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ABSTRACT 
Efficient data processing is critical for interactive visualization of 
analytic data sets. Inspired by the large amount of recent research 
on column-oriented stores, we have developed a new specialized 
analytic data engine tightly-coupled with the Tableau data 
visualization system. 

The Tableau Data Engine ships as an integral part of Tableau 6.0 
and is intended for the desktop and server environments. This 
paper covers the main requirements of our project, system 
architecture and query-processing pipeline. We use real-life 
visualization scenarios to illustrate basic concepts and provide 
experimental evaluation. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Query processing, 
Relational databases. 

General Terms 
Algorithms, Performance, Design 

Keywords 
Column store, Query optimization, Data visualization, Tableau 
Data Engine, TDE 

1. INTRODUCTION 
Tableau is a graphical system for performing ad-hoc exploration 
and analysis of customer data sets. It is a commercial continuation 
of the Polaris research project [1] and over the past several years 
has become a powerful component of the BI stack in many 
organizations. 

Using Tableau, information workers can prepare interactive 
visualizations through a desktop application, which can either 
connect to an online data source or work offline on its own copy 
of the data, and is able to switch seamlessly between the two 
versions. The first option ensures consistency across all connected 
users but it requires a single database server to handle a 
substantial analytic workload. In many organizations the server 

machine of choice has other interfering responsibilities, often 
operational, or is not suitable for such workloads. 

The offline case is not less important. Users often wish to perform 
analyses on copies of their data when: 

• The original data is unavailable (e.g. offline operation 
while travelling); 

• The data may be stored in a high-latency database that is 
not well suited for analytic queries (e.g. text files); 

• The analysis is to be presented as a self-contained 
report. 

These requirements led to the Tableau extract feature, which 
allows users to retrieve a portion of the original data and perform 
further analysis offline. Consequently, the system needs to be 
equipped with an internal data engine. Originally, this feature was 
implemented using the Firebird open source relational database.  
Firebird has a number of advantages for use in a commercial 
desktop application: small footprint, an architecture designed for 
embedding, complete SQL-92 semantics and a large set of native 
data types. Unfortunately, it also has an old “System-R”-style 
architecture and suffers from the analytic performance issues 
common to such systems, such as transactional locking, excessive 
I/O and row level operations [8].  In the spring of 2009 our team 
was formed to find or build a suitable replacement. 

Our most important requirement was to efficiently handle the 
types of analytic queries produced by Tableau. Since a primary 
use case is the unstructured exploration of new data sets, the 
desired system needed to avoid unexpected performance cliffs 
associated with premature optimization of the data store for a 
small set of queries. For the most part, workloads consist of 
typical aggregation queries, but Tableau supports complex 
multidimensional filtering expressed through explicit predicates or 
lookup tables. Inner and left equi joins need to be supported. In 
addition, users can define new columns using a typical set of 
relational row-level functions. These user-defined columns can 
often be inherently slow to evaluate and it may be desirable to 
instantiate them for performance. Last but not least, Tableau 
makes frequent domain queries in order to drive various pieces of 
user interface, e.g. filter controls.  

A second source of constraints was the wide variety of data types 
present in the myriad database vendors that Tableau connects to. 
In addition to several types of numerics and dates, Tableau also 
supports per-column comparison semantics. Extracting data from 
such systems should not change the semantics of the queries 
(including any locale-specific semantics), thus, the new system 
needed to have an easily extensible type system, including the 
ability to extend the set of collated string types. 
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Another design constraint came from the target platform for 
Tableau Desktop.  A significant fraction of the target audience 
was presumed to be working on 32-bit Windows™ laptops with 
2-4GB of RAM.  These same users were also expected to be 
working with data sets that might exceed their working memory, 
thus, a non-memory-resident system was required that could 
perform well on this limited hardware configuration. 

Moreover, the desktop application is mostly delivered via 
downloads from the Internet, which meant that the new system 
needed to have a relatively small execution image (Firebird’s 
download footprint was on the order of 1.5MB). 

The Tableau system is also provided in a server configuration for 
collaborative sharing of visualizations. The server operating 
system was intended to be 64-bit Windows™ to support larger 
addressable memory. Existing Tableau server deployments 
require only a fraction of available storage of a single machine. 
Under this simplifying assumption, we expected the database to 
scale-up and scale-out. 

In addition, there was also a set of “non-requirements”.  Most 
notably, the system did not need to have any sort of single row 
update capability because Tableau does not perform such “write 
back” operations. Tableau also presumes that integrity constraints 
are to be enforced by the source database itself. Stored procedures 
are not used. 

After reviewing the available systems (both commercial and open 
source) we concluded that there was no existing system that could 
meet our needs: 

• Complex filters are often best expressed using left joins 
to temporary tables and many systems have trouble 
executing such joins quickly (or at all in some cases); 

• Typical analytic systems (and even some major “mixed 
workload” vendors) do not support column-level 
collation; 

• Most existing systems are designed for server 
environments where hardware can be chosen to match 
the workload; 

• Installation footprints are often quite large and not 
typically designed for embedding. 

Accordingly, we set out to build our own analytic query engine. 

A review of the literature led us to a block-iterated column store 
design modeled on the MonetDB/X100 project [2] and subsequent 
work. Our new specialized data engine is further referred to as 
Tableau Data Engine (TDE). It can be configured to operate in 
either a single user desktop application environment or a shared 
server environment. The latter uses a shared-nothing architecture 
with inter-query parallelism. The focus of this paper is efficient 
data processing support for Tableau Desktop. 

As mentioned before, our project was strongly influenced by the 
extensive research around MonetDB [2][3]. We also included 
some concepts on operations on compressed data from C-Store 
[4]. In addition, we investigated other commercial column stores. 
In particular, InfoBright [11] partitions its data into 64KB 
portions, called data packs. Rich statistical information associated 
with each pack enables a quick exclusion of data that are 
irrelevant for a given query. The Gemini add-on to Microsoft 
Excel is an embedded database with a column-oriented storage. 

As in our solution, compressed data is kept in a workbook. 
However, data processing capabilities in Gemini are currently 
limited by the available memory. Slow calculations can be 
persisted as columns on-demand, which is similar to extract 
optimization in Tableau (see Sect. 5.1). 

Section 2 provides a running visualization example. The TDE 
architecture is covered in Sect. 3. Data compression and query 
optimization are given in Sect. 4 and 5, respectively. Section 6 
presents experiments. We describe additional visualization 
support, such as query cancellation, in Sect. 7. The paper is 
concluded in Sect. 8. 

2. Visualization Scenario 
Tableau provides a drag and drop interface for interactive data 
exploration. It uses the VizQL language [1] to describe an 
analytical query and associated graphical layout. Queries are 
caused by user interactions and consequently have an ad hoc 
nature. The results received from the database are further post-
processed and rendered to obtain a specified visualization. 

 
Figure 1. Visualization of profit and sales correlation over 

time for different regions and products. 
 

Let us consider a simple data relation with two measures Sales 
and Profit, and four dimensions: Time, State, Product and 
Supplier. We want to investigate the correlation of both measures 
over time for each Product and State. This can be accomplished 
by a tabular view where each column corresponds to a different 
Product and each row to a different State. Each cell of the grid 
contains the corresponding correlation chart (Fig. 1). 

In order to make the visualization less detailed one may want to 
roll up on Time and State. Since no explicit hierarchies are 
defined on those dimensions, we define new higher dimension 
levels using auxiliary functions: 



• Year = year_func(Time) ∈ {2000,..,2010}, defined as a 
4-character prefix of Time; the latter is assumed to be 
encoded as a string; 

• Region = region_func(State) ∈ {NORTH, WEST, 
SOUTH, EAST}, which is a manually-provided 
partition of State and can be expressed as a CASE-
WHEN statement with equality conditions. 

Tableau uses an abstract query representation to perform initial 
transformations and optimizations. Depending on the type of a 
target data source, an appropriate database query is generated. 

Assuming that the data are stored in a denormalized relational 
table T, both measures and dimensions map to its columns. Also, 
the new dimension levels can be expressed as computed columns 
in the table’s schema. The required data can be retrieved by the 
following SQL query: 

SELECT  SUM(Profit), SUM(Sales), 

Product, Region, Year 

FROM  T 

GROUP BY  Product, Region, Year 

Note that the data is already grouped to simplify the additional 
post-processing on the client.  

We continue this example with respect to query processing in the 
data engine presented below. 

3. SYSTEM OVERVIEW 
For the purposes of exposition, it is convenient to view the 
Tableau Data Engine (TDE) as being comprised of several layers: 

• A storage model; 

• An execution engine; 

• A query parser and optimizer; 

• A communication interface; 

• The Tableau VizQL compiler. 

This section will give a brief description of each of these pieces; 
later sections will focus on the details of the compiler and 
execution engine. 

3.1 Storage Model 
The TDE has a typical three-level logical object namespace of 
schemas, tables and columns.  For simplicity, this namespace is 
stored as a multi-level “directory” structure.  Each table is then a 
directory that contains column files, each schema is a directory 
containing tables and a database is a top-level directory containing 
the schemas.   

For most tables and columns, metadata is stored in special tables 
in the reserved SYS schema.  Metadata in the SYS schema (and 
other special schemas like TEMP) is kept in yaml key-value files 
next to the column, one metadata file per object (column, table, 
schema).  Object names can then be decoupled from the 
underlying file structure. 

Column files are of two kinds:  a fixed width array of values and 
an optional “dictionary” file. When a dictionary is present, the 
value array contains dictionary tokens instead of actual values. 

The “directory” structure is abstracted to enable implementations 
other than the simple file system version described above.  The 
most important implementation is a read-only implementation that 
packages a database as a single file for user convenience  

3.2 Execution Engine 
The TDE execution engine follows traditional database patterns. It 
supports a collection of operators and function primitives. Each 
operator implements a certain data processing algorithm and 
consumes rows on its optional inputs to produce output rows. A 
query plan is a tree of operators. It is executed by iterating over all 
the rows of the root of the tree. For the sake of performance, we 
employ block processing with a fixed block size and optional 
selection vector to mark valid rows [2]. 

The parser generates query operators, which come in two basic 
flavors: streaming (Data Flow) and stop-and-go (Table). The first 
ones can process input blocks independently, e.g. a projection that 
simply defines new columns in a block. On the other hand, stop-
and-go operators need to consume all the input rows and 
materialize the intermediate result before any rows can be output. 
An aggregation of unordered data is an example.  

In addition to the query operators, there are a number of command 
operators that implement DDL statements and miscellaneous 
server operations unrelated to query processing. 

3.3 Query Parser and Optimizer 
Tableau performs an initial analysis of a query to apply general 
optimizations valid across many target data sources (see Sect. 5). 
Inferences are made using an abstract tree representation of a 
query. We based our approach on selected concepts from the 
relational algebra. 

Most engines use declarative languages and require appropriate 
translation of the internal query representation. To make similar 
translations straightforward on both ends of the wire for the TDE, 
we developed a Tableau Query Language (TQL). It preserves the 
semantics and tree structure of an abstract query built on the 
Tableau side. 

The query parser accepts text commands in TQL and converts 
them into an in-memory tree representation. The initial tree 
further transformed by the optimizer and converted to an 
executable query plan. 

3.4 Communication Interface 
The Tableau Data Engine runs as a separate process 
communicating over standard sockets.  The TDE side of the 
protocol just reads queries and other commands from the channel 
and routes them to a multi-threaded session manager.  The results 
of the commands are then written to the channel. 

In addition to the main communication channel, sessions can be 
addressed through a secondary control channel.  This channel 
supports user interaction with running queries by reporting 
progress and allowing the user to cancel long-running queries in a 
responsive manner. 

Tableau has an internal API that can be used to send and receive 
queries from a wide variety of data providers.  In addition to a 
standard OLE DB/ODBC wrapper, the API can be used to wrap 
native implementations, such as the InterBase API used by 
Firebird.  For the TDE we wrote another implementation of this 
API, which translates the operations into wire commands.  The 
implementation also connects query execution to the user 
interface to support progress feedback and query cancellation. 



3.5 VizQL Compiler 
Visualizations in Tableau are expressed via the VizQL 
specification language [1]. The VizQL compiler is a Tableau 
subsystem that accepts visualization specifications and generates 
relevant database queries for target languages, such as MDX and 
SQL. The existing Tableau SQL compiler was generalized to 
support TQL as a new relational dialect. 

4. COMPRESSION 
One of the most important benefits of a column store is the ability 
to compress data and then operate on the data in its compressed 
form [7]. Operations on compressed data can improve the 
performance of a typical analytic query by a factor of two [4]. The 
TDE implements two compression strategies: dictionary 
compression and run-length encoding. Dictionary compression is 
visible in query processing, while the storage engine performs 
RLE implicitly. 

4.1 Tokens 
Columns are simply arrays of a fixed width type. Their content is 
accessed through a data stream interface that allows processing 
data in portions fitting in memory. Most scalars (such as integers, 
doubles and dates) can be directly expressed in this array format. 
Such columns are referred to as uncompressed. 

Compressed columns come in two forms.  Heap compression is 
used for variable width types such as strings and array 
compression is used for fixed width types such as dates.  The data 
portion of the column consists of dictionary tokens that reference 
members of the dictionary. 

Because the data stream of a column is required to be an array, 
variable width types can only be stored in heap-compressed 
columns.  Under heap compression, the tokens are offsets into the 
dictionary and the data is stored in the form <length> <data>.  
The set of offset is not dense, but they simplify the system by 
eliminating an index-to-offset indirection. 
Fixed width types may also be compressed using array 
compression.  In this format, the dictionary is an array of values 
and the tokens are indexes into this array.  The set of array tokens 
is dense, which is a useful property for some operations.  Array 
compressed columns can take up significantly less space than 
their uncompressed equivalent:  for example, the TPC-H lineitem 
table has a date column that has only about 2500 distinct values.  
The TDE’s date type is 4 bytes wide, but by compressing the 
column it can be represented by 2 byte tokens, saving 50% on the 
storage requirements. 
Tokens are just integers, so they can be compared as integers.  If 
the dictionary entries are all unique then the tokens are said to be 
distinct.  Distinct tokens can be compared for equality and hashed 
consistently without consulting the dictionary.  If the dictionary is 
also sorted, then the tokens are said to be comparable.  
Comparable tokens can be used for sorting and ordered 
comparisons. 

Because the TDE works on fixed data sets, tables can be 
maximally compressed without having to declare the token width 
ahead of time – or even whether compression is wanted (e.g. 
columns declared enum in [3]).  In addition to relieving the 
desktop user from the burden of being a DBA, this kind of 
maximal compression improves memory bandwidth and creates 
opportunities for better hashing. 

 

4.2 Domain Tables 
The relationship between a compressed column and its dictionary 
resembles foreign/primary key relationship, and this observation 
is central to how the TDE handles compression.  Decompression 
is expressed in queries as a join between the main table’s tokens 
and a virtual domain table representing the column’s data 
dictionary.  One interesting aspect of this approach is that it makes 
decompression a high level operation, which can be reasoned 
about in a natural way by the query optimizer 

The TDE query optimizer can reorder predicates and 
computations across joins, reducing the amount of computation 
performed. For computations and predicates that only reference a 
compressed column, this means that computations can be 
performed on the column’s domain instead of on every row of the 
table.  For example, a computation to extract the year of a date in 
the lineitem table can be pushed down to the ~2500 date values in 
the domain table and only executed that many times.  A filter on 
that year can also be applied before the join, further reducing the 
size of the join hash table. 

4.3 Invisible Joins 
Many predicates used in analytic queries consist of simple filters 
comparing a data value to a compile time constant.  In the case 
where the column is compressed, we made use of the “invisible 
join” technique of Abadi et al. [4] to compare tokens instead of 
values.  This necessitates translation of constants to the domain of 
the column to which they are being compared.   

To enable this translation, TQL compiler makes a pass over the 
expression tree and attempts to attach a domain name to each 
constant.  When the constant node is evaluated for the first time, 
the domain column can be looked up in the input name space and 
the value looked up in the column dictionary.  If it is found, then 
the constant column is replaced with one that contains the 
constant’s token and shares the dictionary with the domain 
column.   

When the function node that references the constant and its 
domain column is evaluated, it attempts to use a version of the 
function that uses tokens instead of values.  In the case of a 
comparison function (such as equals) this will lead to comparing 
tokens instead of compressed values. 

Other functions may not support this optimization, but in that case 
sharing the dictionary does no harm (dictionaries are not copied, 
just referenced). For example, the find(string,string) function may 
coincidentally have a second constant argument that is in the 
domain of the first column, but since find does not support use of 
tokens, the string implementation will be used. 

4.4 Lookups 
While invisible joins are invaluable for improving the 
performance of simple predicates, Tableau typically expresses 
complex filters and other functions using joins.  This led us to an 
extension of invisible joins called the lookup function. 

4.4.1 Multidimensional Functions 
Tableau allows users to generate complex multidimensional filters 
by selecting points in a visualization (such as a scatter plot) and 
either including or excluding them. The default implementation of 



the filter as a large sum-of-products expression tree is unwieldy 
both in the ability of a database to optimize it and in some cases is 
simply too large for the server’s query buffer (e.g. Firebird has a 
64KB query buffer). Such filters are more naturally represented as 
a lookup table containing the list of key sets to be included or 
excluded and a constant output column containing “true”. Include 
filters are then expressed as inner joins and exclude filters are 
expressed as left outer joins followed by a predicate asserting that 
the output Boolean column is null.  

Filters are a special case of a more general multidimensional 
function implemented via a lookup table.  Tableau generates such 
functions in the form of the group calculation.  A group is a 
mapping that collapses several values of a column into a single 
value.  Typical use cases of this feature include higher level 
dimensional modeling and data cleaning.  For example, a data set 
may contain sales data by state but the analysis requires the 
aggregation to be by sales region, which is not modeled. Or the 
data may contain states with variant names and the group can be 
used to combine the variant spellings.  The user can define a 
grouping on the state column, which simply maps each state 
variant to its group. 

The VizQL compiler attempts to implement such functions by 
creating temporary tables and joining them to the main relation.  
While the TDE allows the creation of such temporary tables for 
joining, the joins are often keyed on multiple string columns, 
which can lead to inefficient joins because the database is 
unaware that the inner table columns have domains that are 
subsets of the outer table.  Solving the problem was the 
motivation for our new Lookup operator. 

4.4.2 Hashing for Joins 
The TDE supports a number of hashing algorithms for 
implementing equi-joins.  The basic hash algorithm computes a 
hash, probes the inner table and then checks for collisions.  If a 
collision is detected, it is added to a separate collision list for that 
hash value as in Zukowski et al. [5] that is checked sequentially 
whenever the hash value is encountered.   

Collision checking can result in random access to the inner table, 
which can lead to serious performance degradation. Avoiding 
collisions is therefore quite desirable and the TDE implements a 
number of faster hashing algorithms that avoid collision detection 
and which can be used preferentially if their preconditions are 
met. 

The width of a column for the purposes of hashing is the number 
of bits needed to represent a value in the column’s data stream.  
For uncompressed columns, this is just the number of bits in the 
representation itself.  For compressed columns with distinct 
tokens, the width is the size of the tokens, which in a fully 
compressed column is reduced to the minimum number of bytes 
needed to represent all the dictionary entries. 

TDE hash values are 32 bit quantities and if the input columns 
have a total bit width of 32 bits or less, a perfect hash function can 
be constructed by concatenating the data bytes, which avoids the 
need for collision detection. The result is then run through a 
reversible mixer with good avalanche properties to make the bits 
more amenable for hash table lookups.  

If the total number of bits being hashed is 16 or less, then an even 
simpler system of radix hashing may be used [2].  The bytes are 

concatenated with no mixing and used to index a 64K translation 
table. 

Finally, if there is only one integer join column that is both dense 
and ordered ascending in the inner table, then the mapping from 
hash function to inner row id is essentially an identity (or at worst 
an affine transformation.)  In such a Fetch join [2], no translation 
table indirection is required, which not only improves 
performance through reducing (or eliminating) computation but 
also avoids consuming valuable cache resources to contain the 
translation table. 

4.4.3 Lookup 
Given the constraints of the hashing system, it is desirable to 
reduce the width of the join columns in a filter or lookup table as 
much as possible.  The simplest reduction would be to use the fact 
that each pair of join columns shares a domain.  When the column 
is compressed (as is always the case for strings) the inner join 
column’s dictionary is a subset of the outer join column’s and we 
can replace the inner column with a copy that uses the outer 
column’s dictionary and tokens instead of its own.  This allows 
the hash algorithms to use tokens instead of the larger string 
values that they represent, which in turn can enable the system to 
use a more efficient hash algorithm for the join. 

To take advantage of this optimization, the query compiler needs 
to be aware of the semantics of the join. TQL allows the direct 
expression of such functions by defining the lookup pseudo-
function.  Lookup takes a table, a list of column bindings to define 
the arguments and the name of a result column to produce as 
output.  An optional “else” value can also be specified in the case 
of no match. 
A special operator that is derived from the Join operator 
implements Lookup.  It post-processes the construction of the 
inner table by attempting to rebuild the inner join columns to 
match the tokenization of the outer join columns.  If it fails, it 
simply leaves the column alone for the default join hashing to 
handle. 

4.5 Run Length Encoding 
Unlike many column stores [7] that employ multiple forms of 
compression, the Tableau Data Engine does not attempt to operate 
on all these forms of compression.  Instead of trying to operate on 
a range of compressed data formats (run-length-encoding, delta 
etc.), we have elected for simplicity to operate on the dictionary 
directly in the common case where a single column is involved in 
a computation. Further compression can then be applied to 
dictionary tokens at the stream level, which avoids forcing the 
query compiler to reason about the locality inherent in many other 
compression schemes.  The case where two different compressed 
columns are used in the same expression was not optimized 
because unless the columns are correlated in some way that is 
reflected in their respective compression techniques, it did not 
seem that there was any benefit to doing so. 

There is still a benefit, however, in lightweight compression for 
the purposes of reducing disk I/O, especially on the wide range of 
systems that are the targeted operating environment.  Accordingly, 
the TDE will also attempt to run-length encode the data streams 
for columns that have been sorted or have very low cardinality.  In 
addition to reducing disk I/O this form of compression offers the 
possibility of skipping large blocks of rows during scan.  This 
optimization will be the subject of future work.   



This form of decompression is implemented at the stream level 
rather than at the compiler level.  A column seeks to the next 
block of rows in its data value stream and the stream 
decompresses the data into an internal buffer.  In this sense the 
system resembles the disk compression utilities popular in the late 
1990s, which would compress data at the driver level. 

5. QUERY OPTIMIZATION 
Tableau is compatible with a wide spectrum of data sources, 
including text files, Excel, popular DBMSs, OLAP systems and 
the TDE server introduced in this paper. In order to generate more 
efficient queries, the initial optimization happens on the Tableau 
side of the wire. 
The extent of Tableau optimizations is restricted by the data 
source input language, which in most important cases is 
declarative, e.g. SQL or MDX. Further more sophisticated 
optimization and target query processors perform actual plan 
generation. 

Building on the optimization techniques used in the MonetDB 
database [3], we partitioned optimization of the query into what 
are called tactical and strategic optimizations.  Strategic 
optimizations are query plan level choices such as operator 
reordering. Tactical optimizations are performance choices made 
during execution based on the actual data flowing through the 
system at a point in time, such as which hash function to use. 

The TDE uses this partitioning to reduce the space of query 
optimization options.  In fact, one ought to be able to compute 
most things ahead of time, but in practice, we have found that it 
simplifies system design by having orthogonal concerns 
implemented separately. 

5.1 Tableau-side Optimization 
Certain optimization techniques can be applied across many 
supported engines. Tableau uses an abstract query representation 
based on concepts from relational algebra to perform relevant 
transformations. A resulting tree is further translated to an engine-
specific query. 

 
Figure 2. Query structure for the visualization from Fig. 1. 

Figure 2 shows a relational representation of the query considered 
in Sect. 2. This simple scenario involves scanning the table T, 
computing additional columns and aggregating measures. Slow 
computations, such as string operations or complex case-
statements, may significantly affect query performance. A 
potential improvement can be gained by pre-computing the 
expression values for all feasible combinations of referenced 
columns. The result is further stored in a separate lookup table 
joined with the main table. In our case, one can evaluate 

region_func(State) for all possible states and later join with T on 
State. 

Although queries are created ad hoc, calculated fields are defined 
by users and are likely to be referenced in many queries. 
Expensive computations may be evaluated once and materialized 
as a new column of a fact table. It is a potentially costly DDL 
operation of a run time of the order of the size of the fact table. 
Therefore, materialization of user-defined computations is not 
performed automatically but can be triggered by the user as 
extract optimization. 

Note that optimizations can be applied as long as a target database 
supports necessary features, e.g. creation of temporary tables. 

5.2 Strategic Optimization 
The TDE is equipped with a query rewriter responsible for 
transforming a parsed query tree into a form supported by the 
execution module. Besides optimizations, it implements complex 
operations, such as quantile or count distinct computation, by 
means of more basic operators, so that compilation of a final 
execution plan is straightforward. 
We use a relational data model, where an extract is represented by 
a set of tables. Facts and dimensions are stored in a single table in 
a denormalized form. In addition, Tableau may create other 
auxiliary tables, e.g. to look up computations results. 
TQL queries generated by Tableau process the data from the fact 
table performing desirable computations, filtering, aggregations, 
etc. Compressed dimension columns are treated as their values 
were present in the table and implicitly handled during plan 
generation. In fact, tokens may be sufficient for certain operator, 
such as grouping or sorting. In our example, the values of Product 
are not necessary to perform the aggregation and they need to be 
retrieved only at the end to prepare the final result set. Otherwise, 
decompression is implemented by introducing foreign key joins to 
appropriate internal dictionary tables. 

 
Figure 3. Query structure for the visualization from Fig. 1 
after expanding compressed columns to joins and pushing 

down calculations. 
Significant efficiency gain can be obtained by appropriate 
placement of filters and computations in a plan. The way 
compressed dimensions are expanded into joins allowed us to 
leverage classic methods known from the literature [10]. 

In fact, our reordering heuristics are designed for the most 
common case of left-deep trees with a fact table as the left-most 



leaf. We assume that a subtree referencing a fact table always has 
higher cardinality than subtrees referencing only dictionary tables. 
Joins are assumed to have the same fractional selectivity. 
Similarly, selections are believed to have the same fractional 
selectivity and are more selective than joins. Finally, all 
computations have the same positive costs. 
As a consequence, selections are pushed down as close to relevant 
tables as possible. Computations involving a single compressed 
column are performed on corresponding dictionary tables. 
Otherwise, they are pulled-up in the tree as far as possible, since 
subsequent joins are most likely to reduce cardinality. 

Figure 3 shows the original query after expanding compressed 
columns Time and State to joins that fetch their actual values. 
These columns are involved the calculations defining new 
columns Year and Region. In fact, these calculations could be 
pushed down to domain tables DTime and DState. 

Some columns are required only up to some point in a tree, e.g. 
their values are used for data partitioning or computation. Since 
carrying them over to the root would defeat the purpose of 
column-oriented processing, appropriate restriction projections are 
placed in the plan. In the considered example, one needs only the 
Product, Sales, Profit, Time, State columns from the fact table. 
Also, the Time and State token columns can be restricted right 
above a respective join. 

5.3 Tactical Optimization 
When a query operator is invoked for the first time, it needs to 
settle the metadata description and set up the data storage for its 
output columns before it can begin operation.  This process is 
called column finalization.  During this process the complete 
metadata of the column is defined, data columns are allocated and 
any dictionaries that can be shared are identified. 
For leaf tables, the process is straightforward:  the data streams for 
each column are read from the data store and attached to the 
columns of the operator.   
Operators that compute values, such as Project and Aggregate, 
need to perform late binding of the functions used in their 
computation expression trees based on the newly available type 
information.  For constant expressions, this may include 
translating the constant into the dictionary of the domain that the 
constant is associated with as described in section 3.3 – a decision 
that cannot be made without having the actual dictionary 
involved.   

Operators that can work with compressed data need to know if the 
tokens have needed properties like being distinct or comparable.  
These properties may depend on the actual results of calculations, 
which cannot be known at plan generation time.  For example, 
strings generated by left(limeitem.l_comment, 3) may have low 
enough cardinality that the column’s heap can tell that the strings 
are all unique (e.g. its internal hash table did not overflow.)  

Join and Aggregate nodes also need to decide upon a grouping 
strategy. If the join fields or aggregation list are not empty, then 
various hashing strategies need to be considered based on detailed 
consideration of the grouping column metadata.  In the case of the 
Lookup operator, this choice cannot be made until runtime 
because the coercion of compressed column data to a single 
dictionary representation is not known until run time when all the 
data has been loaded and computed. 

Order and TopN nodes have to perform late binding of their sort 
functions based on the data type of the column, which may 
depend on the actual data involved.  For example, a string column 
may be computed by an expression and coincidentally produce 
ordered dictionary tokens (not because the data is sorted, but 
because new values are inserted into the dictionary in order.) This 
column can then be sorted on its tokens rather than on its string 
values. 

6. VISUALIZATION SUPPORT 
6.1 Domain Metadata 
The TQL language, allowing Tableau to query directly for column 
domains, supports the domain table abstraction described earlier.  
In addition, the metadata for each column may contain the 
cardinality of the domain and other useful metadata such as the 
minimum and maximum values.  These latter can be used by the 
user interface to choose an appropriate level of detail for a date 
hierarchy. 

6.2 Progress and Cancel 
Despite our best efforts, there will be queries that require 
noticeable processing time.  In such cases, the user experience 
benefits from feedback on how a query is progressing and the 
ability to cancel long running queries.  Cancellation is especially 
important in an interactive exploratory environment such as 
Tableau where a user may be dragging fields out in an attempt to 
build a visualization and may not be interested in intermediate 
results produced by an incomplete VizQL specification. 

The TDE provides sideband progress reporting and cancel control 
for all queries.  Progress is reported using the driver node 
estimator system described in [9] and includes upper and lower 
bound estimates.  Cancel requests are handled by a separate thread 
and passed on to all Scan nodes and any other nodes that perform 
large amounts of internal processing (e.g. Order). 

7. EXPERIMENTAL EVALUATION 
The primary reason for building a new data engine was 
inefficiency of row-oriented databases against an analytic 
workload. We demonstrate that the TDE gives a significant 
performance improvement over the previously used Firebird 
database and comparable performance to MonetDB [3].  
All experiments were conducted on a single DELL machine with 
Intel Xeon E5520 with two 2.27GHz physical cores, 12Gb of 
RAM and running 64-bit Windows 7. 

7.1 TPC-H Results 
Figure 3 shows a performance comparison of the TDE against 
Firebird and MonetDB conducted against a subset of the TPC-H 
benchmark [6]. The test database was generated at SF=1 for all 
three servers using vendor-supplied translations of the TPC-H 
queries and build scripts.  Each test was run 5 times in the same 
hardware with the data set warm in the disk cache and the results 
were averaged. Output was redirected to a file for all three 
databases. 



 
Figure 3. Execution times for selected queries from TPC-H for 

Firebird, MonetDB and the TDE. 
 
Replacing Firebird with the TDE brings improvement of 1-3 
orders of magnitude. At the same time, due to generally similar 
design principles, the TDE shows performance comparable with 
MonetDB. 
Extract files created for Firebird, MonetDB and the TDE had sizes 
of 1.9 Gb, 1.06Gb and 641Mb respectively. The Firebird page size 
was set to 8Kb. The significant differences result from page 
allocation strategies in Firebird and compression in the TDE. 

7.2 Flights Results 
Tableau generates specific classes of queries. We prepared an in-
house benchmark, called Flights, that represents a data exploration 
session. The data set has a 70M row fact table containing 10 years 
of FAA on-time flight statistics for the US. 

 
Figure 4. Execution times for selected queries from TPC-H for 

Firebird and the TDE. 
 

Figure 4 shows performance comparison for Firebird and the TDE 
for a 0.5M row fact table. This significant data set reduction was 
required to let Firebird successfully process the queries. For 
brevity, we partitioned the testing workload into six categories 
and reported sums of individual query times. Again we warmed 
the caches and averaged the results over 5 runs. 
We observe a similar performance impact of 1-2 orders of 
magnitude and impact of compression on database sizes. Extract 
files for Firebird and the TDE had 221Mb and 45Mb, 
respectively. 

7.3 Integration Testing 
The TDE was developed at Tableau over the course of 18 months 
and first deployed commercially in the fall of 2010.  In addition to 
the benchmark tests just described, the TDE has been through a 
full release test cycle including internal testing, automated test 
suites and an external beta testing using real customer data.  The 
Tableau automated test suites include about 1000 correctness tests 
that are applied on a daily basis to all supported versions of the 
databases supported by the product including the TDE. 

8. CONCLUSIONS 
In this paper, we introduced the Tableau Data Engine, a 
specialized column store modeled after MonetDB. The new 
engine is an integral part of the Tableau 6.0 release. It provides 
significantly faster data processing for Tableau Desktop. In 
addition, it is a default extract engine for Tableau Server and, in 
our opinion, it remains a convenient alternative for a wide group 
of customers who do not own a dedicated analytic database 
server. 

The TDE meets our functional and non-functional requirements 
for an extract engine and brings 1-3 orders of magnitude 
improvement over the previously used Firebird database. This 
enables true interactivity in exploration of large data sets with 
hundreds of millions of rows. 

Importantly, developing an own analytic data engine removed a 
strong dependency of our product on a third party database. We 
control both ends of the wire, therefore, we can relatively easily 
introduce new analytic functionality to Tableau with an efficient 
implementation in the TDE. Also, particular performance issues 
can be addressed directly in the engine. 

Compression plays an important role in efficient processing of 
column-oriented data. In the future we would like to support some 
other forms of stream compression such as delta encoding (for 
columns with local ordering) and bit field encoding (for columns 
with very small member counts.) 

Furthermore, we intend to collect more statistical information on 
data and employ some traditional optimization strategies during 
plan compilation, such as heuristic join reordering or incremental 
execution.  

As far as the throughput is concerned, the TDE can run multiple 
independent queries at the same time allocating them to separate 
processor cores. While a sufficient strategy for the Tableau 
Server, the desktop application suffers from highly inefficient 
usage of system resources for serially submitted queries. We plan 
to address cases of slow computations and aggregations with 
intra-query parallelism. 



Last but not least, the TDE server may require extensions with 
respect to resource governing, administering and monitoring. 
Also, we plan to perform extensive scalability and availability 
study. 
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