if its realization is the same in all possible DBs, otherwise it is random.
Running a query over a generated database instance produces a generated query result,
which can be viewed as a random sample from the query-result distribution.

4. SCHEMA SPECIFICATION

We now start to describe MCDB. As mentioned earlier, the system is based on possible-
world semantics. Each random relation is specified by a schema, along with a set of
VG functions for generating relation instances. The output of a query over a random
relation is no longer a single answer, but rather a probability distribution over possible
answers. Random relations are specified using an extended version of the SQL CREATE
TABLE syntax that identifies the VG functions used to generate relation instances, along
with the parameters of these functions. In this section we illustrate our specification
syntax via a sequence of examples; see Section A of the online appendix available in
the ACM Digital Library for a formal BNF specification. We follow Ré et al. [2006]
and assume without loss of generality that each random relation R can be viewed as a
union of blocks of correlated tuples, where tuples in different blocks are independent.

4.1. Schema Syntax: Simple Cases

First consider a very simple setting, in which we wish to specify a table that describes
patient systolic blood pressure data, relative to a default of 100 (in units of mm Hg).
Suppose that, for privacy reasons, exact values are unavailable, but we know that
the average shifted blood pressure for the patients is 10 and that the shifted blood
pressure values are normally distributed around this mean, with a standard deviation
of 5. Blood pressure values for different patients are assumed independent. Suppose
that the aforesaid mean and standard deviation parameters for shifted blood pressure
are stored in a single-row table SPB_PARAM(MEAN, STD) and that individual patient data
are stored in a (deterministic) table PATIENTS (PID, GENDER). Then the random table
SBP_DATA can be specified as follows.

CREATE TABLE SBP_DATA(PID, GENDER, SBP) AS
FOR EACH p in PATIENTS

WITH SBP AS Normal (

SELECT s.MEAN, s.STD

FROM SPB_PARAM s)

SELECT p.PID, p.GENDER, b.VALUE

FROM SBP b
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A realization of SBP_DATA is generated by looping over the set of patients and using
the Normal VG function to generate a row for each patient. These rows are effectively
UNIONed to create the realization of SBP_DATA. The FOR EACH clause specifies this outer
loop. More generally, every CREATE TABLE specification for a random table has a FOR
EACH clause, with each looping iteration resulting in the generation of a block of cor-
related tuples. The looping variable is tuple-valued, and iterates through the result
tuples of either a relation scan (over PATIENTS in our example) or a more general SQL
expression.

The standard library VG function Normal generates independent and identically
distributed (i.i.d.) pseudorandom samples from a normal distribution, which serve as
the uncertain blood pressure values. The mean and variance of this normal distribution
is specified in a single-row table that is input as an argument to the Normal function.
This single-row table is specified, in turn, as the result of an SQL query—a rather
trivial one in this example—over the parameter table SPB_PARAM. The Normal function,
like all VG functions, produces a relation as output; in this case, a single-row table
having a single attribute, namely, VALUE.

The final SELECT clause assembles the finished row in the realized SBP_DATA table by
(trivially) selecting the generated blood pressure from the single-row table created by
Normal and appending the appropriate PID and GENDER values. In general, the SELECT
clause “glues together” the various attribute values that are generated by one or more
VG functions or are retrieved from the outer FOR EACH query and/or from another table.
To this end, the SELECT clause may reference the current attribute values of the looping
variable, for example, p.PID and p.GENDER.

The current implementation of MCDB produces instances of a random table such
as SBP_DATA on demand, during query execution. Other materialization strategies are
possible, however; see Section 11.2.

4.2. Parameterizing VG Functions

As a more complicated example, suppose that we wish to create a table of customer
data, including the uncertain attributes MONEY, which specifies the annual disposable
income of a customer, and LIVES_IN, which specifies the customer’s city of residence.
The deterministic attributes of the customers are stored in a table

CUST_ATTRS(CID, GENDER, REGION).

That is, we know the region in which a customer lives but not the precise city. Suppose
that, for each region, we associate with each city a probability that a customer lives
in that city; thus, the sum of the city probabilities over a region equals 1. These
probabilities are contained in a parameter table CITIES(NAME, REGION, PROB). The
distribution of the continuous MONEY attribute follows a gamma distribution, which has
three parameters: shift, shape, and scale. All customers share the same shift parameter,
which is stored in a single-row table MONEY_SHIFT (SHIFT). The scale parameter is the
same for all customers in a given region, and these regional scale values are stored in a
table MONEY_SCALE (REGION, SCALE).The shape-parameter values vary from customer to
customer, and are stored in a table MONEY_SHAPE(CID, SHAPE). The value pairs (MONEY,
LIVES_IN) for the different customers are conditionally mutually independent, given
the values of REGION and SHAPE for the customers. Similarly, given the REGION value
for a customer, the MONEY and LIVES_IN values for that customer are conditionally
independent. A specification for the CUST table is then as follows.

CREATE TABLE CUST(CID, GENDER, MONEY, LIVES_IN) AS

FOR EACH d in CUST_ATTRS

WITH MONEY AS Gamma(
(SELECT n.SHAPE
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FROM MONEY_SHAPE n

WHERE n.CID = d.CID)

(SELECT sc.SCALE

FROM MONEY_SCALE sc

WHERE sc.REGION = d.REGION)

(SELECT SHIFT

FROM MONEY_SHIFT))
WITH LIVES_IN AS DiscreteChoice (

SELECT c.NAME, c.PROB

FROM CITIES c

WHERE c.REGION = d.REGION)
SELECT d.CID, d.GENDER, m.VALUE, 1.VALUE
FROM MONEY m, LIVES_IN 1

We use the Gamma library function to generate gamma variates; we have specified
three single-row, single-attribute tables as input. The DiscreteChoice VG function is
a standard library function that takes as input a table of discrete values and selects
exactly one value according to the specified probability distribution.

Note that by modifying MONEY_SHAPE, MONEY_SCALE, and MONEY_SHIFT, we automatically
alter the definition of CUST, allowing what-if analyses to investigate the sensitivity of
query results to probabilistic assumptions and the impact of different scenarios (e.g.,
an income-tax change may affect disposable income). Another type of what-if analysis
that we can easily perform is to simply replace the Gamma or DiscreteChoice functions
in the definition of CUST with alternative VG functions.

4.3. Capturing ProbDB Functionality

In this and the following section, we indicate how MCDB can capture the functionality
of ProbDBs (though perhaps not always as efficiently; see Section 2). As a variant of
the preceding example, suppose that associated with each customer is a set of possible
cities of residence, along with a probability for each city; this information is stored in
a table CITIES(CID, NAME, PROB). We then change the definition of LIVES_IN to the
following.

WITH LIVES_IN AS DiscreteChoice (
SELECT c.NAME, c.PROB
FROM CITIES c
WHERE c.CID = d4.CID)

Thus, MCDB can capture attribute-value uncertainty [Agrawal et al. 2006; Antova
et al. 2007; Gupta and Sarawagi 2006].

Tuple-inclusion uncertainty as in Dalvi and Suciu [2007b] can also be represented
within MCDB. Consider a variant of the example of Section 4.2 in which the CUST_ATTRS
table has an additional attribute INCL_PROB which indicates the probability that the
customer truly belongs in the CUST table. To represent inclusion uncertainty, we use
the library VG function Bernoulli, which takes as input a single-row table with a
single attribute PROB and generates a single-row, single-attribute output table, where
the attribute VALUE equals true with probability p specified by PROB and equals false
with probability 1 — p. Augment the original CUST table specification with the clause

WITH IN_TABLE AS Bernoulli (VALUES(d.INCL_PROB))

where, as in standard SQL, the VALUES function produces a single-row table whose
entries correspond to the input arguments. Also modify the select clause as follows.

SELECT d.CID, d.GENDER, m.VALUE, 1.VALUE
FROM MONEY m, LIVES_IN 1, IN_TABLE i
WHERE i.VALUE = true
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4.4. Structural Uncertainty

“Structural” uncertainty [Getoor and Taskar 2007], that is, fuzzy queries, can also
be captured within the MCDB framework. For example, suppose that a table
LOCATION(LID, NAME, CITY) describes customer locations, and a table SALES(SID,
NAME, AMOUNT) holds transaction records for these customers. We would like to compute
sales by city, and so need to join the tables LOCATION and SALES. We need to use a fuzzy
similarity join because a name in LOCATION and name in SALES that refer to the same
entity may not be identical, because of spelling errors, different abbreviations, and so
forth. Suppose that we have a similarity function Sim that takes two strings as input,
and returns a number between 0 and 1 that can be interpreted as the probability that
the two input strings refer to the same entity. Then we define the following random
relation.

CREATE TABLE LS_JOIN (LID, SID) AS
FOR EACH t IN (
SELECT 1.LID, 1.NAME AS NAME1,
s.SID, s.NAME AS NAME2
FROM LOCATIONS 1, SALES s)
WITH JOINS AS Bernoulli (
VALUES (Sim(t.NAME1, t.NAME2)))
SELECT t.LID, t.SID
FROM JOINS j
WHERE j.VALUE = true

Here Bernoulli is defined as before. The desired sales query is then as follows.

SELECT 1.CITY, SUM(s.AMOUNT)

FROM LOCATION 1, SALES s, LS_JOIN j
WHERE 1.LID = j.LID AND s.SID = j.SID
GROUP BY 1.CITY

Unlike the traditional approach, in which all tuples that are “sufficiently” similar are
joined, repeated Monte Carlo execution of this query in MCDB yields information not
only about the “most likely” answer to the query, but about the entire distribution of
sales amounts for each city. We can then assess risk, such as the probability that sales
for a given city lie below some critical threshold.

4.5. Correlated Attributes and Tuples

In general, a VG function takes zero or more parameter tables as input, and returns
a table containing pseudorandomly generated values. Until now, we have implicitly
focused on VG functions that return a one-row, one-column table, that is, a single
generated value. VG functions that return tables containing multiple generated values
can capture statistical correlations within or between tuples.

Correlated attributes within a tuple are easily handled by using VG functions whose
output table has multiple columns. Consider the case where a customer’s income and
city of residence are correlated.

CREATE TABLE CUST(CID, GENDER, MONEY, LIVES_IN) AS
FOR EACH d in CUST_ATTRS
WITH MLI AS MyJointDistribution (...)
SELECT d.CID, d.GENDER, MLI.VALUE1, MLI.VALUE2
FROM MLI

The user-defined VG function MyJointDistribution outputs a single-row table with
two (correlated) attributes VALUE1 and VALUE2 that correspond to the generated values
of MONEY and LIVES_IN.
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Correlations between tuples can be handled in an analogous manner. Suppose, for
example, that we have readings from a collection of temperature sensors. Because of
uncertainty in the sensor measurements, we view each reading as the mean of a normal
probability distribution. We assume that the sensors are divided into groups, where sen-
sors in the same group are located close together, so that their readings are correlated,
and thus the group forms a multivariate normal distribution. The table S_PARAMS (ID,
LAT, LONG, GID) contains the sensor ID (a primary key), the latitude and longitude
of the sensor, and the group ID. The means corresponding to the given “readings” are
stored in a parameter table MEANS (ID, MEAN), and the correlation structure is specified
by a covariance matrix whose entries are stored in a parameter table COVARS(ID1,
ID2, COVAR). The desired random table SENSORS is then specified as follows.

CREATE TABLE SENSORS(ID, LAT, LONG, TEMP) AS
FOR EACH g IN (SELECT DISTINCT GID FROM S_PARAMS)
WITH TEMP AS MDNormal(
(SELECT m.ID, m.MEAN
FROM MEANS m, SENSOR_PARAMS ss
WHERE m.ID = ss.ID AND ss.GID = g.GID)
(SELECT c.ID1, c.ID2, c.COVAR
FROM COVARS c, SENSOR_PARAMS ss
WHERE c.ID1 = ss.ID AND ss.GID = g.GID))
SELECT s.ID, s.LAT, s.LONG, t.VALUE
FROM SENSOR_PARAMS s, TEMP t
WHERE s.ID = t.ID

The subquery in the FOR EACH clause creates a single-attribute relation containing the
unique group IDs, so that the looping variable g iterates over the sensor groups. The
MDNormal function is invoked once per group, that is, once per distinct value of g. For
each group, the function returns a multirow table having one row per group member.
This table has two attributes: ID, which specifies the identifier for each sensor in the
group, and VALUE, which specifies the corresponding generated temperature. The join
that is specified in the final SELECT clause serves to append the appropriate latitude and
longitude to each tuple produced by MDNormal, thereby creating a set of completed rows.

In general, by judicious use of multiple VG functions that each return multiple
correlated values, the MCDB user can model a broad variety of correlation patterns
within and between tuples.

5. SPECIFYING VG FUNCTIONS

A user of MCDB can take advantage of a standard library of VG functions, such as
Normal() or Poisson(), or can implement VG functions that are linked to MCDB at
query-processing time. The latter class of customized VG functions is specified in a
manner similar to the specification of UDF's in ordinary database systems.

Each VG function is implemented as a C++ class having four public methods:
Initialize(), TakeParams(), OutputVals(), and Finalize(). For each VG function
referenced in a CREATE TABLE statement, the following sequence of events is initiated
for each tuple in the FOR EACH clause.

First, MCDB calls the Initialize () method with the seed that the VG function will
use for pseudorandom number generation.? This invocation instructs the VG function
to set up any data structures that will be required.

2A uniform pseudorandom number generator deterministically and recursively computes a sequence of seed
values—n-bit integers, where the value of n depends on the specific generator—which are then converted to
floating-point numbers in the range [0, 1]. Although this process is deterministic, the floating-point numbers
produced by a well-designed generator will be statistically indistinguishable from a sequence of “truly” i.i.d.
uniform random numbers. See Fishman [1996] for an introductory discussion. The uniform pseudorandom
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Next, MCDB executes the queries that specify the input parameter tables to the VG
function. The result of the query execution is made available to the VG function in
the form of a sequence of arrays called parameter vectors. The parameter vectors are
fed into the VG function via a sequence of calls to TakeParams (), with one parameter
vector at each call. See Section C of the online appendix available in the ACM Digital
Library for details.

After parameterizing the VG function, MCDB then executes the first Monte Carlo
iteration by repeatedly calling OutputVals() to produce the rows of the VG function’s
output table, with one row returned per call. MCDB knows that the last output row has
been generated when OutputVals() returns a NULL result. Such a sequence of calls to
OutputVals() can then be repeated to generate the second Monte Carlo replicate, and
so forth. When all of the required Monte Carlo replicates have been generated, MCDB
calls the VG function’s Finalize () method, which deletes any internal data structures.
Section B of the online appendix contains an example of how a simple VG function can
be implemented.

6. QUERY PROCESSING IN MCDB

In this section we describe the basic query-processing ideas underlying our prototype
implementation. Subsequent sections contain further details.

6.1. A Naive Implementation

Conceptually, the MCDB query processing engine evaluates a query  over many
different database instances, and then uses the various result sets to estimate the
appearance probability for each result tuple. These estimated probabilities can then
be used to compute other statistical quantities of interest; see Section 12. It is easy to
imagine a simple method for implementing this process. Given a query @ over a set
of deterministic and random relations, the following three steps would be repeated N
times, where N is the number of Monte Carlo iterations specified.

(1) Generate an instance of each random relation as specified by the various CREATE
TABLE statements.

(2) Once an entire instance of the database has been materialized, compile, optimize,
and execute @ in the classical manner.

(3) Append every tuple in @’s answer set with a number identifying the current Monte
Carlo iteration.

Once N different query results have been generated, all of the output tuples are then
merged into a single file, sorted, and scanned to determine the number of query results
in which each tuple appears.

Unfortunately, although this basic scheme is quite simple, it is likely to have dismal
performance in practice. The obvious problem is that each individual database instance
may be very large, perhaps terabytes in size, and N is likely to be somewhere from 10
to 1000. Thus, this relatively naive implementation is impractical, and so MCDB uses
a very different strategy.

6.2. Overview of Query Processing in MCDB
The key ideas behind MCDB query processing are as follows.

MCDB executes the query exactly once, regardless of N. In MCDB, @ is evaluated
only once, whatever the value of N supplied by the user. Each “database tuple” that

numbers can then be transformed into pseudorandom numbers having the desired final distribution [Devroye
19861.
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is processed by MCDB is actually an array or “bundle” of tuples, where ¢[i] for tuple
bundle ¢ denotes the value of ¢ in the ith Monte Carlo iteration.

The potential performance benefit of the “tuple bundle” approach is that relational
operations may efficiently operate in batch across all N Monte Carlo iterations that
are encoded in a single tuple bundle. For example, if t[i].att equals some constant ¢ for
all 7, then the relational selection operation o,;—7 can be applied to ¢[i] for all possible
values of i via a single comparison with the value c¢. Thus, bundling can yield a N-
fold reduction in the number of tuples that must be moved through the system and
processed. Moreover, if many bundles are filtered out by selections as in the preceding
example, and if the filtering occurs early in the query plan, then much of the Monte
Carlo work can be avoided.

MCDB delays random attribute materialization as long as possible. The obvious cost
associated with storing all of the N generated values for an attribute in a tuple bundle
is that the resulting bundle can be very large for large N. If N = 1000 then storing all
values for a single random character string can easily require 100KB per tuple bundle.
MCDB alleviates this problem by materializing attribute values for a tuple as late as
possible during query execution, typically right before random attributes are used by
some relational operation.

In MCDB, values for random attributes are reproducible. After an attribute value
corresponding to a given Monte Carlo iteration has been materialized (as described
before) and processed by a relational operator, MCDB permits this value to be discarded
and then later rematerialized if it is needed by a subsequent operator. To ensure that
the same value is generated each time, so that the query result is consistent, MCDB
ensures that each tuple carries the pseudorandom number seeds that it supplies to
the VG functions. Supplying the same seed to a given VG function at every invocation
produces identical generated attribute values. One can view the seed value as being a
highly compressed representation of the random attribute values in the tuple bundle.

7. TUPLE BUNDLES IN DETAIL

A tuple bundle ¢ with schema S is, logically speaking, simply an array of N tuples—all
having schema S—where N is the number of Monte Carlo iterations; we denote by
t[i] the ith tuple in the array. Tuple bundles are manipulated using the new opera-
tors described in Section 8 and the modified versions of classical relational operators
described in Section 9.

Individual tuples can be bundled together across database instances in many ways.
The only requirement on a set of tuple bundles ¢, #, ..., & is that, for each i € [1..N],
the set , = U ;tjli] corresponds precisely to the ith generated instance of R. For
storage and processing efficiency, MCDB tries to bundle tuples so as to maximize the
number of “constant” attributes. An attribute att is constant in a tuple bundle ¢ if
tlz].att = ¢ for some fixed valuec and i = 1,2, ..., N. Since constant attributes do not
vary across Monte Carlo iterations, they can be stored in compressed form as a single
value. In the blood pressure example of Section 4.1, the natural approach is to have
one tuple bundle for each patient, since then the patient ID is a constant attribute.
Attributes that are supplied directly from deterministic relations are constant. MCDB
also allows the implementor of a VG function to specify attributes as constant as
a hint to the system. Then, when generating Monte Carlo replicates of a random
relation, MCDB creates one tuple bundle for every distinct combination of constant-
attribute values encountered. As mentioned previously, MCDB often stores values for
nonconstant attributes in a highly compressed form by storing only the seed used to
pseudorandomly generate the values, rather than an actual array of generated values.
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A tuple bundle ¢ in MCDB may have a special random attribute called the isPre-
sent attribute. The value of this attribute in the ith database instance is denoted by
tli].isPres. The value of t[i].isPres equals true if and only if the tuple bundle actu-
ally has a constituent tuple that appears in the ith database instance. If the isPresent
attribute is not explicitly represented in a particular tuple bundle, then ¢[i].isPres is
assumed to be true for all 7, so that ¢ appears in every database instance.

isPresent is not created via an invocation of a VG function. Rather, it may result from
a standard relational operation that happens to reference an attribute created by a VG
function. For instance, consider a random attribute gender that takes the value male or
female, and the relational selection operation op where B is the predicate “gender =
female”. If, in the ith database instance, ¢[i].gender = male, then ¢[i].isPres will nec-
essarily be set to false after application of op to ¢ because op removes ¢ from that
particular database instance. In MCDB the isPresent attribute is physically imple-
mented as an array of N bits within the tuple bundle, where the ith bit corresponds to
tlil.isPres.

8. NEW OPERATIONS IN MCDB

Under the hood, MCDB’s query processing engine looks quite similar to a classical
relational query processing engine. The primary differences are that: (1) MCDB imple-
ments a few additional operations, and (2) the implementations of most of the classic
relational operations must be modified slightly to handle the fact that tuple bundles,
and not tuples, move through the query plan. We begin by describing in some detail
the operations unique to MCDB.

8.1. The Seed Operator

Consider a given random relation R whose definition involves one or more VG functions.
For every tuple created by R’s FOR EACH statement, the Seed operator appends one or
more integers to the tuple, with one integer per VG function. Each such integer is
unique to the (tuple, VG function) pair, and serves as a pseudorandom seed when using
the VG function to instantiate random-attribute values for the various possible DBs.
The Seed operator thus transforms an ordinary tuple into a compressed tuple bundle.
The seeds must be assigned and used carefully in order to ensure statistically valid
results; see Section 11.1 for implementation details.

8.2. The Instantiate Operator

The Instantiate operator is responsible for actually producing the random data that
is used by MCDB; in effect, Instantiate implements the stochastic CREATE TABLE state-
ment. This operator has two inputs. First, it accepts a stream of seeded tuples cor-
responding to the FOR EACH clause in the random relation’s CREATE TABLE statement.
Second, it accepts zero or more streams of tuples, each of which corresponds to one of
the “inner” queries used to parameterize the VG function that produces the stochastic
data, for example, the two queries that produce the mean and covariance parameters
used in the MDNormal VG function in the sensor example of Section 4.5. Instantiate
then uses the seeds, along with the VG function parameters, to produce a stream
of expanded tuple bundles. Space precludes us from discussing the inner workings
of Instantiate in detail, but such a discussion can be found in the online appendix
(Section D) available in the ACM Digital Library; see also Section 11.3.

8.3. The Split Operator

One potential problem with the “tuple bundle” approach is that it becomes impossible
to order tuple bundles with respect to a nonconstant attribute, as is needed for a
variety of relational operators. MCDB therefore implements the Split operator, which
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is used—as described in subsequent sections—within the sort-merge join operator,
the duplicate elimination operator, the multiset union, intersection, and difference
operators, and the new Inference operator.

The Split operator takes as input a tuple bundle, together with a set of attributes
Atts. Split then splits the tuple bundle into multiple tuple bundles, such that, for each
output bundle, each of the attributes in Atts is now a constant attribute. Moreover,
the constituent tuples for each output bundle # are marked as nonexistent (that is,
tlil.isPres = false) for those Monte Carlo iterations in which #’s particular set of Atts
values is not observed. For example, consider a tuple bundle ¢ with schema (fname,
lname, age) where attributes fname = Jane and lname = Smith are constant, and at-
tribute age is nonconstant. Specifically, suppose that there are four Monte Carlo itera-
tions and that ¢[i].age = 20 fori =1, 3 and ¢[i].age = 21 fori = 2, 4. We can compactly
represent this tuple bundle as

t = (Jane, Smith, (20,21,20,21),(T,T,T,T)),

where the last nested vector contains the isPresent values, and indicates that Jane
Smith appeared in all four Monte Carlo iterations (though with varying ages). An
application of the Split operation to ¢ with Atts = {age} yields two tuple bundles.

t; = (Jane, Smith, 20, (T, F, T, F))
ta = (Jane, Smith, 21, (F, T, F, T)).

Thus, the nondeterminism in age has been transferred to the isPresent attribute.

8.4. The Inference Operator

The final new operator in MCDB is the Inference operator. The output from this
operator is a set of distinct, ordinary tuples. Each such tuple # is annotated with a
value f that denotes the fraction of the Monte Carlo iterations for which # appears at
least once in the query result. Note that f estimates the true probability that ¢ will
appear in a realization of the query result.

MCDB implements the Inference operator as follows. Assume that the input query
returns a set of tuple bundles with exactly the set of attributes Afts (not counting the
isPresent attribute). Then:

(1) MCDB runs the Split operation on each tuple bundle in @ using Atts as the
attribute-set argument. This ensures that each resulting tuple bundle has all of its
nondeterminism “moved” to the isPresent attribute.

(2) Next, MCDB runs the duplicate removal operation (see the next section for a de-
scription).

(3) Finally, for each resulting tuple bundle, Inference counts the number n of i values
for which ¢[i].isPres = true. The operator then outputs a tuple with attribute
value ¢[ - l.att for each att € Atts, together with the relative frequency f = n/N. For
example, if bundle #; in Section 8.3 results from steps (1) and (2) given before, then
the Inference operator outputs the tuple (Jane, Smith, 20, 0.5).

9. STANDARD RELATIONAL OPS

In addition to the new operations described earlier, MCDB implements versions of the
standard relational operators that are modified to handle tuple bundles.

9.1. Relational Selection

Given a boolean relational selection predicate B and a tuple bundle ¢, for each i,
MCDB sets t[i].isPres < B(t[i]) A tli].isPres. In the case where ¢.isPres has not been

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 18, Publication date: August 2011.



18:16 R. Jampani et al.

materialized and stored with ¢, then ¢[i].is Pres is assumed to equal true for all i prior
to the selection, and ¢[i].isPres is set to B(¢[i]).

If, after application of B to ¢, ¢[i]l.isPres = false for all i, then ¢ is rejected by the
selection predicate and ¢ is not output at all by op(¢). If B refers only to constant
attributes, then the time to perform the selection is independent of the number N of
Monte Carlo iterations.

9.2. Projection

Projection in MCDB is nearly identical to projection in a classical system, with a few
additional considerations. If a nonconstant attribute is projected away, the entire array
of values for that attribute is removed. Also, so that an attribute generated by a VG
function can be regenerated, projection of an attribute does not remove the seed for
that attribute unless explicitly specified in the query plan.

9.3. Cartesian Product and Join

The Cartesian product operation (x) in MCDB is also similar to the classical relational
case. Assume we are given two sets of tuple bundles R and S. Forr € R and s € S,
define t = r @ s to be the unique tuple bundle such that:

(1) tli] = rli] e s[i] for all i, where o denotes tuple concatenation, but excluding the
elements r[i].isPres and s[i].isPres.
(2) tlil.isPres =rlil.isPres A s[i].isPres.

Then the output of the x operation comprises all such .

The join operation () with an arbitrary boolean join predicate B is logically equiva-
lent to a x operation as before, followed by an application of the (modified) relational se-
lection operation op. In practice, B most often contains an equality check across the two
input relations (i.e., an equijoin). An equijoin over constant attributes is implemented
in MCDB using a sort-merge algorithm. An equijoin over nonconstant attributes is
implemented by first applying the Split operation to force all of the join attributes to
be constant, and then using a sort-merge algorithm.

9.4. Duplicate Removal

To execute the duplicate-removal operation, MCDB first executes the Split operation, if
necessary, to ensure that isPresent is the only nonconstant attribute in the input tuple
bundles. The bundles are then lexicographically sorted according to their attribute
values (excluding isPresent). This sort operation effectively partitions the bundles into
groups such that two bundles are in the same group if and only if they have identical
attribute values. For each such group 7', exactly one result tuple ¢ is output. The
attribute values of ¢ are the common ones for the group, and

tlilisPres = \/ t'lilisPres
teT
for each i.

9.5. Aggregation

To sum a set of tuple bundles T' over an attribute att, MCDB creates a result tuple
bundle ¢ with a single attribute called agg and sets t[il.agg = ), ., I(t'[i]l.isPres) x
t'[i].att. In this expression, I is the indicator function returning 1 if ¢'[i].isPres = true
and 0 otherwise. Other aggregation functions are implemented similarly. Note that
the actual result of an aggregate operation never has an isPres attribute, because an
aggregate query always has a result, even if it is given empty input. In this latter case,
tli].agg = NULL.
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9.6. Multiset Union, Intersection, and Difference

To implement the operations RU S, RN S, and R\ S over two random relations R and
S, MCDB first executes a Split operation, if necessary, to ensure that isPresent is the
only nonconstant attribute in R and S. Tuple bundles in R are partitioned into groups
as in Section 9.4, so that each group corresponds to a distinct tuple value (ignoring
isPresent). For a group G of bundles corresponding to a distinct tuple value ¢, the
isPresent bit vectors for the tuples are treated as numerical 0/1 vectors and summed, to
create a count vector ¢; g with ¢, gli]l = ), g t'[il.isPresent. Thus c; g[i] is the number
of times that ¢ appears in the ith Monte Carlo iteration. The cg ; vector is then attached
to £. This process results in a set of pairs (¢, cg) for R, with all ¢ values distinct. The
same processing is performed for S. The (¢, cg) pairs for R are then joined to the (¢, cs)
pairs for S on the ¢ attributes, to form tuples of the form (¢, cg, cs). For each (¢, cg, cs)
tuple, cg and cg are combined into a count vector ¢, with c[i] equal to cgli] + cslil,
min(cg[i], csli]), and max(cg[i] — cgli], 0), for the cases of multiset union, intersection,
and difference, respectively. Then ¢ is replicated to create a total of m copies, where
m = max; c[i]. Each copy of ¢ is then augmented with an isPresent vector, where the
bit values for each vector are chosen so that the vector sum is equal to c. For example,
if there are N = 4 Monte Carlo iterations and ¢ = (3,0, 1, 3), then m = 3 and one
possibility for the three isPresent vectors is 1011, 1001, and 1001. For the special case
of ordinary set operations, cg, cs, and ¢ vectors can be computed using appropriate
bitwise ANDing and ORing operations.

10. EXAMPLE QUERY IMPLEMENTATION

We can make all of this a bit more concrete by tracing the evaluation of an example
query from start to finish in MCDB. Consider two random relations SALE (name, amt,
when) and CUST(name, loc), where when and loc are the random attributes. Suppose
that we run the following SQL query, which computes the total revenue resulting from
U.S.-based “frequent” customers who made at least two purchases within 30 days of
one another.

WITH FreqCust(name) AS (
SELECT DISTINCT c.name
FROM SALE s1, SALE s2, CUST c
WHERE c.loc = ’US’ AND c.name = sl.name AND c.name = s2.name
AND s1.when <> s2.when AND s2.when - si1.when <= 30)
SELECT SUM(amt)
FROM SALE, FreqCust
WHERE SALE.name = FreqCust.name

Figure 3 gives a plan and example execution for this query. For brevity, we do not
depict the evaluation of any of the subqueries that provide parameters to the various
VG functions. Thus, in this figure, we only show a single input into each Instantiate
operator: the relation that supplies all of the FOR EACH tuples in the corresponding
CREATE TABLE statement. Moreover, we do not depict as separate operations the majority
of the relational projections; in the figure, attributes are simply dropped when they are
no longer needed. The only exception is the one projection operation depicted at the
bottom of the figure. This projection is made explicit so that, for clarity, we can show
the result of the previous relational selection.

The query is evaluated as follows. First, the CUST tuples are seeded and then
Instantiate is used to produce values of the loc attribute. This results in a set of
tuple bundles, each having an array of possible location values. The result is pushed
through a relational selection that filters out all customers not from the United States.
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Fig. 3. Evaluation of a multitable query in MCDB.

This operation kills Sue’s tuple bundle (since there is no database instance where she
is from the United States) and sets the isPres attribute in the other two bundles. The
ith isPres bit for a customer is set to “yes” (i.e., to 1) if and only if the customer is from
the United States in the ith Monte Carlo iteration.
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The SALE tuples are seeded as well, and then the result is joined twice with those
tuple bundles from CUST that survived the selection on the 1oc attribute. (Two joins are
needed because of the two instances of SALE in the subquery of the original SQL query.)
This results in an eight-tuple-bundle temporary relation, with four tuple bundles for
Jim and four for Sid. At this point, it is necessary to check whether either of these
customers had two sales within 30 days of each other. So, the temporary relation is
piped through a sequence of two Instantiate operators; one that actually materializes
the first when, and one that materializes the second. A selection then eliminates all
tuples that do not satisfy the 30-day criterion in any Monte Carlo iteration. Only the
two tuples associated with Jim survive this selection (because the criterion is satisfied
in the third Monte Carlo iteration). A duplicate-removal operation then results in a
single Jim tuple. This tuple is then joined with the original SALE relation to obtain all of
Jim’s sales. The aggregate operation finds that there is only one Monte Carlo iteration
where the result is nonzero. Finally, the result of the aggregation is piped into the
Inference operation, which produces the final, empirical distribution that is the result
of the query.

11. ADDITIONAL DETAILS

We discuss in more detail pseudorandom number generation, materialization of
database instances, and parallelization of the instantiate operation.

11.1. Pseudorandom Variate Generation

The two main tasks in pseudorandom number generation comprise seeding the tuple
bundles with the Seed operator, and then using the seeds within a VG function when the
bundle is instantiated. As mentioned previously, seeds must be assigned and exploited
carefully; this section discusses the key challenges and implementation solutions. After
briefly reviewing some basic facts about PseudoRandom Number Generators (PRNGs),
we describe the seeding operation for the case of a single VG function; the extension to
multiple VG functions is straightforward.

In general, a PNRG is initiated with a starting seed sy, and then generates a sequence
of seeds s1, s9, ... by using a deterministic recursion of the form s;,; = T'(s;). At each
step, the generator typically uses a second transformation to create a 32-bit integer
rp = T'(s;) € {1,2,...,2% — 1}, which is further transformed to a pseudorandom

uniform number ; on [0, 1] via normalization: ; = r;/232. The transformations 7' and
T’ depend on the specific generator, as do the number of bits in each s; (typically a
multiple of 16). The sequence of seeds produced by a PRNG eventually loops back on
itself—that is, sy = sp for some number N with s; # s; for 0 <i < j < N—thus forming
a cycle of seeds. The number N is called the cycle length of the generator.

Clearly, we want to generate pseudorandom numbers that are of good quality from a
statistical perspective, and this is achieved in MCDB by using well-tested and widely
accepted Pseudorandom Number Generators (PRNGs), as discussed shortly. A more
challenging problem is to minimize the chance that the sequences of seeds “consumed”
by any two tuple bundles during their instantiations overlap, because such overlaps
can induce unintended statistical correlations between the random values that are
generated for the two bundles. Further complicating this problem is the fact that the
number of seeds consumed cannot always be determined in advance. For example, a
VG function might use an acceptance-rejection algorithm [Devroye 1986, Section I1.3]
to obtain a pseudorandom sample from a nonuniform distribution; such an algorithm
consumes a varying, unpredictable number of input uniform pseudorandom numbers
(and hence seeds) at each execution. Another challenge is to minimize the length of
the seed that needs to be carried with each tuple; unfortunately, the shorter the seed,
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the shorter the period of the associated PNRG, and the greater the likelihood of seed-
sequence overlaps between bundles.

Our initial seeding implementation addresses the foregoing issues using a simple
approach that involves two PNRGs. The first PRNG, denoted G, is the LRAND48
generator from the UNIX standard library. For this generator, a seed comprises
48 bits, stored as an array of three 16-bit short integers, and the basic transformation
is T'(s) = (as + b) mod 2%, where a = 25214903917 and b = 11. The generator returns
the most significant 32 bits of the seed to the user and does not normalize to the
unit interval: in our previous notation, 7'(s) = s/2'6. The second PRNG, denoted
Go, is the WELL512 generator of Panneton et al. [2006], which has a seed length of
512 bits, represented as an array of sixteen 32-bit integers. The basic transformation
is of the form T'(s) = As mod 2 for an appropriate binary matrix A, and the secondary
transformation 7'(s) performs certain bit operations on s and then returns the
32 most significant bits, which are then normalized to form a uniform pseudorandom
number.

When seeding a set of tuples, the first tuple is seeded with a fixed 48-bit seed s
that specifies a starting point for the G; cycle. The next tuple bundle is seeded with
s16, which is computed by repeated iteration of G1’s transformation operator T', then
the next bundle is seeded with s39, and so forth. Thus each tuple is augmented with
48 bits of seeding data. When instantiating a tuple bundle that has been seeded with
the 48-bit seed s; (where i = 16m for some nonnegative integer m), generator G; is
first used to materialize the output sequence of 32-bit integers r;,r;,1, ..., r;115. These
integers are then concatenated to form a 512-bit seed s, which is then used to ini-
tialize generator Go. This latter generator is then invoked by the VG function during
instantiation. This approach does not guarantee that the G seed sequences for distinct
bundles will not overlap. Observe, however, that the sequence used by any given tuple
bundle starts at essentially a random position on the Gy cycle. The G2 cycle length
is 2512 (> 10'%%), so that, even with millions of bundles consuming millions of seeds
apiece, the likelihood of an overlap is vanishingly small. There are many possible op-
timizations to this basic approach. For example, we could seed successive tuples with
G, seeds that are 11 positions apart and then, at instantiation time, run G; to create
48-bit seeds s;, sj1, ..., Sit10, for a total of 11 x 48 = 528 bits, of which the first 512
can be used to initialize Gg; this requires, however, that we access and manipulate the
internal state of G, whereas our proposed approach is simpler in that it lets G; be
treated as a black box that produces 32-bit integers. More sophisticated approaches to
seeding are also possible, by adapting or extending results from the parallel simula-
tion literature; see, for example, Srinivasan et al. [1997], Tan [2002], and references
therein.

11.2. Materialization of Random Relations

One could imagine two choices for when the system actually materializes a random
relation’s data, that is, the set of instantiated tuple bundles for the relation. The data
could be materialized (via execution of the CREATE TABLE statement), written to disk,
and then queried subsequently, or the data could be materialized on demand at query
time.

Each approach has potential advantages. Materializing data at query time ensures
that the parameterization of the relation’s VG functions is current. Indeed, if the
tuple bundles are prematerialized at table-definition time and then the data changes,
or the definition of the random relation changes, or the required number of Monte
Carlo iterations changes, much or all of the materialization work will be wasted. If the
relation has many tuples or if the number of Monte Carlo iterations is large (so that
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each instantiated tuple bundle is large), then materialization at query time avoids the
need to store and retrieve massive amounts of data.

On the other hand, materializing the data prior to query execution can potentially
save CPU resources, especially if the VG function is expensive and the query plan
would require a given set of tuple bundles to be instantiated multiple times. There
would also be a potential for amortizing VG function evaluation costs over multiple
queries.

In our initial implementation of MCDB, random relations are always materialized at
query time, because it is the easiest way to ensure that the VG parameterization and
other Monte Carlo settings are current, and to avoid potential disk overflow problems.
Moreover (given that CPU cycles are very inexpensive these days), we expect it will
often be less expensive to parameterize and run the VG function than it will be to read
large numbers of materialized tuple bundles from disk. An ideal solution would likely
be a hybrid scheme where prematerialization is used for computationally expensive
VG functions whose execution would not cause disk overflows, and query-time mate-
rialization is used for inexpensive VG functions that produce a lot of data. Developing
such a scheme is a topic for future work.

11.3. Parallelizing Instantiate

Since much of MCDB’s query processing involves CPU-intensive Monte Carlo compu-
tations, there is an opportunity for MCDB to take full advantage of the computational
parallelism offered by modern multicore machines. We contrast this with the typi-
cal, data-intensive database system, where CPU cycles are invariably wasted due to
cross-core contention for shared data access resources such as cache, bus, and RAM.
Since MCDB’s Monte Carlo processing is encapsulated within the Instantiate opera-
tion, we spent a fair amount of time designing and implementing a parallel version of
Instantiate that could efficiently run on many CPU cores. For simplicity, we restrict
our discussion to the simple case in which there is exactly one table of input parameters
to a single VG function.

We first note that, in our Instantiate implementation, the seeded tuples produced
by the FOR EACH clause must be output from a VG function in the order that they were
seeded (see Section D in the online appendix available in the ACM Digital Library).
The reason for this requirement is that any “extraneous” seeded-tuple attributes not
used by the VG function need to be stripped away. This is done by duplicating the
seeded tuple and stripping away the extraneous attributes from one copy. The stripped
copy is joined with the VG function’s input parameter table in order to pick up any
needed parameter values, for example, the MEAN and STD parameters in the example
of Section 4.1, and then is sent to the VG function and instantiated. Execution of
the final SELECT clause in a CREATE TABLE statement might require that some of the
extraneous attributes (e.g., PID and GENDER in the foregoing example) be added back to
the instantiated tuple bundle. To do this, we join the instantiated tuple bundle with
its unstripped copy. This join uses a sort-merge algorithm with the seed as the join
attribute. If the output bundles from the VG function are not sorted according to seed
value, then an expensive external sort of the (possibly huge) bundles might be required
to execute the merge.

We also note that multiple seeded tuples can share the same seed. For example, if a
seeded tuple is joined to a table prior to instantiation (see Section 11.4) and the join
is 1-to-m for some m > 1, then there will be m joined tuples all sharing the same seed.
Thus Instantiate will create the same array of realized attribute values for each of the
mjoined tuples. It follows that a given VG function call can be amortized over multiple
tuples, and it can therefore be useful to think in terms of a stream of seeds, rather
than seeded tuples, flowing into the instantiate operator. A seed can produce multiple
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instantiated tuple bundles, all of which can be joined with an unstripped copy during
the final merge. We sometimes use this “seed” terminology in what follows.

Given c cores, one fairly straightforward parallel implementation of Instantiate
fires up a new instance of the Instantiate code in a worker thread for each new seed
encountered, up to ¢ threads in total. Each thread parameterizes its own instance
of the VG function, calls the function as needed to produce one or more instantiated
tuple bundles, and writes the bundles to a predefined buffer area. Once all ¢ threads
complete their work, Instantiate sends the instantiated bundles onto the VG function
output stream in seed order, where they can be merged with their unstripped copies,
and Instantiate starts processing the next group of ¢ seeded tuples. The process is
then repeated again and again for successive groups of ¢ seeded tuples. The key benefit
of this approach is that it trivially allows the tuple bundles to be output from the VG
functions in seed order.

Preliminary experiments indicated, however, that this approach performs badly in
practice. The key reason for the poor performance is that Instantiate cannot send
any tuple bundles onto the output stream for merging until all of the threads in the
group of ¢ VG function instances complete, so that the slowest VG function instance
in the group dictates the group’s speed. For example, when rejection algorithms are
used to generate random numbers (see query Q4 in Section 13) the execution time for
a VG function call can occasionally be longer than the usual time by several orders of
magnitude.

We have therefore developed an alternative, more complex scheme that allows for
some out-of-order processing of seeds. Instead of blocking until all the worker threads
have completed, Instantiate blocks whenever it has a new seed ready to be pro-
cessed by a VG function but none of the existing threads is available. A thread signals
Instantiate and switches its status to “available” once it has completed all of its Monte
Carlo work, that is, all of its VG function invocations. To facilitate output, Instantiate
maintains a first-in, first-out queue of output buffers. Each output buffer holds all
of the tuple bundles corresponding to a single seed value. When a thread finishes,
Instantiate wakes up, and if a new seed value is ready to be processed, it assigns an
output buffer at the tail of the queue to the available thread, which then runs the Monte
Carlo iterations required for that seed value. Instantiate also looks at the head of the
queue to see if the thread associated with the first seed value has completed. If so, it
pops the queue by sending the tuple bundles in the associated buffer onto the output
stream, and then continues to pop the queue until it finds that the thread associated
with the buffer at the head of the queue has not finished its work. The Instantiate
process then sleeps until the next time that a thread completes.

The use of a queue reduces the idle time of the threads while ensuring that the
output bundles are sorted on their seed values, but it is still possible for a very long-
running VG function at the head of the queue to cause the queue to grow very long. This
situation is handled by not allowing the queue to grow larger than the available main
memory. If a slow worker thread at the head of the queue causes problems, Instantiate
can stop assigning additional work until the worker thread finishes.

To evaluate the performance of this parallelization scheme, we measured the wall-
clock running times for 1,000 Monte Carlo iterations of a highly CPU-intensive query as
the number of threads increased from 1 to 8. Specifically, we used a query that requires
simulation of 1000 Asian call options for 10 customers over 20,000 time steps; see
Section 13, query Q8. The results, shown in Figure 4, indicate nearly perfect scale-up.

11.4. Pushing Joins Past Instantiate

A discussion of query compilation and optimization in MCDB is far beyond the scope of
this article; even cataloging how the classic algebraic query manipulations change in a
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Fig. 4. Performance evaluation of parallel VG function.

system such as MCDB is beyond what we can possibly cover here. The one overriding
principle governing query optimization in MCDB, however, is pulling up (i.e., delaying)
the Instantiate operation as far as possible in a query plan. The reason is simple:
because Instantiate produces large amounts of data, performing potentially expensive
relational operations on the bundles should be avoided by pushing the operations down,
past Instantiate.

This observation is particularly true in the case of relational join, which may require
that the tuples (or tuple bundles) be read and written from disk several times: moving
millions or billions of 100KB tuple bundles on and off of disk can be very expensive!
Fortunately, there is no reason that a join cannot be executed prior to instantiating
the joined seeded tuples. The key requirement is that none of the join attributes be
produced as the result of a VG function call within the Instantiate operator.

For example, consider the SBP_DATA example from Section 4.1. Imagine that we have a
deterministic table TAKES_.MED (PID, DRUG, FAMILY) where a (PID, DRUG) combination
tells us that the given patient is taking the given drug, and FAMILY tells us the family
of the drug. Given this table, we want the average blood pressure of people taking some
sort of Fluoroquinone, broken down by the specific drug.

SELECT AVERAGE(s.SBP)

FROM SBP_DATA s, TAKES_MED t

WHERE t.FAMILY = ’Fluoroquinone’
AND t.PID = s.PID

GROUP BY t.drug

The most efficient query plan in this case is to only run Instantiate for those patients
who are taking a fluoroquinone. To do this, join PATIENTS with TAKES_MED on the deter-
ministic PID attribute, after filtering TAKES_MED so that it only contains fluoroquinones.
Then run Instantiate on the joined tuples. Thus the join has been pushed down past
the Instantiate.

Instantiate must be implemented with care, however, to allow such optimizations.
In particular, recall from Section 11.3 that the stripped copy of a seeded tuple is joined
with the VG function input parameter table prior to being sent to the VG function, in
order to pick up needed parameter values. Moreover, because of the join, there may be
several tuple bundles sharing the same seed. In our example, a single patient might
be taking three different fluoroquinones, leading to three tuples containing the seed
for the patient’s blood pressure VG function. Thus the MEAN and STD parameters can
potentially be picked up three times, wreaking havoc on the VG function call. Thus, if
it is possible that the join that is being pushed past Instantiate is not a foreign key
join, then a duplicate-removal operation must be run on the output of the join between
stripped tuples and the VG function input parameter table.
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Fig. 5. INCOME table (result of MCDB query), and corresponding approximate histogram.

12. INFERENCE AND ACCURACY

In this section, we discuss in detail how to estimate important features of a query-
result distribution and how to provide probabilistic error bounds on such estimates
via a pilot-sample approach. For brevity, we focus on a key feature, namely, expected
value (or mean). Our general approach, however, applies to a fairly broad range of
distribution features; we briefly outline several extensions of our methods. Finally, we
indicate potential enhancements to the current functionality.

12.1. MCDB Output

Since MCDB queries are standard SQL queries, a given query result has a well-defined
schema R with attributes R.A;, R.As, ..., R.A; for some £ > 1 and, in the absence of
uncertainty, the query result is simply a table having this schema. This will be the case
for a query that does not involve any random relations or involves only deterministic
attributes of random relations. Otherwise, when uncertainty is present and MCDB
executes N > 1 Monte Carlo iterations, MCDB returns its query results in the form
of a table having columns Aj, Ao, ..., A, along with an additional column FRAC that
is computed via the MCDB Inference operator (Section 8.4). Each row of the table
corresponds to a distinct output tuple produced in the course of the N iterations, with
FRAC being the fraction of the N generated query results in which the tuple appears at
least once.

Recall, for example, the random relation CUST defined in Section 4.2, and consider
the following query, which computes the total disposable income of all customers.

QA: SELECT SUM(MONEY) AS TOT_DI FROM CUST

If the disposable income of each customer were deterministic (so that no Gamma VG
function appeared in the definition of CUST) then the answer to QA would be a one-row,
one-column table having the single attribute TOT_DI and containing the (deterministic)
total income. Suppose, however, that CUST is indeed defined as in Section 4.2, so that,
due to uncertainty, the query answer is no longer a fixed number, but a random variable
having a very complicated probability distribution that is unknown to the user.?® If
MCDB executes 1000 Monte Carlo iterations, then the query result might look like
the INCOME table in Figure 5. As can be seen, the total income is $45M in 10% of the
generated query results, $80M in 30% of the generated query results, and so forth. We
can immediately visualize this probability distribution via a histogram as in Figure 5.
We can, however, go far beyond graphical displays: the power of MCDB lies in the fact
that we can leverage over 65 years of Monte Carlo technology (see Section 2) to make
statistical inferences about the distribution of the query answer, about interesting
features of this distribution such as means and quantiles, and about the accuracy of

3Generally in this setting, NULL values must be treated carefully; see Murthy and Widom [2007] for a
discussion of the semantic issues involved.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 18, Publication date: August 2011.



The Monte Carlo Database System: Stochastic Analysis Close to the Data 18:25

the inferences themselves. We discuss a couple of particularly important inference
problems in the following subsections.

12.2. Estimating the Mean of a Query Result

For aggregation queries such as QA given before, perhaps the most widely studied
feature of a query-result distribution is the mean, that is, the expected value, of the
query result. Suppose that MCDB executes N Monte Carlo iterations, resulting in
observed query-result values Xi, X, ..., Xy. The true mean u £ E[X;] = [° xdF(x)
of the query-result distribution F' is unknown, but can be estimated by the sample
average iy = (1/N) Zf\i 1 X;. Since iy depends on the random output of MCDB, it is
itself random, but has several desirable properties. It is unbiased in that its expected
value equals pu, that is, on average, [ix gives the correct answer. By the strong law of
large numbers, /iy is consistent for 1 in that iy converges to u with probability 1 as
N increases.

The precision of a random estimator such as iy can be measured in several ways.
A commonly used and simple measure of precision is the standard deviation, also
called the standard error, of jiy. The standard error is given by o/+/N, where o2 £
E[(X;, — M)2] = [ (x — w)? dF(x) is the true variance of the query-result distribution F.

Note that o2 can be estimated unbiasedly from the X;’sas 62 = (N—1)"! Zf\i 1(X—Aan)2.

We can also obtain probabilistic error bounds. The s1mplest such bounds are approxi-
mate bounds that apply when N is “large”, for example, N > 50 in typical well-behaved
problems. These bounds are based on the Central Limit theorem, which asserts that,
for large N, the distribution of the estimator /i is approximately normal with mean u
and standard deviation o /+/N as given earlier. Thus, for a given number N of iterations
and a specified probability p € (0, 1), we can estimate o by 6y, draw probabilistic error
bars of width w = z,6n/ VN above and below 2y, and then assert that the true mean
w lies within the interval [fixy — w, in + w] with probability approximately p—here z,
is the (1 + p)/2 quantile of the standard normal distribution.

More typically, however, the user has a target maximum error level ¢, specified a
priori. We focus primarily on this scenario, and discuss how to achieve such an error
bound by controlling the number of Monte Carlo iterations. A standard calculation
shows that, for p € (0, 1) and N = 220%/(e;1)?, the estimator /iy estimates u to within
+100€% with probability approx1mately equal to p. As can been seen, it is impossible
to determine N a priori, since 4 and o are unknown. For a given value of p, a standard
approach to this problem is estimate these quantities from a “pilot” run. Specifically,
we initially run MCDB to create N Monte Carlo replicates, yielding query-result values

Xi, ..., Xy. These values can then be used to estimate x and o2 by ji = (1/N) ZL X

and 52 =N -1 Zizl(X, — fu)?. Substituting these estimates into our formula for
N, we can estimate the required number of replicates in our final, “production” run of
MCDB as N* = zp02 /(efi)?. If we want to control the absolute error, then we simply
replace €ji by € in the formula for N*.

To see in more detail how the preceding error bounding technique can easily be
implemented in MCDB, recall that, for N Monte Carlo iterations, the output of MCDB
for an aggregation query is a table whose ith row is of the form (V;, ¢;), where V; is
the ith distinct aggregate value and ¢; is the fraction of the NV Monte Carlo iterations
for which the query result equals V;. Some straightforward algebra shows that iy =
YV Vigpand o = (N/(N-1) XN | V2¢; — 1%, Similar observations hold for /i and &2
Thus, to estimate the mean of the query-result distribution for the query QA descrlbed
previously, we set the number of MCDB iterations to N > 50 and execute QA to obtain
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an output table INCOME as in Figure 5. We then execute the following ordinary SQL
query over the INCOME table.

QA2:

WITH STATS(MU, SIG2) AS (

SELECT SUM(TOT_DI*FRAC), (:N/(:N-1)) =*
SUM(TOT_DI*TOT_DI*FRAC)-SUM(TOT_DI*FRAC)*SUM(TOT_DI*FRAC)

FROM INCOME)

SELECT MU AS MEAN, SQRT(SIG2) AS STDEV,
CEILING(:ZP*:ZP*SIG2/ (:EPS*:EPS*MU*MU)) AS NUMREP

FROM STATS

Here :N, :EPS and :ZP are the number of Monte Carlo iterations used to produce the
INCOME table, the desired maximum relative error, and the normal (1 + p)/2 quantile
corresponding to the desired (approximate) probability guarantee on the error. We then
reexecute query QA in MCDB, but this time using NUMREP Monte Carlo iterations. We
can then run query QA2 on the resulting INCOME table. This time, MEAN is our final
estimate of the mean value of F', which lies within +¢ of the true value with probability
approximately equal to p. For instance, assuming that the INCOME table in Figure 5
represents the result of a pilot run, QA2 would compute /i = $129.5M and 6 = $53.5M.
If we want to estimate the true mean to within £10% with 95% probability—so that
e = 0.10, p = 0.95, and z, ~ 1.96—then the pilot run would indicate that N* ~ 263
replicates are needed in the production run.

Note that if NUMREP < N*, then we can use the value of MEAN from the pilot run as
our final answer. If Monte Carlo iterations are very expensive, the preceding pilot-run
procedure can be modified so that the results of the original N pilot runs are used
in computing the final estimate, reducing the number of production runs from N* to
N* — N. This more complex procedure is called “double sampling” [Cox 1952]. These
methods can potentially be automated so that the user merely has to specify a desired
accuracy and confidence level.

12.3. Extensions and Generalizations

We have focused on a very simple estimation problem to keep the exposition simple and
concise. There exists, however, a broad collection of Monte Carlo techniques that a user
of MCDB can exploit to perform complex estimation and inference on the query-result
distribution. An extensive review of these methods is beyond the scope of this article,
so in this section we merely indicate some of the possibilities; see the references given
in Section 2 for further discussion.

Estimates and error bounds for other moments of the query-result distribution be-
sides the mean u, such as the variance, kurtosis, or correlation coefficient, can be
obtained in a manner similar to that described in Section 12.2, but with different (of-
ten more complicated) estimation formulas. Tuple-inclusion probabilities—which can
be viewed as an expected value of an indicator random variable that equals 1 if the
tuple is in the query result and equals 0 otherwise—also fall under the purview of
these methods, as do quantiles and estimators of the entire query-result distribution
function or density function. See Section E of the online appendix available in the ACM
Digital Library for several detailed examples.

For more complex features where there exists no analytical formula for the standard
error of the estimator, methods such as the bootstrap can be used to estimate the
standard error; see, for example, Asmussen and Glynn [2007, Section III.5]. The rough
idea is to sample, with replacement, a set of distinct values from the MCDB output
table, where the ith row is sampled with probability equal to its FRAC value. An estimate
of the feature of interest is then computed from the sampled tuples. This procedure is
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repeated multiple times, and the standard error of the resulting bootstrapped feature
estimates the true standard error.

Besides estimation, we can perform statistical tests of hypotheses such as “the ex-
pected value of total income differed from last year to this year.” For example, it is
straightforward to write a query that applies a standard paired-sample ¢-test [Miller
1986, page 1] to an output table with a pair of columns that correspond to the values of
these two aggregates over the N Monte Carlo iterations. “Ranking and selection” pro-
cedures [Henderson and Nelson 2006, Chapter 17] can potentially be used with MCDB
to determine with high probability, for example, the best among alternative business
policies.

12.4. Potential Improvements

Many improvements to the currently implemented MCDB inference mechanism are
possible. For example, query performance can potentially be enhanced by pushing down
the statistical calculations into the query plan. For example, suppose that we know in
advance that our sole interest is in computing the estimated mean and variance of
the query-result distribution. Then, whenever we instantiate a tuple bundle, we can
compute its contribution to these two statistics and then immediately discard the
bundle, thereby reducing processing and I/O costs.

Another possible enhancement is to develop an alternative inference operator that
is less lossy than the current version. For example, the current inference operator
discards information about joint appearance probabilities of tuples, which can be useful
for certain queries, for example, calculating the probability that Jane Smith and Jim
Thorpe both purchased at least one item in Seattle. One potential approach to this
problem (not yet implemented) is to use a modified inference operator that creates an
output table in which the FRAC column is replaced by a column containing bit vectors of
length N, where N, as usual, is the number of Monte Carlo iterations. For the ith row
of the table, which contains distinct output tuple ¢ and bit vector b;, we set b;[j] = 1
if and only if # appears at least once in the jth generated query-result table. The bit
vectors would be formed by eliminating duplicate tuple values in the output, ORing
together the isPresent vectors of the duplicates. Such output would completely specify
joint appearance probabilities. The next level of detail would be to record for each
generated query result the multiplicity of each tuple, but it is not clear whether the
onerous memory requirements would be justified, or even feasible.

13. EXPERIMENTS

The technical material in this article has focused upon MCDB’s basic Monte Carlo
framework, VG function interface, query engine implementation details, and potential
ability to handle a broad class of analysis problems on uncertain data. Our experimental
study is similarly focused, and has two goals:

(1) To demonstrate examples of nontrivial, “what-if” analyses that are made possible
by MCDB.

(2) To determine if this sort of analysis is actually practical from a performance stand-
point in a realistic application environment. An obvious upper bound for the amount
of time required to compute 100 Monte Carlo query answers is the time required
to generate the data and run the underlying database query 100 times. This is
too slow. The question addressed is: Can MCDB do much better than this obvious
upper bound?

Basic Experimental Setup. We generate a 20GB version of the TPC-H database using
TPC-H’s dbgen program and use MCDB to run eleven nontrivial “what-if” aggregation
queries over this database. Each of the eleven queries is run using one, ten, 100, and
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1000 Monte Carlo iterations, and wall-clock running times as well as the query results
are collected.

MCDB Software. To process the queries, we use our prototype of the MCDB query-
processing engine, which consists of about 20,000 lines of C++ source-code. This mul-
tithreaded prototype has full support for the VG function interface described in the
article, and contains sort-based implementations of all of the standard relational op-
erations as well as the special MCDB operations. Our MCDB prototype does not yet
have a query compiler/optimizer; development of these software components is a goal
for future research. The query processing engine’s front-end is an MCDB-specific “pro-
gramming language” that describes the physical query plan to be executed by MCDB.

Hardware Used. We chose our hardware to mirror the dedicated hardware that might
be available to an analyst in a small- to medium-sized organization. The eleven queries
are run on a dedicated and relatively low-end $3000 server machine with four 160GB
ATA hard disks and eight 2.0 GHz cores partitioned over two CPUs. The system has
8GB of RAM and runs Ubuntu Linux.

Queries Tested. The eleven benchmark queries are each computationally expensive,
involving joins of large tables, expensive VG-function evaluations, grouping, and ag-
gregation. The SQL for the queries is given in the Appendix.

Query Q1. This query guesses the revenue gain for products supplied by Japanese
companies next year (1996), assuming that current sales trends hold. The ratio u of
sales volume in 1995 to 1994 is first computed on a per-customer basis. Then the 1996
sales are generated by replicating each 1995 order a random number of times, according
to a Poisson distribution with mean w. This process approximates a bootstrapping
resampling scheme (see Section 12.3). Once 1996 is generated, the additional revenue
is computed. In this query, the Poisson VG function (which takes as input a single rate
parameter) is used.

Query Q2. This query estimates the number of days until all orders that were placed
today are delivered. Using past data, the query computes the mean and variance
of both time-to-shipment and time-to-delivery for each part. For each order placed
today, instances of these two random delays are generated according to discretized
gamma distributions with the computed means and variances. Once all of the times
are computed, the maximum duration is selected. In this query, the DiscGamma VG
function (for “discretized gamma”) is used. This function takes two parameters, the
mean and variance of the desired gamma distribution.

Query @3. One shortcoming of the TPC-H schema is that, for a given supplier and
part, only the current price is maintained in the database. Thus, it is difficult to ask,
“What would the total amount paid to suppliers in 1995 have been if we had always
gone with the most inexpensive supplier?” Query Q3 starts with the current price
for each item from each supplier and then performs a random walk to guess prices
from December, 1995 back to January, 1995. The relative price change per month
is assumed to be normally distributed with a mean of -0.02 and a variance of 0.04.
The most inexpensive price available for each part is then used. In this query, the
RandomWalk VG function is used. This takes as input a starting point for the walk (a
starting price in this case), the starting month for the walk, the number of months to
walk backwards in time, and the mean and variance of the change in price each month.
It then walks backwards in time, emitting a possible price for each month.

Query Q4. This is the query mentioned in Section 1, which estimates the effect
of a 5% customer price increase on an organization’s profits. The Bayesian posterior
distribution function used to predict a customer’s demand at a new price does not have
a closed-form representation, and so Monte Carlo methods must be used.
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At a high level, this VG function works as follows. For a given part that can be
purchased, denote by D, a given customer’s random demand for this part when the
price equals p. A prior distribution for D, is used that is the same for all customers.
Bayesian methods are used to obtain a posterior, customer-specific distribution for D,
(for all values of p) by combining the generic prior distribution with our knowledge of
the actual price p* offered to the customer, and the customer’s demand d*. The inner
workings of the VG function are described in more detail in the Appendix, and are
encapsulated within the Bayesian VG function.

Query Q5. This query and the following query are designed to demonstrate that
MCDB can easily implement the tuple-appearance uncertainty model of Dalvi and
Suciu [2007b], and to investigate how well MCDB performs when it is used for such
a model. Both queries are closely based upon test queries that were run by Dalvi and
Suciu in their paper. Both of them make use of the Bernoulli VG function, which
takes as input a probability p and outputs either a true or a false, with Pr[true] =
1 — Pr[false] = p.

Q5 is based upon query 3 from the TPC-H benchmark. This query estimates the
revenue for orders from the HOUSEHOLD market segment that were made in March 1995
and shipped by the end of the month. The VG function in Q5 implements a “fuzzy”
equality operator that compares the market segment string with the literal HOUSEHOLD.
If the market segment is exactly the string HOUSEHOLD, then the probability of a match
is one. As the edit distance between the market segment and HOUSEHOLD increases, the
probability of a match decreases. This is implemented by computing the edit distance
d between the market segment and the literal, and setting the probability of a match
to be p = 2 — 2&(d), where @ is the standard normal cumulative density function.
For example, an edit distance equal to 1 produces a match probability of 0.318, and
a distance equal to 2 produces a probability of 0.0456. The probability of the order
being made and shipped as specified is computed in a similar fashion, as detailed in
the Appendix.

Query Q6. This is similar to query 6 from the TPC-H benchmark. This query esti-
mates the total revenue for all the 1996 shipments with discounts between 3% and 5%
and a quantity of around 25 units, again using the Dalvi-Suciu-style model. In this
query, the ship date, discount, and quantity are all compared to literal target values
using a fuzzy match, using a methodology similar to the one from Q5.

Query Q7. The motivation behind this query is to be able predict the change in
revenue if shipments are processed more quickly than they were processed in reality,
since it is reasonable to expect that customers are prone to rejecting a shipment if it
takes too long to arrive.

First, a logistic regression model is learned (offline) using the returnflag attribute
of lineitem. This model relates the probability that an item is returned to the length
of time that is required to process the shipment. This model is embodied in the user-
defined function logistic, which returns the probability that the item will be returned,
given the shipping time. These probabilities, along with the Bernoulli VG function,
are used to predict the change in revenue if the shipping times are cut by 25%.

Query @8. This query simulates the possible profits at some future time 7' for a set
of customers, each of whom holds some number of call options. The profits associated
with a given option are predicted using a stochastic model. This query is unlike any
of the others in the sense that the stochastic stock-price simulation performed by the
VG function (rather than any of the required database processing) is by far the most
expensive component of the query.

In the query, there are 10,000 customers, and each customer owns between 1 and
100 call options comprising one to five distinct option types. There are 1000 possible
call-option types. All customers in the database have bought the options at the same
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time. The owner of an option of type i has the right to purchase a share of an underlying
stock at a given strike price K; at a specified time T (assumed the same for all options
considered). The owner of the stock can collect a payoff at time 7', denoted P;(T'), which
depends on the value of the stock over the interval [0, T']. Thus, if P,(T) > K;, the
customer can purchase the stock and immediately collect the payoff, for a profit of
P,(T) — K;; if P, < K;, then the option is worthless, and the customer makes 0 profit.
Thus the value of the option type i at time T is max(P;(T)— K;, 0). The total profit for a
customer who owns n; options of type i i = 1,2,...,m)is Y;", n; x max(P(T) — K;, 0).

If we knew P;(T'), the profit for each customer would be easy to compute. However, in
this query we do not know P;(T"). For our example, we assume that all option types are
Asian call options, and we use a modified Black-Scholes stochastic model of stock-price
evolution to simulate values of P;(T'). We simulate the successive prices of each stock at
20,000 discrete time points in [0, T']. This simulation is encapsulated in the Val_Comp
VG function; see the Appendix for details.

Query Q9. This query estimates the potential profit of a marketing campaign. The
query is particularly difficult to evaluate because (unlike any of the other queries) it
requires a nested-loops join involving a random table. This is necessary since the query
requires a spatial join. The query stochastically creates customers (who have random
locations) and then joins those customers with the table determining how much money
is spent on advertising in each region. The join predicate makes use of the physical
location of each customer.

Specifically, suppose that for each one of a company’s existing customers in a spec-
ified region, marketing research indicates that there are approximately 1.5 similar
customers nearby who could be reached via a targeted marketing campaign. Also
suppose that the (deterministic) set of existing customers is specified by the TPC-H
customer table, augmented with two location attributes X, Y e [0, 10].* The company
has designed a specific campaign that divides the region into subregions and allocates
a specified amount of advertising money to each region. Each potential customer has a
random threshold amount of advertising money that must be spent in his/her subregion
for him/her to become an actual customer.

We define a random table potential customer using a VG function CustGen that
generates potential customers as follows. First, each existing customer ¢; is replicated
N; times, where N; ~ Poisson; the location difference between each replicate of ¢; and
¢; itself is generated independently from a bivariate normal distribution with mean
[0.25,0.25]7, variance [1, 117, and correlation coefficient 0.3. Next, the threshold value
for each potential customer is independently generated from a gamma distribution
with shape = scale = 3. The query of interest joins potential _customer with a
table called marketcampaign that specifies the amount of money to be spent in each
subregion. Those potential customers that are exposed to enough advertising are then
used to compute the potential profit.

In this query, the CustGen VG function has three parameters: the rate parameter
given to the Poisson distribution that tells the VG function how many times the cus-
tomer should be replicated, as well as the physical location of the customer.

Query Q10. In this query, we estimate the revenue obtained for all the customers
from Japan, under the assumption that the customer listed on each tuple in the orders
table may be wrong, possibly due to an error in the data integration process. To quantify
this error, a new relation error_custkey(old_custkey, custkey, prob) iscreated such
that, for each customer key old_custkey from the original customer relation, we have

4We generate the values of each pair (X, Y) from a bivariate normal distribution with mean [5, 517, variance
[1,1]7, and correlation coefficient 0.4. Any generated values that are smaller than 0 or larger than 10 are
replaced by 0 and 10, respectively.
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Time required Iterations required

Query 1 iter 10 iters | 100 iters | 1000 iters || 10% err 1% err 0.1% err
Q1 26 min | 27 min 27 min 28 min 50 50 50 + 13
Q2 40 min | 41 min 40 min 41 min 50 50 + 292 50 + 34,240
Q3 42 min | 42 min 101 min 318 min 50 50 50
Q4 40 min | 39 min 52 min 213 min 50 50 50
Q5 18 min 18 min 19 min 25 min 50 50 + 1,842 | 50 + 189,160
Q6 34 min | 35 min 36 min 85 min 50 50 50
Q7 30 min | 31 min 31 min 45 min 50 50 + 350 50 + 39,909
Q8 1 min 1 min 7 min 71 min 50 50 50 + 1,296
Q9 30 min | 53 min 88 min 835 min 50 50 50 + 404
Q10 18 min | 18 min 18 min 18 min 50 50 50 + 429
Q11 18 min | 18 min 18 min 17 min 50 50 50

Fig. 6. Benchmarking results. The left-hand side of the table shows the time required to execute 1, 10, 100,
and 1000 Monte Carlo iterations, for each of the eleven queries. The right-hand side shows how many Monte
Carlo iterations would be required to estimate the mean (expected value) of the query result at 10% error, 1%
error, and 0.1% error, with 95% probability. This is computed using a pilot-sampling approach, as described in
Section 11.2. The pilot-sampling approach first runs 50 Monte Carlo iterations (the “pilot sample”) and uses
this to compute the number of iterations required to reach the desired accuracy. If any additional iterations
are required, they are taken as a separate step. Hence, “60 + 292” means that in additional to the pilot
sample, a second step with 292 additional Monte Carlo trials is required.

a potentially “correct” customer key custkey and a probability prob of custkey being,
in reality, the correct one.

The error_custkey parameter table is created externally by sorting the customer
keys lexicographically, and then setting the probability that observed key %k should
have been recorded as % + i to be 5,}:; (i is only allowed to range from 0 to 10; the
remaining small unattached probability is allocated to all keys proportionally).

This query uses the DiscreteChoice VG function, which takes as input a set of items
(and associated weights) from which it will make a random selection. Each item in this
case is a possible customer key.

Query Q11. This query is closely related to Q7. However, instead of using a logistic
regression model, a resampling scheme is used to estimate the revenue if the ship-
ment time of each 1995 order is cut in half. Specifically, we “guess” whether or not a
faster shipment would be rejected by the customer as follows. The DiscreteChoice VG
function is fed, for each 1995 lineitem, the set of all shipments for the same part that
took exactly half of the observed shipping time. It then selects one of those shipments
at random and uses the returnflag attribute to determine whether or not the faster
shipment is rejected. Thus the probability of rejection is precisely the fraction of speedy
deliveries that were actually rejected.

Results. The results obtained by running the eleven queries are given in Figure 6.
To put the running times in perspective, we ran a foreign key join over partsupp,
lineitem, and orders in Postgres (out of the box, with no tuning), and killed the query
after waiting more than 2.5 hours for it to complete. A commercial system would
probably be much faster, but this shows that MCDB times are not out of line with what
one may expect from a classical query processing engine.

In terms of the running times required, the results are very encouraging. For queries
Q1,Q2,Q5,Q7,Q10, and Q11, there is only a small-to-negligible dependence of running
time on the number of Monte Carlo iterations run. What this means is that for those
queries, all of the other fixed costs associated with running the query dominate: the
time to parameterize the VG functions, the fixed-cost latency associated with loading
the tuples/tuples bundles from disk (i.e., seek time) or from memory and onto the CPU
(i.e., cache miss stalls), the cost of running selections and joins on constant attributes,
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and so forth. The variable costs that increase with additional Monte Carlo iterations
seem to be relatively unimportant; these include both the cost of running the Monte
Carlo simulations and the extra transfer times associated with moving large tuple
bundles around. As a result, MCDB is much faster than naively regenerating the data
and rerunning the underlying query many times. Of course, if the number of Monte
Carlo iterations were increased so as to be very, very large, the running time would
increase linearly with the increasing iterations.

It is instructive to consider in detail those queries for which additional Monte Carlo
trials do significantly affect query running time. In Q3, the VG function produces a
huge amount of data (a random walk consisting of twelve tuple bundles for each tuple in
partsupp), and the tuple bundles containing this data are fed into a subsequent, disk-
based GROUP BY operation. This GROUP BY incurs hundreds of gigabytes of I/O, with the
amount of I/O growing linearly with each additional Monte Carlo trial. Hence there is
a strong dependence of running time on the number of Monte Carlo trials.

In Q4, the VG function itself is quite expensive, and the cost to run the simulation
itself tends to dominate. Since this cost increases linearly with the number of trials,
the overall query cost shows moderate dependence on the number of trials run. This is
also the case in Q8 (the option price query), where the data set itself is quite small but
the VG function encapsulates a very complex computation.

Q9 is the one example where MCDB’s query processing engine fails to do radically
better than simply regenerating the database and rerunning the underlying query
multiple times. The reason is that Q9 requires a nested-loops join of the stochas-
tic table potential customer with the marketcampaign table. The boolean condition
associated with this nested-loops join references several stochastic attributes from
potential customer. As a result, every Monte Carlo value in potential customer is
referenced many times in every Monte Carlo iteration. Thus, the extra cost associated
with each additional Monte Carlo trial is very high, and there is a very strong depen-
dence upon the number of Monte Carlo trials. In fact, the running time associated with
1,000 trials is approximately 9.5 times as large as the time associated with 100 trials.

Still, we view Q9 as the “exception that proves the rule.” Overall, MCDB is able
to very successfully ensure that many Monte Carlo trials can be run with little more
expense than simply running one or two trials. (Even for Q9, the time required for
MCDB to run 1,000 trials is still much less than the time required to run this query
1,000 times with one trial per run.)

We also make a few remarks regarding the number of Monte Carlo trials required
to achieve high accuracy. For each of the eleven queries, the pilot sample alone suffices
to attain an error of +10% when estimating the query-result distribution’s mean. For
an error of +1%, additional samples are required in only three of eleven queries, and
even in these three cases, the number of iterations required is still reasonable.

These results do not guarantee that MCDB can always reach +1% error in a reason-
able amount of time; a particular model and dataset may have much higher variance
than those that we tested here. Still, we are encouraged because we view +1% error as
a reasonable goal. After all, MCDB is only “accurate” to the extent that the underlying
model is accurate, and the modeling process itselfis likely to introduce quite significant
biases and errors due to the choice of model and fitting of model parameters. It is of
questionable utility to obtain +0.1% error (which sometimes does require an unrea-
sonable number of samples; nearly 200,000 in Q5) when the modeling process itself is
seldom that accurate.

14. CONCLUSIONS

This article describes an initial attempt to design and prototype a Monte-Carlo-based
system for bringing sophisticated stochastic analytics close to the data. The MCDB
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approach (which uses the standard relational data model, VG functions, and parameter
tables) provides a powerful and flexible framework for representing uncertainty. Our
experiments indicate that our new query-processing techniques permit handling of
uncertainty at acceptable overheads relative to traditional systems.

Much work remains to be done, and there are many possible research directions.
Some important issues we are exploring include a comprehensive treatment of query
compilation and optimization, exploitation of computing clusters to parallelize Monte
Carlo computations, and the use of advanced Monte Carlo methods to facilitate risk
assessment and handling of recursive stochastic models. Some progress has recently
been made along these lines [Arumugam et al. 2010; Perez et al. 2010; Xu et al.
2009]. We also hope to extend the techniques and ideas developed here to other
types of data, such as uncertain XML [Kimelfeld et al. 2009]. Overall, by bringing
stochastic analytics into the database, MCDB has the potential to facilitate real-world
risk assessment and decision making under uncertainty, both key tasks in a modern
enterprise.

APPENDIX: EXPERIMENTAL QUERIES
Query Q1.

CREATE VIEW from_japan AS

SELECT *

FROM nation, supplier, lineitem, partsupp

WHERE n_name=’JAPAN’ AND s_suppkey=ps_suppkey AND ps_partkey=1l_partkey
AND ps_suppkey=1_suppkey AND n_nationkey=s_nationkey

CREATE VIEW increase_per_cust AS

SELECT o_custkey AS custkey, SUM(yr(o_orderdate)-1994.0)/
SUM(1995.0-yr (o_orderdate)) AS incr

FROM ORDERS

WHERE yr(o_orderdate)=1994 OR yr(o_orderdate)=1995

GROUP BY o_custkey

CREATE TABLE order_increase AS
FOR EACH o in ORDERS

WITH temptable AS Poisson(
SELECT incr
FROM increase_per_cust
WHERE o_custkey=custkey AND yr(o_orderdate)=1995)

SELECT t.value AS new_cnt, o_orderkey

FROM temptable t

SELECT SUM(newRev-oldRev)
FROM (SELECT 1_extendedpricex*(1.0-1_discount)*new_cnt AS newRev,
(1_extendedpricex(1.0-1_discount)) AS oldRev
FROM order_increase, from_japan
WHERE 1_orderkey=o_orderkey)

Query Q2.

CREATE VIEW orders_today AS

SELECT *

FROM orders, lineitem

WHERE o_orderdate=today AND o_orderkey=1_orderkey

CREATE VIEW params AS
SELECT AVG(1l_shipdate-o_orderdate) AS ship mu,
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AVG(1_receiptdate-1_shipdate) AS arrv.mu,
STD_DEV(1_shipdate-o_orderdate) AS ship_sigma,
STD_DEV(1l_receiptdate-l_shipdate) AS arrv_sigma,
1_partkey AS p_partkey

FROM orders, lineitem

WHERE o_orderkey=1_orderkey

GROUP BY 1_partkey

CREATE TABLE ship_durations AS
FOR EACH o in orders_today
WITH gamma ship AS DiscGamma(
SELECT ship.mu, ship_sigma
FROM params
WHERE p_partkey=1_partkey)
WITH gamma arrv AS DiscGamma(
SELECT arrv._mu, arrv_sigma
FROM params
WHERE p_partkey=1_partkey)
SELECT gs.value AS ship, ga.value AS arrv
FROM gamma_ship gs, gamma_arrv ga

SELECT MAX(ship+arrv)
FROM ship_durations

Query Q3.

CREATE TABLE prc_hist(ph_month, ph_year, ph_prc, ph_partkey) AS
FOR EACH ps in partsupp
WITH time_series AS
RandomWalk (VALUES (ps_supplycost,12,"Dec",1995,-0.02,0.04))
SELECT month, year, value, ps_partkey
FROM time_series ts

CREATE VIEW best_price AS

SELECT MIN(ph_prc) AS min prc, phmonth, ph_year, ph_partkey
FROM prc_hist

GROUP BY ph_month, ph_year, ph_partkey

SELECT SUM(min_prc*l_quantity)

FROM best_price, lineitem, orders

WHERE ph_month=month(o_orderdate) AND 1 _orderkey=o_orderkey
AND yr(o_orderdate)=1995 AND ph_partkey=1_partkey

Query Q4.

CREATE VIEW params AS

SELECT 2.0 AS pOshape, 1.333*AVG(1l_extendedprice*(1.0-1_discount))
AS pOscale, 2.0 AS dOshape, 4.0*AVG(l_quantity) AS dOscale,
1_partkey AS p_partkey

FROM lineitem 1

GROUP BY 1l_partkey

CREATE TABLE demands (new_dmnd, old_dmnd, old_prc, new_prc,
nd_partkey, nd_suppkey) AS
FOR EACH 1 IN (SELECT * FROM lineitem, orders
WHERE 1_orderkey=o_orderkey AND
yr(o_orderdate)=1995)
WITH new_dmnd AS Bayesian (
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(SELECT pOshape, pOscale, dOshape, dOscale
FROM params

WHERE 1_partkey = p_partkey)

(VALUES (l_quantity, l_extendedprice*(1.0-
1. discount))/l_quantity, l_extendedpricex
1.05%(1.0-1_discount)/l_quantity))

SELECT nd.value, l_quantity, l_extendedpricex*
(1.0-1_discount))/ l_quantity, 1.05%
1_extendedprice*(1.0-1_discount)/l_quantity,
1 _partkey, l_suppkey

FROM new_dmnd nd

SELECT SUM (new_prf-old prf)
FROM (
SELECT
new_dmnd* (new_prc-ps_supplycost) AS new_prf
0ld_dmnd* (old_prc-ps_supplycost) AS old prf
FROM partsupp, demands
WHERE ps_partkey=nd_partkey AND
ps-suppkey=nd_suppkey)

Query Q5.

CREATE TABLE fuzzy_lineitem AS
FOR EACH 1 in lineitem
WITH res AS Bernoulli(
VALUES (NormCDF (0,10, ’March 31, 1995°-1_shipdate)))
SELECT 1_extendedprice, l_discount, l_orderkey,
value AS 1l_ispres
FROM res

CREATE TABLE fuzzy_cust AS
FOR EACH c in customer
WITH res AS Bernoulli(
VALUES(2.0-2.0*NormCDF (0,1, ed (’HOUSEHOLD’ ,mktsegment))))
SELECT c_custkey, value AS c_ispres
FROM res

CREATE TABLE fuzzy_order AS
FOR EACH o in orders
WITH res AS Bernoulli(
VALUES (NormCDF (0,10, 0_orderdate-’March 1, 1995’)))
SELECT o_orderkey, value AS o_ispres
FROM res

SELECT 1_orderkey, SUM(1l_extendedprice*(1-1l_discount)) as revenue

FROM fuzzy_lineitem, fuzzy_customer, fuzzy_orders

WHERE c_custkey = o_orderkey AND o_orderkey = 1l_orderkey AND
o_ispres = true AND c_ispres = true AND l_ispres = true

GROUP BY 1l_orderkey

Query Q6.

CREATE TABLE fuzzy_lineitem AS
FOR EACH 1 IN lineitem
WITH resl AS Bermoulli(
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VALUES (2.0-2.0*NormCDF (0, 180, abs(l_shipdate-’Jun 1, 1996°’))))
WITH res2 AS Bernoulli(
VALUES(2.0-2.0%NormCDF (0.0, 0.01, abs(l_discount-0.04))))
WITH res3 AS Bernoulli(
VALUES(2.0-2.0%NormCDF (0.0, 10, abs(l_quantity-25))))
SELECT 1l_extendedprice, l_discount
FROM resl, res2, res3
WHERE resl.value = true AND res2.value = true AND res3.value = true

SELECT SUM((1l_extendedprice * l.discount) * newCount) AS revenue
FROM fuzzy_lineitem;

Query Q7.

CREATE VIEW order_times AS

SELECT (l.receiptdate - o_orderdate) AS days,
(l.receiptdate - o_orderdate)*0.75 AS less_days,

FROM lineitem, orders

WHERE 1_orderkey = o_orderkey

CREATE TABLE shipped AS
FOR EACH ot IN order_times
WITH resl AS Bernoulli(VALUES(Logistic(days)))
WITH res2 AS Bernoulli(VALUES(Logistic(less_days)))
SELECT resl.value AS ret_orig, res2/value AS ret_new
FROM resl, res2
SELECT SUM((l-extendedpricexl_discount)*ret_orig) -
SUM((1_extendedprice*l_discount)*ret_new) AS rev_diff
FROM shipped

Query Q8.

CREATE TABLE option_val(oid,val) AS

FOR EACH o IN option
WITH oval AS ValComp(VALUES(o.initval, o.r, o.sigma, o.k, o.m, o0.t))
SELECT o.0id, v.value
FROM oval v

SELECT c.cid, SUM(c.num * ov.val)
FROM cust c, option_val ov

WHERE c.oid = ov.oid

GROUP BY c.cid

Query Q9.

CREATE TABLE potential_customer(custkey, x, y, adsig) AS
FOR EACH c in customer
WITH custgen AS CustGen (VALUES(1.5, c.x, c.y))
SELECT c_custkey, cg.x, cg.y, cg.adsig
FROM custgen cg

SELECT SUM(1l_extendedprice*(1.0-1_discount))
FROM lineitem c, orders o, marketcampaign mc, potential_customer pc
WHERE mc.xmin < pc.x AND mc.xmax > pc.x AND mc.ymin < pc.y

AND mc.ymax > pc.y AND mc.adsig > pc.adsig

AND pc.custkey = o.o_custkey AND o.o_orderkey = 1.1l_orderkey
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Query Q10.

CREATE VIEW from_japan AS

SELECT c_custkey

FROM customer, nation

WHERE n_nationkey = c_nationkey AND n_name = ’JAPAN’

CREATE TABLE fixed cust AS
FOR EACH o IN orders
WITH newcustkey AS DiscreteChoice(
SELECT custkey, probability
FROM error_custkey
WHERE old_custkey = o_custkey)
SELECT value AS o_newcustkey, o_orderkey
FROM newcustkey

SELECT SUM(1l_extendedprice * (1.0 - 1l._discount))
FROM lineitem, fixed_cust, from_japan
WHERE 1_orderkey = o_orderkey AND o_newcustkey = c_custkey

Query Q11.

CREATE VIEW inner_lineitem AS
SELECT 1_partkey AS i_partkey, ((l_receiptdate - l_shipdate) / 2) AS i_duration;

CREATE TABLE likely_incomes AS
FOR EACH 1 IN lineitem
WITH newres AS DiscreteChoice(

SELECT 1l_returnflag

FROM inner_lineitem

WHERE i_duration = (l.receiptdate - l_shipdate) AND

i_partkey = 1.1_partkey)

SELECT (1l_extendedprice * (1.0 - 1l.discount)) AS income
FROM newres
WHERE newres.value = ’N’

SELECT SUM(income) AS revenue
FROM likely_incomes;

Details of VG function for query @4. As discussed in Section 1, the prior distributions
of Py and Dy are Gamma(k,, 6,) and Gamma(ky, 04), respectively, with Py and Dy mu-
tually independent. We choose shape parameters &, = k; = 2.0 and scale parameters

0, = %x (the average price), and 6; = 4x (the average demand), where the average
price and demand are computed over all of the existing records. Given our choice of &,
and kg, our subsequent choice of 6, and §; ensures that the average price and demand
over all customers for a given item actually falls on the most likely demand curve; this
most-likely curve is depicted in Figure 7.

Given the observation (p*, d*) for a customer, we generate (P, Dy) from the pos-
terior distribution described in Section 1 and then compute the demand at the new
price p = 1.05p* as D, = (Dy/Po)(Py — p). To this end, we can use Bayes’ rule to
write down an expression for the posterior density, up to a normalization factor. Al-
though we cannot compute the normalizing constant—and hence the demand-function
density—in closed form, we can generate a pair (Py, Dy) according to this density, us-
ing a “rejection sampling” algorithm. The VG function for customer demand, then,
determines demand for the 5% price increase essentially by: (1) using Bayes’ rule to
determine the parameters of the rejection sampling algorithm, (2) executing the sam-
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Fig. 7. Most likely demand curve under prior distribution.

pling algorithm to generate (P, Dy), and then (3) computing the predicted demand
D,

In more detail, let g(x;%,0) = x¥le=*/? /6*T'(k) be the standard gamma density
function with shape parameter k2 and scale parameter 6, and set g,(x) = g(x;kp, 6p)
and gq(x) = g(x;kq, 67). Then the prior density function for (Py, Do) is fp,.p,(x,y) =
&gp(x)ga(y). If a demand curve passes through the point (p*, d*), then Py and Dy must be
related as follows: Py = p*Dy/(Dy — d*). Let h(x,y) = 1ifx > d* and y = p*x/(x — d*);
otherwise, A(x, y) = 0. For x > d*, Bayes’ theorem implies that

P{Dy=x,Py=y|Py=p Dy/(Dy—d*)}
O(P{P()Zp*D()/(Do—d*)lD()Zx,PO =y} XP{DO =x,P0 =y}
= h(x, y)ga(x)gp(y) = h(x, y)ga(x)gp(p*x/(x — d")).

In other words, hq(x) = cgq(x)g,(p*x/(x — d*)) is the posterior density of Dy—where
¢ is a constant such that fxoi o ha(x)dx = 1—and Py is completely determined by Dy.
The normalization constant ¢ has no closed-form representation. Our VG function
generates samples from Ay using a simple, approximate rejection algorithm that
avoids the need to compute c. Specifically, we determine a value x,.x such that
/. ;;“;’i hq(x)dx ~ 1, and also numerically determine the point x* at which ¢~ 1A, obtains
its maximum value. The rejection algorithm generates two uniform random numbers
U; and Uy on [0, 1], sets X = d* + Ui(xmax — d*), and “accepts” X if and only if
¢ 1hg(x*)Uy < ¢~ 1hy(X); if the latter inequality does not hold, then X is “rejected.” This
process is repeated until a value of X is accepted, and this accepted value is returned
as the sample from Ay. The correctness of the rejection algorithm follows by a standard
argument [Devroye 1986]. Once we have generated a sample D, from A;, we determine
Py deterministically as Py = p*Dy/(Dy — d*). Finally, D, = (Do/Po)(Po — p).

Asian Call Options with Black-Scholes Dynamics for query @8. Let S;(¢) denote the
value of the underlying stock at time ¢; we assume that the stock evolves according
to the Black-Scholes stochastic differential equation: dS;(¢)/S;(t) = r; dt + o; dW;(¢),
where Wy, Ws, ... are independent standard Brownian motions, r; is the risk-free in-
terest rate, and o; is the “volatility.” The payoff for an Asian option is the average price
over a sequence of m > 1 measurement times in [0, T'], assumed, for simplicity, to be
equally spaced. Thus P(T) = m™! Z?‘:l S;(tj), where ¢t; = (j/m)T for j =1,2,...,m.
For convenience, set {y = 0. The initial stock price S;(#) = S;(0) is assumed known.
Under the assumed stock dynamics, we have S;(t;) = S;(tj_1)exp((r; — 0.5062)(; —
ti—1) + 03/(t —tj,l)Z,-j) for j = 1,2,...,m, where Z;1, Z, ..., Z;, is a sequence of
independent and identically distributed normal random variables with mean 0 and
variance 1.
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