
 

Graphical Histories for Visualization: Supporting Analysis, 
Communication, and Evaluation 

Jeffrey Heer, Jock D. Mackinlay, Chris Stolte, and Maneesh Agrawala 

Abstract—Interactive history tools, ranging from basic undo and redo to branching timelines of user actions, facilitate iterative 
forms of interaction. In this paper, we investigate the design of history mechanisms for information visualization. We present a 
design space analysis of both architectural and interface issues, identifying design decisions and associated trade-offs. Based on 
this analysis, we contribute a design study of graphical history tools for Tableau, a database visualization system. These tools 
record and visualize interaction histories, support data analysis and communication of findings, and contribute novel mechanisms 
for presenting, managing, and exporting histories. Furthermore, we have analyzed aggregated collections of history sessions to 
evaluate Tableau usage. We describe additional tools for analyzing users’ history logs and how they have been applied to study 
usage patterns in Tableau. 

Index Terms—Visualization, history, undo, analysis, presentation, evaluation.

 

1 INTRODUCTION

When investigating data with visualizations, users regularly traverse 
the space of views in an iterative fashion. Exploratory analysis may 
result in a number of hypotheses, leading to multiple rounds of 
question-answering. Analysts can generate unexpected questions that 
may be investigated immediately or revisited later. After conducting 
analysis, users may need to review, summarize, and communicate 
their findings, often in the form of reports or presentations. 

By surfacing users’ interaction history, we can facilitate analysis 
and communication. History mechanisms such as undo or “time-
travel” enable revisitation in a variety of applications (e.g., [1-4, 6, 8, 
12-14, 16-20, 22, 24-26]). As noted by Shneiderman [27], such 
history tools can play an important part in the visualization process, 
supporting iterative analysis by enabling users to review, retrieve, 
and revisit visualization states. Moreover, history tools can help 
users create reports or presentations, facilitating communication. 

Interaction histories can also benefit research and development. 
History log analysis of both individual and aggregate usage can 
identify common usage patterns and thereby assist usability 
evaluation. Researchers can also study interaction patterns to better 
understand and model analysts’ sense-making process [13]. 

However, the best history mechanisms for achieving these 
benefits are not always clear. Designers of visualization tools must 
consider a large design space of potential features and system 
architectures when designing history tools. These design decisions 
entail trade-offs in the types of history representations and operations 
that can be provided. 

For example, while it is easy to log low-level input events such as 
key presses and mouse clicks [25], users can more readily take 
advantage of semantically meaningful models. Many operations 
might be performed on an interaction history, including editing, 
aggregation, bookmarking, annotation, and search. Architecture and 
interface design need to account for such operations. Furthermore, 

interaction histories can grow large quickly, and thus history 
mechanisms must scale accordingly. Scale concerns arise at the data 
level, where histories can benefit from compact description, and at 
the visual level, where history interfaces should be perceptually 
effective and space efficient. 

In this paper, we explore the design of graphical history tools to 
support visual analysis. We first present the results of a design space 
analysis, enumerating design decisions for the software architecture 
and graphical interface of history systems. Our analysis is intended 
to provide an overview of important design considerations and 
thereby help practitioners incorporate graphical history tools into 
their own visualization applications. 

Inspired by our design space analysis, we then present the design 
and implementation of graphical history tools to support analysis, 
communication, and evaluation in Tableau, a database visualization 
system [21, 28]. Although our primary contribution is a design study 
of history tools for visual analysis, our graphical history prototype 
also contributes new techniques for improving scalability, searching 
histories for relevant views, and generating presentations from 
history subsets. Furthermore, we have used our history model to 
support evaluation by analyzing recorded usage data. We describe 
our visual history analysis tools and how we have applied them to 
improve Tableau’s user interface. We also calculate estimates of the 
impact of our history management techniques, finding that our 
techniques can reduce visualized history state spaces by over 60%. 

2 DESIGN SPACE ANALYSIS OF INTERACTION HISTORIES 
Architects of interactive history systems face a number of design 
decisions impacting the representations and operations available to 
users. To design our history tools, we first conducted a design space 
analysis to enumerate these decisions. We surveyed prior work 
spanning general history mechanisms [2, 8, 9, 23, 29] and interface 
designs in the areas of graphical design tools [8, 16, 17, 22, 26], web 
browsing [1, 5, 12, 14, 15, 30], and visualization and simulation [3, 
4, 6, 10, 11, 13, 18, 19, 20, 24, 25]. In this section, we outline the 
design space of history tools using examples from this body of work. 

2.1 History Models 

2.1.1 Actions vs. States 
We model interaction histories as movement through a graph of 
application states. Nodes in the graph represent discrete states of the 
application and edges represent the actions that transform one state 
into another. A state is defined by the settings of interface widgets 
and the application content (e.g., document, data, etc). At the 

 
• Jeffrey Heer is with the University of California at Berkeley, E-Mail: 

jheer@cs.berkeley.edu. 
• Jock D. Mackinlay is with Tableau Software, Inc. E-Mail: 

jmackinlay@tableausoftware.com. 
• Chris Stolte is with Tableau Software, Inc. E-Mail: 

cstolte@tableausoftware.com. 
• Maneesh Agrawala is with the University of California at Berkeley, E-

Mail: maneesh@cs.berkeley.edu. 
 
Manuscript received 31 March 2008; accepted 1 August 2008; posted online  
19 October 2008; mailed on 13 October 2008. 
For information on obtaining reprints of this article, please send e-mail to: 
tvcg@computer.org. 



architectural level, developers must decide if their history system 
will maintain sequences of states, actions, or both, and how such 
history items—discrete representations of an action or historical 
state—will be organized. 

Action logging is often referred to as the command object model 
[9]. Command objects encapsulate an interface action, typically 
providing both do and undo methods that apply the operation or its 
inverse. To traverse the history, a sequence of commands can either 
be done or undone in order. This approach requires that suitable 
inverse (undo) operations are defined for all actions. 

An alternative is to log the individual states of the application. 
Traversing the history then involves restoring the application state to 
a stored configuration, removing the need to sequentially apply undo 
actions. However, the drawback of this approach is that the state 
representation can become memory inefficient. 

The action and state approaches are not mutually exclusive and 
hybrid approaches are possible. For example, an action-based history 
mechanism might periodically cache the state to reduce the number 
of operations required by history traversal. A state model might also 
log metadata about the operations that were applied between states. 
For example, the WebQuilt web logging system [30] stores URLs 
(states) but also notes the index of the link clicked in the previous 
page, modelling web browsing at the level of individual links. 

In surveying the literature, we have found that action logging is 
prevalent within graphic design tools, where large content models 
can make state models memory-inefficient. In contrast, state logging 
(as URLs) is common for web browsing histories. Visualization 
systems have utilized both approaches. As discussed later, this 
choice affects the range of history operations that users may perform, 
particularly with respect to editing and selective undo.  

A common approach in visualization is to describe the 
visualization in terms of a chain of visual encoding operators that are 
applied to the data to generate the visualization state. Jankun-Kelly et 
al. [13] introduce a general model for visualization state as a set of 
parameters, and actions as transformations of these parameters. Heer 
et al. [11] note that identical visualization views can be reached 
through different parameter sets. In particular, different filtering 
criteria may yield the same result set. Thus, accurate analysis of 
revisitation may require that state models include an index of the 
underlying content in addition to parameter settings. 

One modelling issue specific to visualization is its data-driven 
nature: application states are dependent on the backing data set. If a 
visualized data set includes streaming or editable data, a faithful 
history system must also take the changes to the data into account. It 
may be that users want historical states to update with changes to the 
data, thereby keeping their analysis current (a form of selective redo, 
discussed later). If not, data management systems that support 
versioning or provenance may be used; however, such systems may 
entail an unacceptable storage cost. As a visualization view might 
depend only on a subset or aggregate of the backing data, in many 
cases creating an extract of the data for a “snapshot” of the 
visualization state may be a feasible solution. 

2.1.2 History Organization 
History items may be organized in various ways. The stack model 
places items on both undo and redo stacks. This approach does not 
support branching histories, as the redo stack is cleared when new 
actions occur. A timeline model stores items in the linear order in 
which they occur. Branching models [29] store items in a tree 
structure, and actions performed after undo operations form a new 
branch of the tree. Additionally, history models may perform content 
indexing and organize history items by other metadata properties. 

2.1.3 Hierarchical Command Objects 
Systems may represent history items at multiple granularities. For 
example, one can group a sequence of low-level actions into a 
higher-level action through hierarchical command objects [23]. 
Grouped actions may provide a better semantic description of a 
user’s intention. To construct groupings, developers can craft 

“chunking” rules [17] based on the type and timing of actions. 
However, groupings also raise challenges for representing and 
navigating hierarchical history items in a user-friendly manner. 

2.1.4 Local and Global History 
One can organize history items by the objects on which actions are 
performed. For example, a spreadsheet may maintain separate 
histories per worksheet, while a graphics editor could maintain local 
histories for objects in the scene. Edwards et al. [8] propose a 
transactional model to support local histories in which actions may 
have global side-effects. In all cases, applications must support the 
ability to merge local histories into a global timeline. 

2.2 Visual Representations of History 

2.2.1 Visual Presentation 
One simple presentation of a history item is a text description of the 
state or action, commonly found as menu text for undo and redo 
actions. Text descriptions should be easy to understand, and may 
require subtle design decisions. For example, web history systems 
have carefully considered different abbreviation approaches for web 
page titles and URLs [1, 15]. While text may be helpful for 
describing actions performed in a visualization, they are less well 
suited for the graphical nature of a visualization state. 

Graphical representations of histories are also common. Some 
depictions involve abstract properties: for example, the color of a 
history item glyph might represent the type of action performed. 
Most common, however, are thumbnail images used to aid users’ 
recognition of the previous interface state—an approach particularly 
relevant for visualizations [20]. Multiple studies have found benefits 
for thumbnails in web browsing [15, 31], with one study suggesting 
that a thumbnail size of about 120 pixels square is enough to enable 
80% accurate recognition of a visited web site [15]. Other projects 
[16, 17, 30] enhance thumbnails to improve comprehension by 
highlighting changes and applying strategic callouts and cropping. 

2.2.2 Spatial Organization 
Depending on the underlying history model, a number of visual 
organizations of history items are possible. A common approach is a 
linear sequence of items, like a comic strip [17, 22]. Such an 
organization facilitates visual scanning of the history, and typically 
enables navigation by clicking an entry. A similar approach is to 
provide a continuous timeline [6, 24, 26], which shows the time 
duration between actions and is navigated using a slider control.  

Branching histories typically use a node-link tree diagram to 
show history branches. Prior work has adapted both the sequence [1, 
3, 4, 12, 18] and timeline [6] metaphors into branching tree displays. 
Klemmer et al. [16] present an inline branching design that places 
collapsible history branches within a linear comic strip. 

Other representations are also possible. Behavior graphs [5] are 
an alternative representation of branching histories that we will 
discuss in section 4.1. Another approach is to use a content-centric 
representation using variables other than time. WebQuilt [30] 
visualizes aggregate surfing behavior in a network diagram showing 
traversed links between web page thumbnails. Ma’s Image Graphs 
[20] display history states as thumbnails connected in a graph layout 
and depict actions between states using iconic edge representations. 

Fig. 1. A Graphical History Interface. Thumbnails show previous 
visualization states and labels describe the actions performed. 



2.3 Operations on History 
Designers need to also consider the set of operations that their 
graphical history tools should support. 

2.3.1 Navigation 
For end-users, the fundamental operation of history systems is 
navigation to states in the history. Undo and redo (or back and 
forward) actions are common navigation operations found in many 
applications. Another approach is for users to click the thumbnail of 
a history state to directly return to that state. Some systems use a 
“time travel” metaphor with a timeline slider. For branching 
histories, a graphical history can help users differentiate branches. 
Content-based navigation is also possible, such as navigating to the 
point in time that an object was last edited [26]. 

2.3.2 Editable Histories 
Other operations may involve editing the history, as users may wish 
to revise the history or replay past actions. In state-based history 
models, deleting a past state from the model doesn’t affect any of the 
other states. In action-based models, editing has side-effects. 
Deleting a past action involves rolling back the history prior to the 
selected action and re-applying the subsequent actions. However, 
some subsequent actions may be dependent on a side-effect of the 
deleted action, so rules to ensure integrity are needed. 

While history editing is more complicated for action-based 
models, it enables unique operations. Selective undo [2] allows the 
replay of past actions after revising the history. Similarly, selective 
redo [6, 17, 18] allows chains of actions to be copied and reused. 
Kurlander and Feiner [17] use this mechanism to support macro 
creation. For example, a sequence of visualization transforms might 
be re-applied to a new subset of data [6, 18]. 

2.3.3 Metadata and Annotation 
Users may also wish to add metadata and annotations to history 
items. Bookmarking [11, 14], keyword tagging, text comments [10, 
11, 16, 24], and audio annotations [10] are all potentially useful. 
Usage scenarios for visualization include analysts creating 
bookmarks for important findings [14], leaving text notes to describe 
a view to a collaborator [16], and recording audio annotations to aid 
“think-aloud” evaluation protocols [10]. 

2.3.4 Search and Filter 
As histories grow large, users may need means beyond visual search 
and scrolling to find past states of interest. Search tools are one 
solution. Metadata such as time, action type, bookmarks, and 
annotations are all potential search domains. Although filtering tools 
have been provided for web design histories [16], most visualization 
histories [3, 6, 10, 18, 19, 20, 25] lack search capabilities. A notable 
exception is VisTrails [4], which enables querying-by-example to 
find related visual exploration sessions across multiple users. 

2.3.5 Export 
To enable communication, it is often important to export and share 
parts of a history. For web-based systems, one can distribute a URL 
[4, 11], but desktop applications are typically more cumbersome. 
Klemmer et al. [16] print out thumbnails and text annotations as 
paper reports. However, nearly all history tools are lacking more 
nuanced support for exporting histories into external media. 

2.4 Summary 
In this section, we have categorized a range of design decisions that 
arise when crafting an interactive history system. These decisions 
include how to represent and organize historical data (e.g., states, 
actions, or both), how to visually present histories (e.g., linear or 
branching layout), and what interactive operations the history should 
support (e.g., navigation, editing, search, and export). Still, the task 
remains of deciding which route to take when designing a system. 
The features and context of use of the underlying visual analysis tool 

can further inform the design process for history tools. To illustrate 
this process, we now apply our design space analysis to develop an 
interactive history system in the context of Tableau, a database 
visualization system. 

3 GRAPHICAL HISTORY IN TABLEAU: A CASE STUDY 
Based on the considerations raised by our design space analysis, we 
designed a history interface supporting analysis and communication 
in Tableau, a commercial visual analysis system. We now describe 
Tableau and present the design of our graphical history tools. 

3.1 The Tableau Visual Analysis System 
Tableau is a commercial system, based on Polaris [28], for 
visualizing the contents of databases. As shown in Fig. 2, the 
Tableau interface includes a list of available database fields and a 
workspace in which users can select fields and drag them onto 
shelves corresponding to visual encodings such as position, color, 
shape, and size. Tableau is based on a specification language called 
VizQL. VizQL statements are generated from the contents of the 
interface shelves and they specify both the data that should be 
visualized (as database query statements) and how the visualization 
should appear (as visual specification statements). This formalism 
supports a range of visualizations, including bar charts, time series, 
scatter plots, and heat maps, as well as analytic operations such as 
filtering, sorting, and drill-down [28]. 

Akin to Microsoft Excel, Tableau supports multiple worksheets. 
Each state of a Tableau worksheet is described by a VizQL 
statement. Tableau’s original history model used a state-based 
logging approach, with each worksheet organizing VizQL statements 
on undo and redo stacks. This model does not support branching 
histories, except through duplication of worksheets. Undo and redo 
buttons provide some support for history navigation, but the model 
does not provide text descriptions for undo/redo actions. In the 
following sub-sections, we describe a redesigned model to better 
support analysis and communication. 

3.2 A Re-designed History Model 
In crafting a history model for Tableau, we wanted to maintain the 
existing, clean approach of declaratively modeling state as VizQL 
statements. However, VizQL statements alone are not enough, as we 
also wanted to record historical data that enables us to provide high-
level descriptions of user actions, both to provide a more informative 
user interface and to support usage evaluation. As a result, our 
improved history model uses a hybrid state/action approach as 
identified in our design space analysis. 

History items in Tableau still record states as VizQL statements, 
but we also introduced aspects of action-based logging. We created a 
classification scheme for each action supported by the interface. 
When an action occurs, its unique identifier and any arguments are 
passed to the history system, which stores the command description 
and the current VizQL statement as a history item. Having a record 
of actions allows us to create text descriptions, improving the cues 
for undo and redo within the interface. Our classification scheme 
groups actions into five top-level categories: shelf (add, remove, 
replace), data (bin, derive field), analysis (filter, sort), worksheet 
(add, delete, duplicate), and formatting (resize, style) commands. 

In addition to basic history items, our model supports composites 
of grouped sub-items, similar to hierarchical command objects [23]. 
All history items support data fields such as a timestamp, bookmark 
status, and text annotations. We organize items in a branching 
structure for each worksheet, replacing the prior stack model. When 
a user visits a past state and performs an action, a new analysis 
branch is added to the model (see Fig. 5). Our history abstraction 
also supports merged histories, implemented as a composite history 
view of worksheet histories. By default, the state model does not 
include the database contents and changes to the database will cause 
historical states to update to reflect the current data. However, users 
can create data extracts if desired, ensuring a static data set. 



3.3 
We des
graphic
visualiz
history 
history 
for effe

As a result, the history model is depicted using a sequential, 
comic-strip display (Fig. 1, Fig. 2 bottom), including a thumbnail 
image and text description for displayed history items. As tree 
diagrams can require a lot of screen space, we present branching 
histories inline: branch contents are listed sequentially, with sibling 
branches sorted by the timestamp of the first item. We position the 
history viewer along the bottom of the interface. Users can optionally 
hide the viewer to make more space for the visualization. Hovering 
the mouse pointer over a history item reveals a tooltip with details-
on-demand (Fig. 2). The tooltip lists the time the state was first 
visited in absolute and relative (“3 min ago”) time. The tooltip 
includes text annotations added to the item and a summary of visual 
encodings: which data fields are placed on which shelves. 

To maximize the usefulness of the history display, the interface 
provides four modes, accessible via a drop-down menu (Fig. 3): 
• Worksheets mode presents an overview of the current state of all 

Fig. 3. H
items ar
drop), c

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The Tableau Visual Analysis Tool, visualizing data collected from aggregated history usage logs. The panel on the left provides a list of 
database fields. Fields can be dragged onto visual encoding shelves in the workspace on the right to create visualizations. Multiple worksheets are 
supported, indicated by the named tabs underneath the visualization. The panel along the bottom shows an analysis history viewer, currently 
providing an overview of the current state of each worksheet. A tooltip provides details-on-demand for the selected history item. 
 
istory Interface. A drop-down menu determines which history 

e shown. History can be filtered by data fields (via drag-and-
hart type, and bookmarks (§3.5.2).  
Design of the Graphical History Interface 
igned our history representation with the understanding that 
al history should aid analysis in an unobtrusive fashion. The 
ation should serve as the primary focus of attention and the 
as an auxiliary display. We wanted to ensure that the graphical 
“pays for” its screen real estate, using only the space needed 
ctive presentation and navigation of history items.  

worksheets, with a thumbnail and name for each (Fig. 2). 
• Worksheet History mode presents the history of a worksheet. 

Thumbnails are captioned with action descriptions (Fig. 1, 6). 
• All Histories mode is similar to Worksheet History mode but 

depicts the merged global history across all worksheets. 
• Bookmarks mode shows all views that have been bookmarked. 

Captions include the source worksheet name and a timestamp. 



 
Fig. 4. Adjusting Thumbnail Contrast. The image on the left is an 
overview thumbnail generated by down-sampling that suffers from “wash 
out”. On the right, high-frequency elements such as gridlines have been 
removed and pixel values are adjusted such that the data color in the 
image matches the color encoding palette. 

3.3.1 Thumbnail Image Generation 
The history viewer provides thumbnails of visualization states to aid 
recognition. Thumbnail size introduces a trade-off between screen 
usage and recognizability. Based on the experimental results in [15], 
we chose 120 pixels square. As noted by our design space analysis, 
some graphics editors [16, 17] provide enhanced thumbnails that 
highlight differences between history states and perform selective 
cropping. As changes in Tableau regularly involve complete updates 
of the visualization, this approach did not seem appropriate. Views in 
Tableau often require scrolling, so we reasoned that a thumbnail that 
provides an overview of the display as well as historical data would 
be the most useful for facilitating analysis. 

To generate the overview images we render the visualization at 
its native resolution and then scale the resulting image. We place 
limits on the image buffer size, cropping the image as needed to 
constrain memory usage. We also avoid extreme aspect ratios by 
non-uniformly scaling the image when needed. In some cases, down- 
sampling a large overview can result in a “washed out” image. For 
large images, our thumbnail generation routine first modifies the 
visualization, removing high-frequency visual elements such as 
gridlines and element borders. In the resulting thumbnail, pixels with 
brightness over a threshold value are then scaled towards the nearest 
color in the color encoding palette (see Fig. 4). 

3.4 Navigating and Managing History 
By visualizing past analysis states, our graphical history display 
facilitates revisitation. Users can click a thumbnail to skip back to a 
prior state. If a user performs analysis operations while visiting a 
prior state, a new analysis branch is created and depicted in the 
graphical history. However, as these histories can quickly become 
unwieldy, we have implemented additional techniques to reduce the 
complexity of the display and filter unneeded views. Figure 5 depicts 
our model and how it is mapped into a visual display. 

3.4.1 Manual Editing 
We support manual editing so that users can delete unwanted states 
from the history. As we use state-based logging, deleted states are 
simply removed from their history branch and do not impose side 
effects on other history items. However, one caveat is that deletion 
can result in an incomplete timeline in Worksheet History mode, in 
which text descriptions of prior actions are provided. 

3.4.2 Chunking 
When a group of related actions are performed in sequence, they 
may be better represented as a single higher-level event. For 
example, in a word processor the keystrokes [c][h][u][n][k] might be 
represented as the word [chunk]. To support such chunking our 

system provides hierarchical history items. In the spirit of Kurlander 
and Feiner [17], we have hand-crafted a set of “chunking” rules to 
coalesce actions into a grouped history item. As new states are added 
to the history, the rules evaluate if the new state should be chunked 
with the previous state. A set of predicates expressing the chunking 
conditions are applied and if any evaluates to true (and no exception 
rules do) the new state is chunked with the previous state. 

We have implemented three chunking rules based on empirical 
usage data, along with some exception cases. In an analysis of user 
activity (sec. 4.3.2), we found that rapid sequences of formatting 
actions are common and could benefit from aggregation. 
Accordingly, we include a rule that chunks history items if the most 
recent state was the result of a formatting operation. Similarly, a 
quick succession of sort or filter actions (less than 30 sec. apart) 
likely indicate a multi-step configuration of the view and are 
chunked together. A rapid series shelf actions to build up (or take 
down) a view are also common, and so we chunk them when 
separated by less than 5 sec. We also support exception cases: large 
time durations—possibly indicating a break between sessions—
prevents any chunking, as does bookmarking or annotating a state.  

When our rules determine that two actions should be chunked, 
the thumbnail in the history view updates in-place and no new 
thumbnails are added to the view. Users can click in the history view 
to skip to a state prior to the chunked sequence. However, undo 
events will step back through each of the chunked actions 
individually. We believe that this interaction is less complicated than 
an interface providing explicit level-of-detail controls (e.g., [17]). 

3.4.3 Undo-as-Delete 
Undo actions may be the result of varied intentions. For example, an 
undo may be viewed as a navigation action, moving to a previous 
state with the intention of later rolling forward again. Alternatively, 
an undo may serve as a “delete” operation to recover from a mistake 
or an undesirable action. Similarly, Shipman and Hsieh [26] have 
argued that a quickly-made undo is probably a delete. In our effort to 
improve the scalability of graphical histories, we hypothesized that 
most uses of undo fall within the latter category, such that “undone” 
states are rarely revisited. As described in section 4.3.1, we 
empirically tested this idea, finding that undo actions were over 12 
times more common than redo actions. 

A
B C D E

H

F G

G Action
Undo
Goto (Skip)
Chunked

 
Fig. 5a. History Management. A user performs actions to go from state 
A to state E, performs two undo actions, and then skips back to state A. 
The user performs new actions to go to states F, G, and H. Chunking 
rules determine that states F and G should be coalesced. 

A B C G H
 

Fig. 5b. Visual Presentation of History Model. The states in Fig. 5a 
are presented in a linear sequence. States D and E are culled by undo-
as-delete (§3.4.3), and states F and G are coalesced due to chunking 
rules (§3.4.2). Branches (starting at states B and G) are listed inline. 



As a result, we developed a new history management technique 
we call undo-as-delete. As a user performs actions, new items are 
added to the graphical history. When a user clicks the back button to 
perform an undo, the last state is removed from the graphical history. 
The underlying model still maintains the state, and thus subsequent 
redo actions work as expected, with the history item returned to the 
graphical history. However, if the user never executes a redo, the 
undone analysis branch is discarded as in a stack-based organization. 

This approach enables unneeded history to be automatically 
culled, reducing the complexity of the history model. Branching 
histories can still be created by navigating to past states using the 
graphical history rather than the undo button. New actions will then 
result in a new branch without deleting the previous branch, thus 
preserving the analysis trail. Similarly, we automatically disable 
undo-as-delete if user interaction suggests a view is important. 
Bookmarking or annotating the current state exempts it and previous 
states on the same branch from deletion. In future research we plan 
to see if other indicators such as selections might prove desirable. 

3.4.4 History Navigation and Management Example 
Assume a user performs four actions in a row, as shown in Fig. 5, to 
move through states A B C D E. The result is a linear list of 
states. The user then undoes the previous two actions, moving back 
to state C. Our undo-as-delete rules automatically hide states D and 
E to reduce the complexity of the history. The user next explores an 
alternative analysis, first skipping back to state A by clicking its 
thumbnail in the graphical history view, and then performing new 
operations to move through states A F G H. When the user 
performs a new operation to go to state F, the undo-as-delete rules 
delete states D and E from the underlying model. Furthermore, when 
chunking rules determine that states F and G are similar, they are 
coalesced into the single entry G in the graphical display. As shown 
in Fig. 5b, the abbreviated branch G H is presented in sequence 
after branch B C, as sibling branches are sorted by the timestamp 
of the first entry in the branch. Similarly, if the user were to skip 
back to state B and perform new actions, the new branch would be 
placed in the list sequence directly after state C. 

3.5 Operating on History 
As discussed in our design space analysis, operations on history 
models can support sensemaking, search, and communication. 
Guided by these concerns, we have incorporated operations for 
affixing metadata to history states, dynamic querying of the history 
interface, and exporting histories to support sharing and presentation. 

3.5.1 Metadata: Bookmarks and Annotations 
By right-clicking an item, users are presented a context menu with 
which they can bookmark that state or add a text annotation (Fig. 6). 
Bookmarked views are then available in the Bookmarks mode of the 
history viewer. We have also considered adding a keyword tagging 
feature; this could be achieved by generalizing the bookmarking 
feature to include user-provided text labels. Text annotations are 
available in tooltips when the mouse hovers over an item (Fig. 3). 

3.5.2 Search and Filter 
Even with mechanisms for combating scale (sec. 3.4), histories can 
grow large. To help retrieve states of interest, we have introduced 
multiple search features (Fig. 6). We hypothesized that the type of 
visualization and the data fields used are salient aspects with which 
users might recall past states. Our history viewer supports filtering 
by data field by reusing the shelf metaphor for visual encodings. 
Users can simply drop a data field into the history filter shelf to limit 
the view to only those states that include the data field. A combo box 
allows users to further limit the history view to specific chart types 
(Fig. 7). These filtering operations are implemented by indexing the 
VizQL expressions stored with each history item. Users can also use 
a checkbox to limit the view to bookmarked history items. 

3.5.3 History Export and Sharing 
Finally, the history viewer provides export features to share and 
communicate findings. By clicking the “Export” button, users can 
view a menu of export options. Selected history states can be output 
as a saved Tableau file, allowing reloading of the states as a set of 
worksheets. Visualization views for selected history states can also 
be exported as either bitmap or vector images, and can be embedded 
in reports and presentations. By exporting Tableau visualizations in 
the Windows Metafile format, we can export a set of history states 
directly into PowerPoint slides as editable graphics. Analysts can 
automatically generate a slide deck from a set of selected history 
states and then annotate and edit exported visualizations in 
PowerPoint directly, as in Fig. 8. 

4 USING HISTORY TO EVALUATE VISUALIZATION DESIGN 
While the previous section focuses on graphical histories to support 
end-users, we also used histories to evaluate Tableau. By exporting 
and aggregating history logs, we can analyze user behavior. Here we 
discuss two analysis approaches and present some of our findings. 

Fig. 6. Filtered History showing all Bar Charts that include the data 
field “State”. A context menu provides operations on history items. 

 
Fig. 7. Filter by Chart Type. A selection menu highlights the chart 
types currently available in the interaction history. 

Fig. 8. Tableau visualization exported into PowerPoint. The history 
“Export” feature can be used to seed presentations with captioned, 
editable versions of Tableau visualizations. 



4.1 Analyzing Individual Usage with Behavior Graphs 
We have explored tools for analyzing individual usage sessions. One 
technique we have found useful is behavior graphs, which we model 
after Card et al.’s web behavior graphs [5]. Figure 9 shows a Tableau 
session visualized in a behavior graph. The graph is read in a snake-
like fashion. Actions are listed left-to-right except for Undo events, 
which are placed right-to-left on a new row. Subsequent actions 
resume left-to-right ordering on a new row. Vertical columns often 
contain the same state, making revisitation patterns clear. Color is 
used to indicate the types of actions performed by users. We have 
found these visualizations particularly useful for understanding 
patterns of branching and revisitation. 

4.2 Analyzing Aggregate Usage 
Analysis of aggregate usage is also important for determining usage 
patterns. For these and other history analysis tasks, we have used 
Tableau itself. First, we map each history log into a tabular format. 
Columns in these tables include timestamps, session ids, user ids, 
worksheet names, and actions performed. We store the resulting logs 
in a database which we then visualize in Tableau. Our taxonomy of 
commands (sec. 3.2) enables us to analyze command usage at 
multiple levels of granularity. Figure 2 shows Tableau being used to 
analyze the results of collected history logs: the primary display 
shows a histogram of command usage, while the graphical history 
display contains thumbnails for other analyses. An analysis of 
aggregated usage timelines is shown in Figure 10.  

4.3 Findings 
By analyzing user histories, we have made a number of findings to 
improve the design of Tableau’s interface and estimate the impact of 
our history management techniques. Here we describe four such 
examples. All usage data has been collected using a version of 
Tableau that includes our augmented history model, but without a 
graphical history interface. Usage data has been collected from 9 
Tableau employees and 27 customers willing to share their data. The 
data consists of 20,192 actions from 36 users, with a median of 350 
actions per user. Of these, 17,401 actions result in visual history 
items, as non-visual actions—such as opening a workbook or adding 
a derived field—are not included in the history interface. 

4.3.1 The Undo / Redo Ratio 
As we designed our history interface, we wanted information about 
how users used the existing undo and redo features. Looking at the 
usage logs, we found a total of 1,023 undo events and 82 redo 
events: undo was ~12.5 times more common than redo. Thus, most 
undone actions were never revisited, a finding that supports our 
undo-as-delete model for managing histories (sec. 3.4.3). 

4.3.2 The Prevalence of Formatting 
When analyzing command usage, we found that formatting actions, 
in which users adjust size and styling, accounted for 23.8% of all 
actions. Furthermore, they were performed in succession: 73.6% of 
all formatting actions were followed by an additional formatting 
action. In response, we crafted chunking rules (sec. 3.4.2) that 
coalesce all formatting events. As runs of consecutive resize events 
were common, subsequent development effort has also focused on 
improving Tableau’s automatic sizing routines.  

4.3.3 Use of Automated Presentation Tools 
Tableau’s automated presentation features (named “ShowMe”) [21] 
help users create more perceptually effective visualizations. We used 
history data to evaluate usage of these features by end-users. For 
example, we found a relatively low rate of mark type adjustment 
(560 mark changes among 8,248 shelf changes, for a 6.8% error 
rate), suggesting that the automatic selection of mark types was 
helpful. We also discovered that analysts used ShowMe features 
throughout usage sessions, suggesting that ShowMe commands had 
become a regular part of their visual analysis. 

4
F
p
t
c
r
a
n
d
b

5
I
s
T
f
h
r
f
b

F
s
t
a

 

F
t
i
w
 

M
U
C
C
C
T

T

ig. 9. Tableau Behavior Graphs depict user behavior in an analysis 
ession. Actions except undo and goto are placed sequentially in left-
o-right order. Undo actions (red) move right-to-left on a new row. Goto 
ctions (green) indicate navigation actions made in the history viewer. 

ig. 10. Aggregate Analysis of Tableau Usage. Each row shows the 
imeline for a different user. Shapes indicate command types; color 
ndicates worksheet usage. The color patterns indicate different 
orksheet usage and revisitation patterns across users. 

anagement Technique Items culled % culled
ndo-as-Delete 941 5.4%
hunking Formatting Actions 4,139 23.8%
hunking Filter & Sort Actions (∆t ≤ 30s) 1,432 8.2%
hunking Shelf Actions (∆t ≤ 5s) 4,228 24.3%
otal Items Culled (out of 17,401) 10,740 61.7%
.3.4 Estimated Impact of History Management Techniques  
inally, we have used collected history data to estimate the savings 
rovided by our chunking rules and undo-as-delete. Table 1 shows 
he number of states culled when applying our techniques to the 
ollected history data, showing that 61.7% of states are either 
emoved or chunked. Thus, we might expect presented histories to be 
s little as 40% the size they would be without our techniques. We 
ote, however, that this is an estimate from recorded data and as such 
oes not include manual deletion of history items or the effects of 
ookmarking and annotation. 

 SUMMARY AND FUTURE WORK 
n this paper, we have introduced a design space analysis of history 
ystems and used it to develop a prototype history interface for the 
ableau visualization system. Our analysis served as a useful guide 

or navigating the design decisions we faced while architecting 
istory interfaces to support visual analysis and communication. Our 
esulting history model integrates history management and undo/redo 
unctionality and provides an editable, graphical history that supports 
ranching analysis histories within worksheets and merged global 

able 1. Estimated Reductions from History Management. 



histories across worksheets. Our graphical history interface allows 
revisitation of previous views and is designed to complement 
Tableau’s visual analysis features by providing overview displays of 
visualization states both within and across worksheets. 

Our history tools introduce a suite of novel features. Our undo-as-
delete feature provides an empirically-motivated mechanism for 
helping improve the scalability of history displays, while preserving 
the capability for branching histories. Our search, filter, and 
annotation features enable users to retrieve previous visualization 
views based on the data fields involved, the type of chart, and 
bookmarked status. Selected history items can then be exported in 
multiple formats, including as presentations in which Tableau 
visualizations can be edited as native vector graphics. 

We have also applied our history model to support evaluation of 
the Tableau system. Our visual analysis of history logs has inspired 
multiple improvements to Tableau’s user interface and has informed 
the design of our graphical history tools. 

In future work, additional mechanisms for managing history may 
be of help. For example, our chunking rules are hand-crafted and 
highly specific to Tableau. Could a more general characterization of 
analytic tasks be applied to reuse design knowledge across visual 
analysis tools? Another potentially useful feature would be 
automated estimates of the saliency (or “importance”) of visited 
views. Such estimates could inform semantic zooming of history 
displays, chunking, and more automated forms of presentation 
generation. How should features such as timing, revisitation, and 
interaction influence such a model? 

Future work might further facilitate the creation of presentations 
from analysis histories. Our current approach enables manual 
selection of history views (in conjunction with search and filtering) 
and export of those views into external media. Other visual analysis 
tools [4, 7, 11] have explored explicit sharing and story-telling 
features. Novel tools that make use of recorded user histories for 
structuring presentations or story-telling may prove beneficial. 

Not only might exported histories communicate findings, they 
may help teach analysis by example. Along these lines, analysis 
histories may also contribute to our understanding of common 
analysis patterns. Jankun-Kelly et al. developed their parameter-set 
model of visualization state [13] with this goal in mind. History logs 
have proven useful for evaluating Tableau usage. A larger-scale 
analysis of history patterns may better characterize sense-making 
processes at an operational level and suggest enhanced interface 
designs for supporting visual analysis. 

ACKNOWLEDGEMENTS 
We thank our colleagues at Tableau Software, especially Andrew 
Beers, Matthew Eldridge, Iain Heath, and Pat Hanrahan. Maneesh 
Agrawala was partially supported by an Alfred P. Sloan Foundation 
fellowship and NSF grant CCF 0643552. 

REFERENCES 
[1] Ayers E.Z., Stasko J.T. Using Graphic History in Browsing the World 

Wide Web. Proc. World Wide Web, 1995. 
[2] Berlage T.A. Selective Undo Mechanism for Graphical User Interfaces 

based on Command Objects. ACM Transactions on Computer-Human 
Interaction, 1(3): 269-294, 1994. 

[3] Brodlie K., Brankin L., Poon A., Banecki G., Wright H., Gay A. 
GRASPARC: a problem solving environment integrating computation 
and visualization. Proc. IEEE Visualization: 102-109, 1993. 

[4] Callahan S.P., Freire J., Santos E., Scheidegger C.E., Silva C.T., Vo 
H.T. Managing the Evolution of Dataflows with VisTrails. Proc. IEEE 
Workshop on Workflow and Data Flow for Scientific Applications 
(SciFlow), 2006. 

[5] Card S.K., Pirolli P., Van Der Wege M., Morrison J.B., Reeder R.W., 
Schraedley P.K., Boshart J. Information Scent as a Driver of Web 
Behavior Graphs: Results of a Protocol Analysis Method for Web 
Usability. Proc. ACM CHI: 498-505, 2001. 

[6] Derthick M., Roth S.F. Enhancing Data Exploration with a Branching 
History of User Operations. Knowledge Based Systems, 14(1-2): 65-74, 
March 2001. 

[7] Eccles R., Kapler T., Harper R., Wright W. Stories in GeoTime. Proc. 
IEEE VAST: 19-26 2007. 

[8] Edwards W.K., Igarashi T., LaMarca A., Mynatt E.D. A Temporal 
Model for Multi-Level Undo and Redo. Proc. ACM UIST: 31-40, 2000. 

[9] Gamma E., Helm R., Johnson R., Vlissides J. Command, in Design 
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley: 233-242, 1995. 

[10] Goodell H., Chiang C., Kelleher C., Baumann A., Grinstein G. 
Collecting and Harnessing Rich Session Histories. Proc. Int. Conf. on 
Information Visualization: 117-123, 2006. 

[11] Heer J., Viégas F.B., Wattenberg M. Voyagers and Voyeurs: Supporting 
Asynchronous Collaborative Information Visualization. Proc. ACM 
CHI: 1029-1038, 2007. 

[12] Hightower R., Ring L., Helfman J., Bederson B., Hollan J.D. Graphical 
Multiscale Web Histories: A Study of PadPrints, Proc. ACM Hypertext 
and Hypermedia: 58-65, 1998. 

[13] Jankun-Kelly T.J., Ma K.-L., Gertz M. A Model and Framework for 
Visualization Exploration. IEEE Trans. on Visualization and Comp. 
Graphics, 13(2): 357-369, 2007. 

[14] Kaasten S., Greenberg S. Integrating Back, History and Bookmarks in 
Web Browsers. Extended Abstracts ACM CHI: 379-380, 2001. 

[15] Kaasten S., Greenberg S., Edwards C. How People Recognize 
Previously Seen Web Pages from Titles, URLs, and Thumbnails. Tech 
Report 2001-692-15, Department of Computer Science, University of 
Calgary, Alberta, Canada, 2001. 

[16] Klemmer S.R., Thomsen M., Phelps-Goodman E., Lee R., Landay J.A. 
Where Do Web Sites Come From? Capturing and Interacting with 
Design History. Proc. ACM CHI: 1-8, 2002. 

[17] Kurlander D., Feiner S. Editable Graphical Histories. Proc. IEEE 
Workshop on Visual Language: 127-134, 1988. 

[18] Kreuseler M., Nocke T., Schumann H. A History Mechanism for Visual 
Data Mining. Proc. IEEE InfoVis: 49-56, 2004. 

[19] Lee J.P., Grinstein G.G. An Architecture for Retaining and Analyzing 
Visual Explorations of Databases. Proc. IEEE Vis: 101-108, 1995. 

[20] Ma K.-L. Image Graphs: A Novel Interface for Visual Data Exploration. 
Proc. IEEE Visualization: 81-88, 1999. 

[21] Mackinlay J.D., Hanrahan P., Stolte C. Show Me: Automatic 
Presentation for Visual Analysis. IEEE Trans. on Visualization and 
Comp. Graphics, 13(6): 1137-1144, 2007. 

[22] Meng C., Yasue M., Imamiya A., Mao X. Visualizing Histories for 
Selective Undo and Redo. Proc. 3rd Asian Pacific Computer and Human 
Interaction: 459, 1998. 

[23] Myers B.A., Kosbie D.S. Reusable Hierarchical Command Objects. 
Proc. ACM CHI: 260-267, 1996. 

[24] Plaisant C., Rose A., Rubloff G., Salter R., Shneiderman B. The Design 
of History Mechanisms and their Use in Collaborative Educational 
Simulations. Proc. CSCL: 348-359, 1999. 

[25] Robinson A.C., Weaver C. Re-Visualization: Interactive Visualization 
of the Process of Visual Analysis. Proc. GIScience Workshop on Visual 
Analytics & Spatial Decision Support, 2006. 

[26] Shipman F.M., Hsieh H. Navigable History: A Reader's View of 
Writer's Time. The New Review of Hypermedia and Multimedia. 6(1): 
147-167, 2000. 

[27] Shneiderman, B. The Eyes Have It: A Task by Data Type Taxonomy 
for Information Visualizations. Proc. IEEE Visual Languages: 336-343, 
1996 

[28] Stolte C., Tang D., Hanrahan P. Polaris: A System for Query, Analysis, 
and Visualization of Multidimensional Relational Databases. IEEE 
Trans. on Visualization and Comp. Graphics, 8(1): 52-65, 2002. 

[29] Vitter J.S. US&R: A New Framework for Redoing. IEEE Software, 
1(4): 39-52, 1984. 

[30] Waterson S., Hong J.I., Sohn T., Heer J., Matthews T., Landay J.A. 
What Did They Do? Understanding Clickstreams with the WebQuilt 
Visualization System. Proc. AVI: 94-102, 2002. 

[31] Woodruff A., Faulring A., Rosenholtz R., Morrsion J., Pirolli P. Using 
Thumbnails to Search the Web. Proc. ACM CHI: 198-205, 2001 


