

PRESENTED BY

Matt Higgins, Tableau Software Robert Morton, Tableau Software

Tuning Tableau and Your Database for Great Performance

2011

TABLEAU

- Understand Tableau's Query Generation
- Identify Database Tuning Opportunities
- Author Optimized Visualizations

Agenda: Technical* Guidelines for

Derfermence

Understand Tableau's Query Generation

Motivation: "Direct connect & go!"

- No up-front, complex ETL
- Push the computation close to the data
- Leverage customer investment in fast databases

Topics covered:

- Filters
- Subqueries and temporary tables
- Custom SQL
- Discovery queries

reate New Connection	Select Saved Connection Ir
Microsoft Access	
Microsoft Excel	
OData	
Tableau Data Extrac	:t
Text File	
Windows Azure Mar	ketplace DataMarket
Aster Data nCluster	
Firebird	
Greenplum	
IBM DB2	
Microsoft Analysis S	ervices
Microsoft PowerPive	ot
Microsoft SQL Serve	r
MySQL	

Tableau Architecture

Understand Tableau's Query Generation

^{©2011} Tableau Software Inc. All rights reserved.

Query Generation: Filters

- Filters are very expressive
- Different performance characteristics
 - Range filter vs. itemized list
 - Context filter
 - Quick filters with "show relevant values"
 - Slicing filter

Filters: Range vs. Itemized List

Several ways to filter to the selection:

- Keep-only the selection
- Exclude the inverse selection
- Filter by range:

2011

TABLEAU

- Avg. FarePerMile < 1.0, and
- Avg. Distance < 5,000

Filters: Range vs. Itemized List

Performance:

- 10.0s: Unfiltered
- 19.5s: Keep-only the selection
- 15.9s: Exclude the inverse selection
- 9.5s: Filter by range

2011 TABLEAU

Filters: Range vs. Itemized List

Filter [Inclusions (rpcarrier, year)]	×
General Condition	
Select from List O Use All	=
Enter Text to Search	
▼ 5J, 1993	A
V 5J, 1994	
✓ 9E, 2008	
✓ 9E, 2009	
9E, 2010	
✓ 9E, 2011	
✓ 9L, 2008	
✓ 9L, 2009	
♥ 9L, 2010	
9L, 2011	
V 9N, 1994	
V 9N 1995	
₩ 547 1555 ₩ 0NL 1007	-
All None Exdu	de
_ Summary	-
Selection: Selected 692 of 714 values	
Wildcard: All	
Condition: None	
Limit: None	
Reset OK Cancel Apply	·

Explanation:

- Discrete lists are expensive to evaluate
- "Keep-only" can easily result in large, discrete lists.

2011 TABLEAU CUSTOMER CONFERENCE

Filters: Add to Context

Purpose of Context Filters

- Establish a baseline criteria which is evaluated first
- All subsequent filters are performed on this resultset

How does Tableau process this?

- Instantiate context filter resultset into temp table, or
- Express the context filter resultset as a subquery

Performance side-effects of Context Filters

- May have no impact
- May reduce performance if the filter is not very selective
 - The resultset will be nearly as big as the original table
- May boost performance if the filter is highly selective
 - The resultset will be small, making all subsequent filters, aggregations, etc. much faster

Filters	
👎 Customer Name	C
Customer Segment	C
	C
	H
Marks	SI
Abc Automatic 🛛 👻	
_	

Quick Filters

- Easy-access UI for filtering
- Compact forms:
 - Wildcard Match
 - Compact List
 - Slider, ...

- Only Relevant Values
 - Filter items reflect choices made for other filters
 - *e.g.* [State] should not list 'California' if [Region] excludes 'West'
 - Requires querying the database for the domain of *every* filter any time a user modifies any of the filters.

Slicing Filter

- Filter criteria is not part of the visual level of detail
 - Inspired by MDX slicers
 - Not trivial to express in SQL
 - Tableau must isolate the slicing filter level of detail
 - Temp table
 - Subquery

Subquery example

SELECT "Staples"."Prod Type1" AS "none:Prod Type1:nk", SUM("Staples"."Sales Total") AS "sum:Sales Total:qk" FROM "TestV1"."Staples" "Staples" INNER JOIN (SELECT "Staples"."Prod Type4" AS "none:Prod Type4:nk", COUNT(1) AS "_Tableau_join_flag" FROM "TestV1"."Staples" "Staples" GROUP BY 1 HAVING (SUM(CAST(1 AS BIGINT)) > 1000)) "t0" ON ("Staples"."Prod Type4" = "t0"."none:Prod Type4:nk") GROUP BY 1

Query Generation: Custom SQL

- What is Custom SQL?
 - A way to define a connection based on complex join conditions, filtering and pre-aggregation
- Why does Tableau wrap Custom SQL? e.g.: SELECT *

```
FROM (
   SELECT
   `starbucks`.`Market` AS `Market`,
   `starbucks`.`Product Type` AS `Product Type`,
   SUM(`starbucks`.`Sales`) AS `Sum of Sales`
   FROM `starbucks`
   WHERE `starbucks`.`State` <> 'California'
   GROUP BY 1, 2
) `TableauSQL`
```


Query Generation: Custom SQL

- Custom SQL represents a resultset
- Tableau visualizations build upon the resultset
 - Queries are not part of the resultset
 - Instead layered on top of the resultset

```
SELECT `TableauSQL`.`Market` AS `none_Market_nk`,
    SUM(1) AS `sum_Number of Records_qk`
FROM (
    SELECT
    `starbucks`.`Market` AS `Market`,
    `starbucks`.`Product Type` AS `Product Type`,
    SUM(`starbucks`.`Sales`) AS `Sum of Sales`
    FROM `starbucks`.`State` <> 'California'
    GROUP BY 1, 2
) `TableauSQL`
    WHERE (`TableauSQL`.`Product Type` = 'Coffee)
    GROUP BY 1
```


Query Generation: Discovery Queries

- Connect-time probes
 - Validate joins / custom SQL
 - LIMIT 1
 - Metadata discovery
 - LIMIT 0
 - WHERE 1=0
- Side-band queries
 - Domain size checks
 - Contains NULL?

Identify Database Tuning Opportunities

- Directly used by Tableau
 - PK / FK (join culling)
 - NOT NULL constraint (filtering)
 - Temp table permissions (filtering)
- Indirectly used by Tableau
 - Indexes
 - hash index for grouping
 - range index for dates
 - Partitioning
- Alternatives to Custom SQL
 - Database view (possibly materialized)
 - Initial SQL

Author Optimized Visualizations

- Visualizations are targeted to the human brain
 - Must be a digestible quantity of information
 - Challenge: condensing insight from large data sets
- Working with Big Data
 - Aggregation
 - Filtering
 - Extracts
 - Avoiding joins
 - Advanced techniques

Authoring: Aggregation

- Tableau aggregates by Default
- Pre-computing aggregations can lead to huge performance gains
 - Certain things not preserved (Count Distinct)
- More than one aggregated extract can be used to great advantage

Authoring: Filtering

- Filter first, then viz
- Filtering High-Cardinality Fields (Skip)
 - Wildcard match
 - Type-in List
- Dashboard actions
 - Can replace Quick Filters
 - Edit your Action to exclude on deselect
 - Create 'None' filter first

Authoring: Avoiding Joins

- Aliases
 - Rather than look up table
 - Potential drawbacks:
 - Filters are done on original field
 - Good for values that rarely change
- Blending
 - Create Primary Group
 - Edit Primary Aliases
 - Connect to same DB, separate connection for each table
- Ad-hoc groups
 - On the fly, visually

Authoring: Extracts

- Extract creation (Demo)
 - Filter
 - Aggregate (summary view)
 - Incremental
 - Sampled
 - Hide unused fields
 - Data types/characteristics matter
 - Integer better than String
 - Date better than Timestamp (if detail not needed)
- Optimize extracts

Filter	Details	
Add	Edit Remove	
ggregation		
Aggregate data	for visible dimensions	
	ica to real	
umber of Rows		
umber of Rows		

Authoring: Advanced Techniques

- Initial SQL
 - Can be used to prep data for faster querying
- Query Banding
 - Teradata Only
 - Can set query priority

Please evaluate this session (TCC11 202)

Tuning Tableau and Your Database

Text to 32075

- In the body of the message, type: **TCC11<space>202** then letters from the table below to indicate each response.
- 🖌 Provide additional comments after an asterisk "*"
- Sample text: **TCC11 202aho*That was great!**

Please give your response to the following:	Excellent	Great	Good	Average	Poor	Bad	Very Bad
What was the value of this session to you?	а	b	С	d	е	f	g
What are the chances you will apply what you learned in this session in your work?	h	i	j	k	L	m	n
What are the chances you would recommend this session to a colleague?	0	р	q	r	S	t	u

Each text evaluation you send enters you into a drawing for an iPad!