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Abstract

Large Language Models (LLMs) are transforming Conversational
Visual Analytics (CVA) by enabling data analysis through natu-
ral language. However, evaluating LLMs for CVA remains a chal-
lenge: requiring programming expertise, overlooking real-world
complexity, and lacking interpretable metrics for multi-format (vi-
sualizations and text) outputs. Through interviews with 22 CVA
developers and 16 end-users, we identified use cases, evaluation
criteria and workflows. We present Lexara, a user-centered eval-
uation toolkit for CVA that operationalizes these insights into: (i)
test cases spanning real-world scenarios; (ii) interpretable metrics
covering visualization quality (data fidelity, semantic alignment,
functional correctness, design clarity) and language quality (factual
grounding, analytical reasoning, conversational coherence) using
rule-based and LLM-as-a-Judge methods; and (iii) an interactive
toolkit enabling experimental setup and multi-format and multi-
level exploration of results without programming expertise. We
conducted a two-week diary study with six CVA developers, drawn
from our initial cohort of 22. Their feedback demonstrated Lexara’s
effectiveness for guiding appropriate model and prompt selection.
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1 Introduction

Recent advances in Large Language Models (LLMs) have enabled a
shift towardmore natural, conversational interactions with data [52,
56, 69]. Increasingly, LLMs are being integrated into Conversational
Visual Analytics (CVA) tools, allowing users to generate and refine
visualizations through natural language [22, 50, 53, 73, 88]. This
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democratizes Visual Analytics (VA), traditionally defined as analyti-
cal reasoning facilitated by interactive visual interfaces [13, 84], by
making it accessible to users without programming or analytical ex-
pertise. As CVA tools proliferate, it has become imperative for CVA
tool developers and end-user analysts to continually evaluate and
adapt to a rapidly growing ecosystem of LLMs and system prompts.
These choices directly affect system behavior, output quality, and
end-user trust [10]. To understand current evaluation practices
and identify gaps in existing approaches, we conducted formative
studies with practitioners to investigate the following research
questions:

RQ1: What does practitioners’ real-world use of CVA

look like?
RQ2:What evaluation criteria do practitioners applywhen
assessing CVA system outputs?
RQ3: What evaluation workflows do practitioners use for
CVA interactions, what challenges do they face, and how
well do existing tools address these challenges?

Through semi-structured interviews with 22 CVA tool develop-
ers and an observational study with 16 end-users (where a browser
extension logged real-world CVA interactions), we uncovered sig-
nificant gaps between practitioner needs and existing approaches.
Thematic analysis revealed that real-world CVA usage is inherently
multi-turn and multi-format: users engage in iterative conversa-
tions where context from earlier exchanges informs later responses,
and expect systems to produce integrated text, visualization, and
code outputs. Practitioners evaluate both visualization quality (e.g.,
data fidelity, field similarity, chart type, axes, filters and sorting,
visual encodings, and interactivity) and analytical natural language
response quality (e.g., factual grounding, analytical thinking, conver-
sational coherence, and follow-up relevance across turns), empha-
sizing the need for flexible, multi-granular evaluation that accom-
modates graded correctness and multiple valid answers. A response
may be technically correct but still suboptimal or misleading. For
example, a visualization response with swapped axes, choice of
pie vs. bar charts, or semantically inferred fields (e.g., Profit vs.
Revenue-Cost) may be valid, but still differ from expected outputs
in ways that could affect interpretability and trust in the analyses.
Consequently, practitioners rely on ad-hoc, fragmented CVA evalu-
ation workflows: manually comparing outputs across spreadsheets,
adapting ill-suited Natural Language Processing (NLP) metrics, and
referencing external benchmark reports.

Yet current evaluation approaches fall short of these require-
ments. Existing CVA benchmarks’ test cases [17, 47, 48] are syn-
thetically generated, focus primarily on single-turn interactions,
and require programming expertise for setup and interpretation,
limiting accessibility for product managers, designers, and other
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low-code stakeholders. Traditional NLP metrics like BLEU [59],
ROUGE [44], or F1, Precision, Recall [20] are limited to n-gram
overlap with single references and struggle with multi-format CVA
outputs. Even recent visualization-specific metrics [22, 45, 58, 64]
focus on isolated aspects rather than the entire CVA pipeline, and
rarely accommodate graded correctness and are difficult to inter-
pret [97]. Recent general-purpose LLM evaluation tools [4, 34, 38]
offer low-code interfaces but lack native support for CVA-specific
aspects like rendered visualizations, visualization grammars, an-
alytical thinking in natural language responses, and data source
analysis. These gaps leave practitioners unable to systematically
evaluate the LLM-mediated interaction components (e.g., conver-
sational coherence, inferred assumptions, field selection, and vi-
sualization correctness) that critically shape whether downstream
analytical reasoning is even possible. While visual analytics (VA)
research traditionally focuses on assessing end-to-end sensemak-
ing effectiveness, cognitive support, and task-level analytical out-
comes [35, 62, 63], evaluating these LLM-mediated layers requires
different approaches that complement rather than replace tradi-
tional user-centered VA evaluation.

To address these gaps, we present Lexara, a user-centered toolkit
for evaluating LLMs for CVA that operationalizes our formative
findings into:

• CVA test cases derived from logged real-world end-user
analyst interactions (RQ1),
• Interpretable, graded CVA evaluation metrics aligned
with practitioners’ evaluation criteria (RQ2), and
• An interactive low-code CVA-specific benchmarking

tool designed around practitioners’ workflow challenges
and needs (RQ3), enabling multi-format (text-to-spec visu-
alizations, text-based analytical explanations), multi-turn
evaluation and systematic comparison of model-prompt con-
figurations.

We deployed Lexara and engaged six of the 22 CVA tool de-
velopers in a two-week diary study. Feebdack demonstrated that
Lexara’s test cases capture real-world complexity, offer more inter-
pretable metrics than traditional approaches, and enables practition-
ers to uncover performance patterns, diagnose model and prompt
behavior, and make informed deployment decisions. The toolkit is
publicly available at https://lexara-6b38293fcdac.herokuapp.com/
with open-source code at https://anonymous.4open.science/r/Lexara-
CVA-Eval-280B/README.md. Overall, this work makes progress
toward the larger vision of responsible AI development for ana-
lytics [29, 91], enabling practitioners to systematically evaluate,
compare, and improve LLM-based systems before deployment.

2 Related Work

This paper builds on prior research across three themes: (1) CVA
tools, which examine how users generate visualizations via natural
language dialogue; (2) CVA evaluation tools, which offer frame-
works and interfaces to systematically assess conversational out-
puts for VA; and (3) visualization and analytical language evaluation
methods, which propose both quantitative and qualitative metrics
to judge the quality of generated visualizations and analytical ex-
planations.

2.1 CVA Tools

A growing body of work has explored Conversational Visual Ana-
lytics (CVA) tools, i.e., systems that enable users to interact with data
and create visualizations through natural language dialogue [71, 89].
These tools are designed to lower the technical barriers to data
exploration by allowing users to issue queries in natural language,
which the tool interprets to: retrieve relevant data fields, select
appropriate chart types, assign encodings, and generate visualiza-
tions.

Early CVA tools used keyword recognition and clarifications [69,
76, 93], interactive widgets [24, 81], and gesture-based input [77]
during the conversation so that users can intuitively interact with
their data without technical or programming expertise. While these
interaction mechanisms help, intent inference, deeper analysis and
conversational coherence across turns, ambiguity resolution, etc.
remained open challenges [85].

With recent advances in LLMs, there has been a marked shift to-
ward more expressive and capable CVA tools that can comprehend
colloquial, flexible queries and generate diverse output formats,
including structured code, visualization specifications, rendered
charts, and natural language explanations. Tools like Chat2VIS [50]
leverage GPT-3.5 to translate user queries into code for visual-
izations, supporting iterative refinement through multi-turn dia-
logue. Similarly, pipeline approaches like LIDA [22] decompose
the visualization generation process by combining LLMs with vi-
sualization rules. Commercial tools have also adopted LLMs for
CVA [1, 5, 53, 73, 88]. BaViSitter [19] further expands the CVA land-
scape by exploring multimodal interfaces, enabling users to issue
commands that incorporate both natural language and interactive
visual references. Our work complements this by focusing on how
to systematically evaluate such interactions, especially when they
involve ambiguity, context carryover, and inference.

While these tools demonstrate the potential of LLMs to make
data exploration more accessible, questions remain about how prac-
titioners actually use CVA tools in real-world settings and how they
assess the quality of generated outputs. In this work, we conduct for-
mative studies to explore practitioners’ real-world use of CVA tools,
uncovering their evaluation criteria and workflows when assess-
ing CVA tool outputs. Building on these practitioner insights, we
present a toolkit that operationalizes these findings into testcases,
metrics, and evaluation interfaces to help systematically evaluate,
compare, and improve the models and prompts used in LLM-based
CVA tools before deployment.

2.2 CVA Evaluation Methods

2.2.1 Benchmarks. Standardized benchmarks (e.g., BIG-Bench [78],
HELM [42]) help evaluate LLMs and system prompts at scale, by
specifying inputs and expected outputs across diverse use cases,
from reasoning puzzles to even basic analytics questions, making
benchmarks central to progress in model evaluation. Data-centric
benchmarks, like Spider [40, 95] and CoSQL [94], evaluate natural
language to SQL generation. For natural language to visualization
generation, the nvBench [48], nvBench 2.0 [47] and VisEval [18] test
suites provide large-scale natural language to Vega-Lite mappings.
However, these benchmarks have important limitations. First, they
are synthetically generated rather than derived from real end-user
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usage, meaning they do not reflect how practitioners actually in-
teract with CVA tools in practice. For instance, most benchmarks
focus on single-turn queries, overlooking the multi-turn conversa-
tional dynamics (such as context carryover, iterative refinement,
and evolving analytical goals) that characterize real-world data ex-
ploration. Second, running and adapting these benchmarks requires
programming expertise, computational resources, and technical
setup (e.g., configuring databases, managing API calls, writing eval-
uation scripts), and time, creating barriers for practitioners, such as
product managers, tool designers, and other low-code stakeholders,
who want to evaluate CVA systems without extensive technical
overhead.

Our work addresses these gaps through formative studies that
observe and log real-world CVA usage by end-user analysts. From
this empirical foundation, we derive Lexara’s test case suite, which
captures authentic usage patterns including composite questions,
ambiguous intents, and multi-turn dynamics like context carryover
during iterative analysis. Furthermore, Lexara’s interface is de-
signed to democratize CVA evaluation: practitioners can upload
their own test cases, configure evaluation experiments, and ex-
plore results at multiple levels of granularity—all without writing
code. This low-code approach makes systematic evaluation and
experimentation accessible to a broader range of users, supporting
iterative improvement of CVA tools before deployment.

2.2.2 Interactive Benchmarking Tools. A growing ecosystem of
evaluation tools helps developers probe and debug model behavior.
OpenAI Evals, Google’s AutoSxS, ChainForge [4], EvalLM [38], and
LLMComparator [34] support test case comparison, hypothesis test-
ing, and automated judgment. Other VA tools like PromptIDE [80],
LMdiff [79], and Sequence Salience [83] assist with prompt iteration
and token-level inspection. To support model evaluation and de-
bugging, tools such as OpenAI’s Evals framework [102] and Google
Vertex AI AutoSxS [26] offer capabilities like side-by-side output
comparison, rule-based and LLM-based judging, and hypothesis
testing. However, these tools are built to evaluate single-turn, single-
format outputs, usually text.

Lexara builds on these tools to offer native support for CVA-
specific aspects like multi-turn analyses, comparing rendered visu-
alizations, visualization grammars, analytical thinking in natural
language response, based on datasource analysis. Its design incor-
porates domain-relevant ontology (e.g., ambiguity type, axis match,
interactivity) and conversation-aware diagnostics, enabling more
targeted debugging and benchmarking of CVA system behavior.

2.2.3 Human and Automated Evaluation Methods. Given the com-
plexity of CVA interactions, human evaluation remains the gold
standard. Experts or users must manually assess nuances and rate
responses on a range of criteria. However, this process is labor- and
time-intensive, and does not scale well across large prompt sets and
model configurations [9, 21, 30]. To scale evaluation beyond manual
methods, LLM-as-a-Judge approaches are increasingly used to as-
sess model outputs along dimensions like coherence, correctness, or
explanation quality [27, 37, 54]. These methods often correlate bet-
ter with human judgment than traditional metrics, particularly in
open-ended QA, vision-language tasks, and agent reasoning [15, 41].
Yet, studies show systemic biases — including self-preference, ver-
bosity, position, and concreteness biases [72, 90, 92, 98], which can

skew results if not addressed. Lexara develops a complementary
hybrid human-AI evaluation approach to balance the richness of
user-centered values, evaluation criteria and methods, with the
scale of LLM-as-a-Judge automated methods. To ensure validity
and reliability of evaluation methods, Lexara implements prompt,
model, and interface–level safeguards: Evaluation criteria are de-
rived from a formative studywith practitioners and end-users. It em-
ploys few-shot prompts seeded with end-user–labeled evaluation
examples that reflect analyst values and highlight common points
of confusion. The LLM-as-a-Judge Recommendation feature recom-
mends models from outside the candidate model family to reduce
self-preference, and evaluation runs randomize item positioning
and use per-output scoring against a reference rather than pair-
wise comparisons to limit position bias. Prompts explicitly instruct
judges to ignore stylistic flourish and avoid rewarding verbosity
by truncating or equalizing answer length. To counter concrete-
ness and stylistic biases, Lexara uses detailed rubrics that specify
grounded analytical criteria and provides end-user-annotated ex-
amples across multiple orthogonal metrics. The interface further
surfaces judge rationales, JavaScript Object Notation (JSON) spec
diffs, and rendered charts, enabling human inspection and override
in a hybrid workflow. Finally, we validate Lexara’s metrics against
human raters (e.g., Cohen’s 𝜅, Spearman 𝜌) to ensure alignment.

2.3 Evaluation Metrics for Visualization and

Analytical Language

Evaluating visualizations requires balancing correctness with in-
terpretability and usability. Foundational work has emphasized the
trade-offs between ecological validity and experimental rigor [63,
103], advocating formixedmethods [31, 39] and cognition-grounded
metrics [8, 14, 43]. More recently, automatic evaluation techniques
have emerged. VIS-Shepherd [58] employs multimodal or LLM
critics to rate visualization quality. Vi(E)va LLM! [64] proposes
a layered stack—from code similarity to insightfulness—applying
measures like Jaccard similarity, SSIM, and VLAT. SimVecVis [45]
encodes chart structure as latent vectors and evaluates reconstruc-
tion performance. Song et al. [74] raise critical methodological
questions about evaluating LLM-generated visualizations, arguing
traditional metrics fail to capture visual design’s complexity and
subjectivity. They advocate for nuanced, design-aware strategies
considering interpretability, expressiveness, and task relevance –
aligning with Lexara’s graded, hybrid approach.

In parallel, natural language evaluation hasmatured from n-gram
metrics (e.g., F1, Precision, Recall [20], BLEU [59], ROUGE [44]) to
semantic measures (e.g., BERTScore [96], BLEURT [68]). Yet, these
often fail to capture reasoning quality, contextual coherence, or
domain-specific accuracy, especially in open-ended CVA explana-
tions. Addressing these limitations, Lexara develops hybrid visual-
ization and language metrics that accommodate ambiguity, support
multiple correct outputs, and integrate rule-based and rubric-guided
LLM-as-a-Judge pipelines. Users can inspect, override, and refine
judgments, enabling interpretable, scalable automationwith human-
in-the-loop evaluation.
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3 Formative Studies: Eliciting Real-World Use

Cases, Evaluation Criteria & Workflows

While prior tools and benchmarks have advanced model evaluation,
they often overlook the actual experiences of CVA practitioners, i.e.,
those building or using these tools in real-world settings. To ground
the design of the Lexara toolkit in these practitioner perspectives,
we conducted two complementary formative studies: interviews
with tool developers to surface design rationales and evaluation
workflows, and observational sessions with end-users to capture
situated judgment during CVA scenarios. Taken together, these
complementary approaches revealed both the considerations shap-
ing system design and the situated practices of use, grounding our
toolkit in the perspectives of those who build and those who rely
on CVA tools.

3.1 Study 1: Tool Developers’ Use Cases,

Evaluation Criteria & Workflows

We conducted one-hour semi-structured video interviews with 22
professionals involved in developing CVA tools. Participants in-
cluded researchers, designers, engineers, and product managers.
Using a snowball sampling strategy [6, 11, 55]: we initially reached
out to subject matter experts in CVA and LLM evaluation in a
large technology company, who then recommended additional col-
leagues with relevant expertise. This sampling ensured coverage
across product, research, and engineering roles engaged in building
or evaluating LLM-powered CVA systems. The interviews explored
four key areas: (1) use cases of CVA tools, (2) evaluation criteria
and (3) workflows used to assess models and system prompts for
these use cases, and (4) any challenges they faced in conducting
these evaluations. All participants gave informed consent for data
collection (audio, video, and usage logs). Sessions were recorded,
transcribed, and thematically analyzed using an open-coding ap-
proach [16] to identify use cases, evaluation workflows and their
challenges, and evaluation criteria. Refer to the supplementary ma-
terials for details on our experimental protocol, interview guides
and apparatus.

3.2 Study 2: End-Users’ Use Cases, Evaluation

Criteria & Workflows

We conducted 45-minute lab-based sessions with 16 professional
data analysts or end-users (𝑈 1-𝑈 16) across diverse domains includ-
ing finance, education, healthcare, and technology. Participants
held roles such as analysts, BI advisors, data architects, research
scientists, consultants, and product managers. Recruitment was con-
ducted via a visual analytics conference, supplemented by direct
outreach to attendees interested in conversational AI and visualiza-
tion tools. This strategy provided access to participants who had
real-world VA experience but varying familiarity with conversa-
tional interfaces (six beginners, seven intermediate, three advanced).
We classified participants as beginners if they reported less than
one year of regular experience using conversational interfaces for
data analysis. Intermediate participants reported approximately
1–3 years of experience with BI tools and occasional authoring of
visualizations. Advanced participants had more than three years of

experience building or maintaining analytics workflows and rou-
tinely authored or reviewed visualizations. Each session had two
phases:

Phase 1: Think-Aloud CVA Interaction [15–20 min] To under-
stand their usage of CVA tools, participants used a commonly-used
commercial LLM-enabled CVA tool [73] to analyze a datasource of
their choice, either from a curated gallery or their own (Appendix
Table 3). A Chrome extension (Appendix Figure 5) recorded their
multi-turn interactions, capturing prompts, model responses, and
in-the-moment reflections. After each response, participants rated
its quality using Likert-style criteria and corrected outputs when
needed to reflect their expectations. Participants could also suggest
custom evaluation criteria or flag inaccuracies. These real-world
logs later informed the design of Lexara’s test case library (see
Supplementary Materials).

Phase 2: Side-by-Side LLM Response Comparison [20–25

min] Participants compared anonymized outputs from multiple
models (GPT-4o, Claude-Opus-4, GPT-o3 anonymized for partic-
ipants to avoid biasing) for the same user utterances (visualiza-
tions, natural language responses, and JSON grammar specifica-
tions, alongside traditional metrics (F1, Precision, Recall [20]) (Ap-
pendix Figure 6). Grammar specifications were shown to expose
structural decisions such as field encodings, chart types, filters, and
sort logic – details not always visible in the rendered visualizations.
By surfacing specifications alongside outputs, we enabled partic-
ipants to diagnose why two similar-looking charts diverged and
express expectations around cross-format consistency [69, 85].

They were asked to think aloud as they compared model out-
puts, evaluation trade-offs, and reflected on where existing met-
rics fell short. All sessions worked with the same utterances from
the Superstore datasource [82], which is part of the NLVCorpus
benchmark [75]. We selected Superstore due to its familiar business
context and rich analytical scope, which could elicit ambiguity,
multi-turn reasoning, and diverse chart types [69, 70]. Using this
shared datasource ensured ecological validity while enabling con-
sistent comparisons across sessions.

3.3 Characteristics of CVA Use Cases

In addition to analyzing developer and end-user interviews, we
thematically analyzed utterances from Phase 1 of Formative Study
2 (§3.2), where 16 data professionals from domains, such as finance,
education, healthcare, and technology engaged in multi-turn CVA
sessions (

∑
= 80 utterances, 𝜇 = 5.8, 𝜎 = 3.1 turns per conversa-

tion). Using a browser extension (Appendix Figure 5), we logged
user–system interactions, including in-the-loop ratings, corrections,
and labels for each utterance. The resulting conversations spanned
a diverse set of utterance types and evaluation challenges, reflecting
realistic task complexity and variation across domains (finance (8
conversations), education (3), healthcare (5)). This annotated set
of utterances reflects the diversity of analytical intents and reveal
key challenges in interpreting user intent during conversational
interactions, described as follows:

3.3.1 Visualization Types. Thematic analysis of 64 user utterances
revealed requests for a diverse range of chart types: bar chart (n=30),
scatter plot (n=6), line chart (n=18), box plot (n=4), histogram (n=3),
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multi-line chart (n=3). For example, for the utterance, “Plot a scatter
of discount vs. profit margin,”,𝑈 5 remarked, “I expected a scatter
plot, but it gave me a bar chart. Technically valid but not what I asked”.
Such examples underscore the importance of semantic precision
and visual format alignment in user expectations, highlighting the
need for evaluation metrics sensitive to visualization intent and not
just syntactic correctness.

3.3.2 Ambiguity in User Utterances. In analyzing the user utter-
ances, we observed that 27 utterances exhibited some form of am-
biguity, requiring the system to make context-sensitive inferences.
Ambiguity in natural language, defined as the presence of multiple
plausible interpretations for a single expression or request, is a
well-documented challenge in CVA interfaces [2, 24, 69]. Ambigu-
ity often arises when user intent is underspecified, field references
are vague or mismatched, or contextual cues from earlier turns are
required for correct interpretation. A single utterance could display
multiple forms of ambiguity.

Syntactic Ambiguity. 18 utterances demonstrated syntactic am-
biguity, which arises when the structure of a sentence permits
multiple grammatical interpretations [32]. For example,𝑈 13 asked,
“Show top 10 products in furniture by sales region with high profit,”,
and responded to the result: “I could see at least two ways to interpret
that, [Show the top 10 products in the furniture category, grouped
by sales region, but only include those with high profit. or Show
the top 10 products in the furniture category, by those sales regions
that have high profit.] and the model picked one [the latter].”

Semantic Ambiguity.Of the 27 ambiguous utterances, 19 involved
semantic ambiguity, wherein an utterance could plausibly map to
multiple fields or concepts in the datasource, due to underspecified
or imprecise language. For example,𝑈 4 asked, “Show me profit over
time”, although the datasource only contained fields Net Revenue
and Cost. The model inferred a plausible mapping and returned a
chart plotting Net Revenue over time. The user later reflected, “I
said ‘profit,’ but in this datasource that could mean revenue minus
cost, or maybe net sales. The model guessed Net Revenue.”.

PragmaticAmbiguity. Pragmatic ambiguity ariseswhen themean-
ing of a user’s prompt depends on context, whether from earlier
dialogue turns or implicit assumptions that are not explicitly stated
in the input utterance [69, 85]. Participants encountered such am-
biguity in 37 utterances, and judged systems not only by their final
outputs, but by how well they interpreted underspecified prompts
in light of surrounding context.

Participants often incrementally elaborated on previous prompts
(19 utterances), expecting earlier filters or visual structure to persist.
For example, 𝑈 7 began with, “Show sales by region”, followed by,
“Now break it down by category.” They appreciated when the model
preserved the region filter, noting, “I like that it remembered my
earlier region filter, but sometimes other models just dropped it.”

Ambiguity also arose when users referred back to previously
mentioned entities without explicitly naming them again (32 utter-
ances). For example, when𝑈 12 asked,“Which of these categories had
the highest growth?” (following a turn which asked about product
categories) “It got confused about what ’these categories’ meant and
pulled in something else [the model erroneously filtered out all the
categories returning a vacuous chart.].” Participants also expected

temporal or categorical filters to persist across related turns. 𝑈 2
explained how this shaped their interpretation when they asked,
“Show only 2023 sales” next “Now compare East vs. West.” “When
the filter carried through, the analysis made sense. When it didn’t, it
felt like it didn’t get me and I had to keep starting over.”

Another form of pragmatic ambiguity involved both implied con-
cepts and underspecified utterances (64 occurrences), where users
referenced fields, filters, sorts, or time units without explicitly nam-
ing them, expecting the system to resolve intent through context.
For example, 𝑈 5 implicitly assumed descending order for a visu-
alization response to the utterance, “Top 10 states by profit.” They
remarked, “It didn’t sort descending, so the top 10 wasn’t actually
top.”

3.4 Evaluation Criteria for CVA Use Cases

These utterances provide a foundation for systematic evaluation.
Building on this foundation, we examined how practitioners ac-
tually judge the quality of CVA outputs in real-world scenarios.
Through thematic analysis of the data, we found that participants
consistently evaluated responses along three key categories: Vi-
sualization Quality, Natural Language Quality, and Conversation
Quality.

3.4.1 Visualization Quality. Visualization Quality refers to how
accurately and appropriately a generated visualization represents
the correctness of data values, the appropriateness of chart types for
the given analytical intent, and the presence of filters and sorting
operations applied to the underlying data representing the visualiza-
tion. Based on participant responses, we group visualization quality
concerns into four key categories: Data, Chart Type, Functionality,
and Design.

Data. We begin with criteria related to the data underpinning the
visualization, specifically, whether the data is faithfully represented
(Data Fidelity) and whether the fields selected align semantically
with user intent, even when exact matches are absent (Field Simi-
larity).

Participants emphasized that charts must truthfully and com-
pletely reflect the underlying data; any deviation, such as missing,
extra, or incorrectly aggregated rows or columns, was viewed as
a major breach of trust (Data Fidelity). As 𝑈 11 points out, “If it
says Profit but it’s clearly counting rows, that’s a fail for me.”. Partic-
ipants allowed partial credit when the underlying data was what
they expected, but the analytical operation applied to the data (e.g.,
aggregation type) was not what they expected. For instance, 𝑈 2
remarked, when viewing ‘count’ as the aggregation type rather
than ‘sum’: “It’s not a big deal but here it seems to have missed Sum
of Quantity” ).

Another critical dimension of data correctness is whether the
fields appropriately reflect the user’s analytical intent. This in-
volves both syntactic matching (e.g., field names) and semantic
understanding of the utterance (Field Similarity). Participants em-
phasized that fields bound to visual elements must align with the
task intent, even if the exact names do not match. Near-misses,
such as mapping a user’s mention of “sales” to an attribute labeled
sales_amount, or interpreting “date” as Billing_Timestamp_HFD,
were typically accepted when types were compatible or meanings
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Figure 1: Illustration of how practitioners evaluate the multi-format CVA response. The example shows (left) a user utterance

and corresponding model outputs, and (right) the evaluation criteria identified in our formative studies: visualization response

quality assessed by looking at both the rendered visualization and grammar specification (data fidelity, chart type, functionality,

design), natural language response quality (factual grounding, analytical thinking and conversation quality). This figure

provides a conceptual overview and does not reflect the actual UI of any CVA system.

were semantically close. As 𝑈 14 explained, “in enterprise schemas,
fields rarely match user wording exactly and reasonable inferences
preserve flow.” Participants also appreciated when the model could
make these inferences but strongly preferred transparency in the
mappings. 𝑈 14 continued, “Recognize date even when the column
is Billing_Timestamp_HFD, but tell me what you picked. Bold the
exact field names you chose. ”

Chart Type. Participants consistently emphasized that the appro-
priateness of the chart type directly impacts how easily they can
interpret and trust the visual output. They expected models to fol-
low established visualization best practices [49], such as generating
line charts for trends over time or bar charts for categorical com-
parisons. For instance, 𝑈 8 noted upon seeing a bar chart being

generated, “Two models picked the wrong chart for profit per month:
it should be a line. I’ll still give them partial credit, but they didn’t
pick the best chart.”

Functionality. Participants assessed functionality correctness based
on whether the visualization functioned as expected in terms of
axes, filters, and sorting choices. Specifically, participants expected
the axes to reflect correct field mappings, orientation, and scale, in-
cluding the use of zero baselines when appropriate.𝑈 15 remarked,
“This one doesn’t start at zero. That’s misleading” , and “Can we get
units on the axis?” Swapped axes (e.g., X and Y reversed) were
generally not treated as outright failures, since the data geometry
remained valid, but participants felt they deserved a moderate score
rather than full credit. However, critical errors like incorrect scale
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type or missing baselines, were scored lower. “Missing titles or units
are not deal-breakers, but more like nice-to-haves” (𝑈 14).

Participants viewed filter correctness as essential for analytic
continuity. They expected the models to clearly indicate applied
filters and penalized both over-filtering and under-filtering.𝑈 3 and
𝑈 5 correspondingly stated, “Only this model didn’t filter. That’s the
first thing I check” and “This one added extra Year=2024.”

Sorting accuracy was similarly important for data prioritization
tasks. Participants expected the sorting behavior to match either
explicit instructions or be reasonably inferred from context. When
reviewing the model output for “Show top 10 products in Furniture
by Sales”,𝑈 5 commented, “All the other models chose to Sales de-
scending, but seems like this model chose to not do that. I guess it’s ok
because it’s implied but not expected.”

Design. Participants assessed design quality based on how truth-
fully and clearly the visualization encoded information, prioritizing
functionality and interpretability over any stylistic enhancements.

In particular, participants expected visual encodings, such as
color, size, shape, opacity, and text labels to reflect meaningful
distinctions in the data. Participants attempted to refine visual
encodings through follow-up prompting: “Color by Region; add data
labels.” (𝑈 10).

Participants also expected interactive affordances, particularly
tooltips to reveal accurate, relevant data on demand. When these el-
ements were incorrect or incomplete, it broke their flow and raised
concerns about the model’s reliability. 𝑈 8 noted, “I hovered and it
showed the wrong value. Tooltip said ‘sum’ but it was a count.” Partic-
ipants, such as𝑈 11 also prompted to explicitly surface additional
information - “Include Sales and Profit in the tooltip.”

3.4.2 Natural-Language Response Quality. In addition to visualiza-
tion correctness, participants carefully evaluated the accompanying
natural language responses, particularly when models provided tex-
tual explanations or summaries alongside charts.

Factual Grounding. Participants consistently prioritized factual
consistency between the chart and the text. They expected that
descriptions include all salient facts, such as filters, measures, mag-
nitudes, and directional trends that were encoded visually. If key
facts weremissing or incorrect, trust was quickly eroded and treated
as high-severity errors. As 𝑈 12 emphasized, “If the chart and the
text disagree, I stop trusting either.”

Analytical Thinking. Participants also evaluated howwell the sys-
tem reasoned alongside them, looking for evidence of reasoning or
interpretation beyond simple description. In particular, participants
appreciated when the model explicitly surfaced filters, timeframes,
or aggregation logic, i.e., assumptions disclosure. This transparency
helped them understand and verify how results were derived. For
instance,𝑈 11 noted, “If you assume individual profit values, say so.”

Higher-rated responses that synthesized trends, pointed out
anomalies, and suggested comparisons or causes, were considered
insightful; rather than restating input queries, participants valued
responses that proactively explained what the data meant. As 𝑈 8
shared, “This one points out that sales dropped in Q4. That’s helpful”
and “I would like to get to a point where these systems just give me rich
actionable insights not just say I did what you asked me to” (𝑈 11).

3.4.3 Conversation Quality. Beyond isolated responses, partici-
pants evaluated how well CVA systems sustained coherent, context-
aware conversations over multiple turns. This process included
judging whether the system maintained logical flow, preserved
contextual intent across prompts, and adapted outputs based on
evolving dialogue.

Coherence. Participants valued responses that were logically struc-
tured, internally consistent, and free from contradictions. They
often praised outputs that maintained a clear reasoning chain and
articulated how different observations connected. For example,𝑈 3
said, “What its saying makes sense that sales rose in Q4 so inventory
dropped. So, this could impact next quarter.”

Follow-up Relevance. Participants emphasized that in multi-turn
interactions, the model must retain prior context: including applied
filters, selected categories, or inferred user goals. Outputs that failed
to carry over context felt disjointed or inattentive. 𝑈 6 highlighted
for this utterance, “Focus on high-growth segments in Q3 only,” when
the model added a filter with Q3’s dates instead of the whole year,
they commented, “I like that since we asked about high-growth seg-
ments in Q3, this tells me what happened in Q3 only.” In Lexara,
we operationalize these concerns by scoring each response in situ
with respect to its preceding conversational context, rather than
collapsing an entire dialogue into a single scalar score. This per-
turn, context-aware design lets practitioners see where multi-turn
workflows recover from errors or break down.

3.5 Workflow Challenges and Design

Considerations

Through interviews with the CVA practitioners, we identified five
core challenges (C1–C5) that they face when evaluating CVA sys-
tems. Each challenge is associated with recurring evaluation work-
flows, which, while common, often fall short of supporting system-
atic and scalable LLM benchmark evaluation.

C1: Fragmented, ad-hoc comparisons. Practitioners primarily
relied on manual side-by-side comparisons of models and prompts.
They often tested the same utterance across configurations, con-
solidated outputs in spreadsheets or slides, and visually inspected
screenshots and specs. 𝑇3 and 𝑇11 explain their respective work-
flows, “I literally had tabs for each model. One with the spec, one with
screenshots, and then I’d eyeball which chart dropped categories” and
“I feel like I’m always just context switching across all these channels,
which leaves me not able to have time for really diving into types of
behavior I care about.”

C2: Misalignment with domain-specific tasks. While public
benchmarks like nvBench [48], Spider [40], and VisEval [18] offered
a shared vocabulary, practitioners found them poorly aligned with
their specific CVA use cases. They often needed to test ambiguous
field references, vague temporal phrases, or domain-specific ana-
lytic tasks that benchmarks did not capture. 𝑇 17 stated, “Aggregate
scores rarely tell me if the model will mess up axes when I ask for
’profit by segment’ and such” and 𝑈 6 expressed frustration when
describing their workflow: “need to tailor to own data and use cases.”

C3: Unreliable transfer to actual environments. Practitioners
frequently encountered mismatches between public benchmark
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performance and real-world reliability. Models that performed well
in papers or demos often broke down when applied to internal data-
sources or production workflows. As 𝑇 20 noted, “Prompts work for
their demo datasource, but failed on ours.” To get more reliable com-
parisons, some developers used programmatic test suites, running
benchmark scripts over curated utterances in notebooks. While this
added reproducibility, the gap between test coverage and domain-
specific needs remained.𝑇 7 explains, “We run our benchmark on real
data and look for accuracy, cost, speed columns) and export machine-
readable logs.”

C4: Inaccessible and opaque evaluation outputs. Evaluation
pipelines often required programming expertise and produced out-
puts that are typically JSON logs or console traces. This limited
collaboration between engineers, PMs, and designers from partici-
pating meaningfully in the evaluation, as 𝑇17 points out: “We run
programmatic scripts from nvBench, but the outputs are JSON logs
that PMs can’t interpret.” Even for technical users, understanding
why a case passed or failed remained difficult as few tools supported
granular inspection or comparison across meaningful categories -
“No self-service so the benchmarking evaluation dashboard is hard to
update and maintain, so results stay opaque to non-engineers” (𝑇 7).

C5: Lack of interpretable and graded metrics. Participants
reported that standard metrics, such as accuracy, BLEU, F1 rarely
captured the graded, nuanced correctness required in CVA. Many
cases involved partial correctness (e.g., correct chart but misleading
axis), where binary scoring fell short, as 𝑇14 pointed out, “In our
work, accuracy isn’t just yes or no. Sometimes it’s close enough to be
useful, other times a valid looking chart is misleading.”

4 Design Considerations For A CVA Evaluation

Toolkit

Guided by the evaluation workflows and challenges (C1–C5) out-
lined in §3.5, we define seven design goals (D1–D7) to guide the
evaluation of an LLM-based CVA toolkit (i.e., a software system
that integrates reusable components for building, testing, and an-
alyzing CVA test cases). Each goal is grounded in observed needs
and translated into concrete design strategies, which we realize in
the Lexara toolkit (§5).

D1: Lower the barrier to systematic benchmarking. Enable
low-code practitioners to set up, run, and interpret benchmarking
experiments withminimal effort based on challenges [C1] and [C4].
By providing templates for datasources, utterance sets, rubrics, and
sensible defaults for metrics and comparisons, the toolkit should
support reproducible evaluations without requiring programming
skills, a need emphasized in HCI literature [36, 66].

D2: Tailor evaluations to real-world CVA use cases. To address
challenges of misalignment with real-world CVA tasks ([C2], [C3]),
the toolkit should support benchmarking on user-specific data,
tasks, and prompts, a paradigm advocated for contextualized LLM
evaluation aligned with practitioners’ tasks and goals [25].

D3: Scale evaluations with speed and reliability. To address
the bottlenecks in manual comparison ([C1]) and opaque tooling
([C4]), the toolkit should support scalable, repeatable experiments

across many utterances, prompts, and models, enabling efficient
comparisons and rapid iteration [23].

D4: Compare across formats. To address challenges in manual,
fragmented comparisons ([C1]), the evaluation toolkit should sup-
port reasoning on alignment across multiple output formats (i.e.,
rendered visualizations, natural language explanations, and under-
lying chart specifications) [51].

D5: Link overviews to instance-level insights. To address limi-
tations in fragmented comparisons and opaque tooling ([C1], [C4]),
the toolkit should allow practitioners to fluidly navigate between
high-level aggregate metrics and fine-grained utterance-level re-
sults. This supports practitioners in identifying performance subsets
across task types, semantic categories, or failure modes that are
most relevant to their analysis goals [46].

D6: Support context-aware diagnostic analysis. Evaluation
toolkits should enable practitioners to interpret model behavior in
relation to specific analytic contexts ([C1], [C4]). Drawing from
prior work in model interpretability [23, 66], the toolkit should iden-
tify when models succeed or fail (e.g., across utterance types, data
domains, or prompt strategies), and how those outcomes emerge
through qualitative and quantitative patterns in model and prompt
behavior.

D7: Make metrics interpretable and actionable for handling

multiple plausible answers. To address limitations in binary met-
rics ([C5]), CVA evaluations should employ transparent, graded
metrics that can accommodate multiple valid outputs. Metrics
should clearly communicate what is beingmeasured, why it matters,
and how the score was derived to support trust and actionability
for model and prompt selection [25, 36].

5 Lexara: A User-Centered CVA Evaluation

Toolkit

Building on the design considerations, we developed Lexara, a user-
centered evaluation toolkit that operationalizes the findings from
our formative studies. The toolkit comprises three complementary
components:

• Test Cases from Real-world CVA Conversations [D2,
D6] [§5.1]: A curated suite of multi-turn user queries anno-
tated with expected outputs and labeled for prevalent CVA
challenges such as ambiguity, inferred fields, and context
carryover.
• CVA Evaluation Metrics [D7][§5.2]: A set of interpretable
metrics derived from practitioners’ evaluation criteria cov-
ering visualization quality, analytical natural language re-
sponse quality, and conversational coherence, designed to
handle graded correctness and multiple plausible answers.
• CVA-Specific Interactive Evaluation Tool [D1, D3, D4-
6] [§5.3]: A low-code interface for setting up and running
evaluations, comparing multi-format outputs across models,
prompts, and turns, and linking aggregate metrics to fine-
grained diagnostics based on structured test case templates.
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5.1 Lexara’s Test Cases from Real-world CVA

Conversations

Each test case is based on a specific datasource and is represented
in YAML/JSON format. The datasource file includes the following
fields: title, data-source-fields the data attributes, each with
a name and fieldValues, a column-vector of data values. Each test
case includes: Conversation ID, set of Utterances with canoni-
cal phrasing (i.e., a representative or standard formulation of the
intent) and participant-authored variations, Labels denoting chart
type, ambiguity type, context-handling, and inferencing types. The
expected response is provided in two formats: (i) a visualization
specification (in a JSON schema similar to Vega-Lite [87], covering
fields, encodings, transforms, filters, and sorts) and (ii) a natural lan-
guage explanation that faithfully describes the chart while surfacing
assumptions made by the model (e.g., inferred fields or grouping
logic). We expose these templates in the User Interface (UI) to give
practitioners fine-grained control over datasources and labels at
the cost of some upfront schema familiarity.

To ensure these expected response reflect real-world practi-
tioner or expert consensus, test cases were sourced either from (i)
end-user analyst interactions during the formative study, where
participants corrected model outputs during real-world usage, or
(ii) from prior literature and benchmarks [18, 48, 75]. To ensure
quality, each expected response was independently reviewed by
two CVA domain experts. In cases of disagreement, a third expert
adjudicated the final answer. Inter-rater reliability analysis (Cohen’s
Kappa = 0.81) confirms a high level of agreement across annotators.
Since many tasks often have multiple plausible answers, we mit-
igate subjectivity by explicitly labeling the sources of ambiguity
(i.e., syntactic, semantic, and pragmatic) and supporting multiple
acceptable expected answers when justified. Lexara’s evaluation
framework applies graded metrics that capture partial correctness
on a continuum, enabling finer-grained diagnostic feedback be-
yond binary judgments. Because the metrics compute scores by
comparing model outputs against these expected CVA responses,
the current toolkit is explicitly designed for curated test suites,
which as mentioned in the Formative study, many teams already
maintain. The full test suite is included in the Supplementary Ma-
terials and can be directly uploaded into the Lexara toolkit for
benchmarking.

5.2 Lexara’s User-Centered Evaluation Metrics

The practitioner evaluation criteria described in detail in §3.4 are
implemented in code and their graded nature is illustrated through
examples in this section. For examples of how Lexara evaluates
model responses using these metrics see Table 1. The metrics are
designed to operate over structured visualization grammars and
natural language text, and do not assume vision inputs or explicit
tool-calling support. To reflect the nuanced judgments practitioners
make in evaluating CVA outputs, the metric scores are scaled to
express partial correctness on a continuum rather than as binary
outcomes. For instance, a model output that captures the general in-
tent of the query but omits a key filter or misrepresents an encoding
might receive a score of 70 rather than 50. This scaling is informed
by formative user studies, where practitioners rated outputs on
Likert-style scales and provided justifications reflecting degrees

of acceptability. We anchor partial credit scores to thresholds that
align with rubric-based assessment theory [12] and graded bench-
marking techniques [7, 28, 60] for supporting diagnostic debugging.
This graded approach to benchmarking enables practitioners to
distinguish between responses that are technically plausible but
incomplete, versus those that are outright misleading or irrelevant.

5.2.1 Visualization Quality Metrics. Metrics systematically mea-
sure the quality of visualization responses and range from 0-100%.
Calculated by comparing the expected and actual visualization
grammar spec and accommodating for partial credit or multiple
plausible answers.

Data. Refers to whether the visualization truthfully represents
the underlying datasource. This includes checking for fidelity of
rows, columns, and aggregations, as well as semantic alignment of
selected fields with user intent.

• Data Fidelity: Checks if the visualization faithfully repre-
sents the underlying datasource (rows, columns, and pro-
cessing like aggregations or means).

function Score_Data_Fidelity(expected, actual)
if expected equals actual then

return 100
else if same rows and fields(expected, actual) AND minor
aggregation difference(expected, actual) then

return 70
else

return 0
end if

end function

Examples: Expected: Sum of Quantity = 200 vs Actual: Count
of Quantity = 200→ Score = 70% (aggregation mismatch).
Expected: 100 rows vs Actual: 80 rows→ Score = 0% (data
missing).
• Field Similarity: Checks if bound fields match intended
fields; partial credit if fields are semantically equivalent or
have matching data types.

function score_field_similarity(expectedSpec, actual-
Spec, datasourceMeta)

𝐸𝑥 ← expectedSpec.encoding.x.field
𝐸𝑦 ← expectedSpec.encoding.y.field
𝐴𝑥 ← actualSpec.encoding.x.field
𝐴𝑦 ← actualSpec.encoding.y.field
function canon(f, meta)

names← {𝑚𝑒𝑡𝑎[𝑓 ] .𝑛𝑎𝑚𝑒 }∪ meta[f].aliases
return stem(lowercase(join(names)))

end function

function cosSimStems(s1, s2)
®𝑣1 ← bow(s1); ®𝑣2 ← bow(s2)
if ∥®𝑣1∥ = 0 or ∥®𝑣2∥ = 0 then

return 0
end if

return

®𝑣1 · ®𝑣2

∥®𝑣1∥∥®𝑣2∥
end function

𝑆𝑥 ← cosSimStems(canon(𝐸𝑥 , datasourceMeta), canon(𝐴𝑥 ,
datasourceMeta))
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Test User Utterance Expected Response Model Response Metrics

1
Turn
1

<Quantity> on y-axis and <Region> on
x-axis

A vertical bar chart with Region on
the x-axis and the sum of Quantity on
the y-axis (range 0–140). The Central
region has the highest total ( 137), with
other regions lower.

A bar chart comparing Quantity (y-
axis) across Regions (x-axis), allowing
a quick scan of how quantities differ by
region.

Data Fidelity = 100% ; Field Similarity
= 100% ; Chart Type Similarity =
100% ; Axis Accuracy = 100% ; Filter
Accuracy = 100% ; Sort Accuracy =
100% ; Visual Encoding Accuracy =
100% .
Overall Viz = 100% .
NL: Factual Grounding 70% ; Assump-
tions Disclosure = 40% ; Insightfulness
= 40% ; Coherence 90% .
Overall NL 65% .

1
Turn
2

Sort by <Quantity>

A vertical bar chart of Regions, sorted
in descending order by the sum of
Quantity, so the highest-quantity region
(Central, 137) appears first.

A bar chart ordered by Quantity values
for each Region; the description notes
sorting by quantity but does not specify
whether the order is ascending or
descending.

Data Fidelity = 100% ; Field Similarity
= 100% ; Chart Type Similarity =
100% ; Axis Accuracy = 50% ; Filter
Accuracy = 100% ; Sort Accuracy
= 0% ; Visual Encoding Accuracy =
100% .
Overall Viz 65% .
NL: Factual Grounding 60% ; Assump-
tions Disclosure = 40% ; Insightfulness
= 20% ; Coherence 80% .
Overall NL 50% .

2 show me top accounts by attendees

A horizontal bar chart of the Top 10
Account Names, ranked by total (sum)
Item Quantity and sorted from highest
to lowest, making it easy to spot the
highest-volume accounts.

A horizontal bar chart listing the Top
10 Account Names ranked by sum(Item
Quantity), with bars sorted descending
to highlight the largest contributors.
(Accounts with null Item Quantity don’t
contribute to the totals.)

Data Fidelity = 100% ; Field Similarity
100% ; Chart Type Similarity = 100% ;
Axis Accuracy = 100% ; Filter Accuracy
= 100% ; Sort Accuracy = 100% ;
Visual Encoding Accuracy 95% .
Overall Viz 98% .
NL: Factual Grounding = 100% ; As-
sumptions Disclosure = 100% ; Insight-
fulness = 20% ; Coherence 95% .
Overall NL 85% .

3 count orders by categories

A bar chart that counts orders per
Category—the x-axis lists categories
and the y-axis shows the count of Order
IDs.

A bar chart breaking down Order IDs
by Category, with each category rep-
resented by a different color to distin-
guish groups.

Data Fidelity = 100% ; Field Similarity
= 100% ; Chart Type Similarity 50% ;
Axis Accuracy = 100% ; Filter Accuracy
= 100% ; Sort Accuracy = 100% ; Visual
Encoding Accuracy 85% .
Overall Viz 90% .
NL: Factual Grounding 60% ; Assump-
tions Disclosure = 20% ; Insightfulness
= 20% ; Coherence 90% .
Overall NL 50% .

4 revenue versus earnings

A scatterplot with Sales on the x-axis
and Profit on the y-axis, one point per
record. Plotting raw values reveals how
profit changes with sales.

A scatterplot comparing total Sales (x)
to total Profit (y) so it collapses to a
single point representing Sum of Sales
vs. Sum of Profit.

Data Fidelity = 0% ; Axis Accuracy =
95% ; All other viz metrics = 100%

Overall Viz = 85% ;
NL: Factual Grounding 25% ; Assump-
tions Disclosure = 0% ; Insightfulness =
20% ; Coherence 90% .
Overall NL 30% .

Table 1: Worked examples showing how Lexara metrics assess visualization and natural language quality responses interpre-

tively.
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𝑆𝑦 ← cosSimStems(canon(𝐸𝑦 , datasourceMeta), canon(𝐴𝑦 ,
datasourceMeta))

𝑆 ← (𝑆𝑥 + 𝑆𝑦)/2
𝑇𝑥 ← [meta[𝐸𝑥 ].dataType = meta[𝐴𝑥 ].dataType]
𝑇𝑦 ← [meta[𝐸𝑦].dataType = meta[𝐴𝑦].dataType]
bonus← 10 if (𝑇𝑥 ∧𝑇𝑦) else 0
return min(100, 100 × 𝑆 + 𝑏𝑜𝑛𝑢𝑠)

end function

Examples: Related data type and semantic fields: Order Date
vs Ship Date→ base semantic similarity 0.77; both tem-
poral⇒ + 10% type bonus. Score: min(100%, 77% + 10%) =
87%

Unrelated data types and semantic fields: Region vs Category
→ base semantic similarity 0.29; both discrete dimensions
⇒ +10% type bonus. Score: min(100%, 29% + 10%) = 39%

Missing axis: Sales vs (missing Y axis)→ no compa-
rable field, similarity = 0.0; no type bonus. Score: 0%
Note: For two-axis charts, compute 𝑆𝑥 and 𝑆𝑦 separately via
stemmed cosine similarity, set 𝑆 = (𝑆𝑥 + 𝑆𝑦)/2, then add a
single 10% bonus only if both axis data types match; cap at
100%.

Chart Type. measures how well the model’s chosen mark type
aligns with the mark types that Tableau’s Show Me engine [49] rec-
ommends for the same set of data fields. We (i) run Show Me on the
expected fields to obtain a ranked list of recommended chart/mark
types, then (ii) compare the model’s chosen mark against that list:
function score_chart_similarity(expectedSpec, actualSpec,
datasourceMeta)

𝐹 ← { 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑝𝑒𝑐.𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔.𝑥 .𝑓 𝑖𝑒𝑙𝑑, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑝𝑒𝑐.𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔.𝑦.𝑓 𝑖𝑒𝑙𝑑 }
𝑅 ← ShowMeRecommend(𝐹 , datasourceMeta) ⊲ ranked list

of mark types
𝑀 ← normalizeMark(actualSpec.mark) ⊲ e.g., “line”, “bar”,

“area”, “point”, “table”
if 𝑅 = ∅ then

return 0%
else if 𝑀 = 𝑅 [1] then ⊲ top recommendation

return 100%
else if 𝑀 ∈ 𝑅 then ⊲ other Show Me recommendation

return 50
else

return 0%
end if

end function

Examples: Best recommended chart: Data = time series, Model =
line→ Score = 100% . Plausible but not best: Data = time series,
Model = area→ Score = 50% . Alternate plausible: Data = category
+ measure, Model = pie→ Score = 50% . Poor choice: Data = two
measures, Model = table→ Score = 0% .

Functionality Captures whether the visualization operates cor-
rectly in terms of axes, filters, and sorts. A functionally correct chart
reflects accurate axis assignments, scale and baselines, appropriate
filtering, and expected ordering.

• Axis Accuracy. Evaluates whether the X/Y axes use the
intended fields and parameters, giving graded credit for se-
mantic proximity of field names and incorporating data-type
compatibility directly into the similarity score.
function score_axis_accuracy(expectedSpec, actual-
Spec, datasourceMeta)

𝐸𝑥 ← expectedSpec.encoding.x.field; 𝐸𝑦 ← expect-
edSpec.encoding.y.field

𝐴𝑥 ← actualSpec.encoding.x.field; 𝐴𝑦 ← actual-
Spec.encoding.y.field

𝑆𝑥 ← cosSimStems(canon(𝐸𝑥 , datasourceMeta), canon(𝐴𝑥 ,
datasourceMeta))

𝑆𝑦 ← cosSimStems(canon(𝐸𝑦 , datasourceMeta), canon(𝐴𝑦 ,
datasourceMeta))

𝑇𝑥 ← 1(𝑚𝑒𝑡𝑎[𝐸𝑥 ] .𝑑𝑎𝑡𝑎𝑇 𝑦𝑝𝑒=𝑚𝑒𝑡𝑎[𝐴𝑥 ] .𝑑𝑎𝑡𝑎𝑇 𝑦𝑝𝑒 )
𝑇𝑦 ← 1(𝑚𝑒𝑡𝑎[𝐸𝑦 ] .𝑑𝑎𝑡𝑎𝑇 𝑦𝑝𝑒=𝑚𝑒𝑡𝑎[𝐴𝑦 ] .𝑑𝑎𝑡𝑎𝑇 𝑦𝑝𝑒 )
𝑆 ′𝑥 ← 0.9 × 𝑆𝑥 + 0.1 ×𝑇𝑥
𝑆 ′𝑦 ← 0.9 × 𝑆𝑦 + 0.1 ×𝑇𝑦
𝑆 ← (𝑆 ′𝑥 + 𝑆 ′𝑦)/2
𝑠𝑐𝑜𝑟𝑒 ← 100 × 𝑆
if axesSwapped(expectedSpec, actualSpec) then

𝑠𝑐𝑜𝑟𝑒 ← 0.5 × 𝑠𝑐𝑜𝑟𝑒
end if

if wrongScaleOrBaseline(actualSpec) then
𝑠𝑐𝑜𝑟𝑒 ← 0.7 × 𝑠𝑐𝑜𝑟𝑒

end if

return min(100, 𝑠𝑐𝑜𝑟𝑒)
end function

• Filter AccuracyMeasures how well applied filters match
the expected set, allowing partial credit when field names are
semantically close and values normalize to the same concept;
adds a small bonus when matched fields share data types. Ex-
amples: Extra filter: expected {Year=2023}, actual {Year=2023,
Region=West}→ 50% (one match over soft union), +10%
if types align; Semantic field/value match: expected {Re-
gion=West}, actual {SalesRegion=West} → high semantic
similarity and added value equivalence⇒ 100% ; Wrong
value: expected {Month=Jan}, actual {Month=Feb}→ 0%

function score_filter_accuracy(expectedSpec, actual-
Spec, meta)

𝐸 ← normalizeFilters(expectedSpec.transform.filter)
𝐴← normalizeFilters(actualSpec.transform.filter)
matched← 0
usedA← ∅
usedE← ∅
for each 𝑒 ∈ 𝐸 do

best← 0
bestIdx← none
for each 𝑎 ∈ 𝐴 not in usedA do

𝑠 𝑓 ←
cosSimStems(

canon(𝑒.𝑓 𝑖𝑒𝑙𝑑 , meta),
canon(𝑎.𝑓 𝑖𝑒𝑙𝑑 , meta))

if 𝑠 𝑓 ≥ 𝜏𝑓 and valuesEquivalent(𝑒 , 𝑎) then
𝑠𝑖𝑚 ← (𝑠 𝑓 + 𝑜𝑝𝑀𝑎𝑡𝑐ℎ(e,a))/2
if 𝑠𝑖𝑚 > 𝑏𝑒𝑠𝑡 then
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best← 𝑠𝑖𝑚

bestIdx← 𝑎

end if

end if

end for

if bestIdx ≠ none then
matched←𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + 𝑏𝑒𝑠𝑡
usedA← 𝑢𝑠𝑒𝑑𝐴 ∪ {𝑏𝑒𝑠𝑡𝐼𝑑𝑥}
usedE← 𝑢𝑠𝑒𝑑𝐸 ∪ {𝑒}

end if

end for

matchCount← |𝑢𝑠𝑒𝑑𝐸 |
unionSize← |𝐸 | + |𝐴| −𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡
if unionSize = 0 then

return 100
end if

base← 100 × 𝑚𝑎𝑡𝑐ℎ𝑒𝑑

𝑢𝑛𝑖𝑜𝑛𝑆𝑖𝑧𝑒
base← min(100, 𝑏𝑎𝑠𝑒)
typesAgree←

allMatchedTypesEqual(usedE, usedA)
if typesAgree then

bonus← 10
else

bonus← 0
end if

return min(100, 𝑏𝑎𝑠𝑒 + 𝑏𝑜𝑛𝑢𝑠)
end function

• Sort Accuracy: Assesses whether sort fields and directions
match, granting graded credit for semantic proximity of the
sort key and a type-consistency bonus.
function score_sort_accuracy(expectedSpec, actual-
Spec, datasourceMeta)

𝐸 ← expectedSpec.sort ⊲ (field, direction)
𝐴← actualSpec.sort ⊲ (field, direction)
if 𝐸 is none and 𝐴 is none then

return 100
end if

if 𝐸 is none xor 𝐴 is none then
return 0

end if

𝑆 𝑓 ← cosSimStems(canon(𝐸.𝑓 𝑖𝑒𝑙𝑑 , meta), canon(𝐴.𝑓 𝑖𝑒𝑙𝑑 ,
meta))

𝐷 ← 1.0 if 𝐸.𝑑𝑖𝑟 = 𝐴.𝑑𝑖𝑟 ;
0.5 if 𝐸.𝑑𝑖𝑟 ≠ 𝐴.𝑑𝑖𝑟 ;
0 if 𝐴.𝑑𝑖𝑟 missing when 𝐸.𝑑𝑖𝑟 specified

𝑏𝑎𝑠𝑒 ← 100 × 𝑆 𝑓 × 𝐷
𝑏𝑜𝑛𝑢𝑠 ← 10 if meta[𝐸.𝑓 𝑖𝑒𝑙𝑑].dataType=meta[𝐴.𝑓 𝑖𝑒𝑙𝑑].dataType

else 0
return min(100, 𝑏𝑎𝑠𝑒 + 𝑏𝑜𝑛𝑢𝑠)

end function

Examples: Right field, wrong direction: Sales desc vs. Sales
asc→ 𝑆 𝑓 = 1.0, 𝐷 = 0.5; 50% (+10% if type matches)⇒ up
to 60% ; Semantic key: Revenue desc vs. SalesAmount desc
(treated as same concept)→ 𝑆 𝑓 = 0.8, 𝐷 = 1.0, type bonus

= 10⇒= 100% ; Missing sort: expected sort desc , actual
none→ 0%

Design. Focuses on how clearly and meaningfully information is
encoded. This involves assessing the accuracy of visual encodings
(e.g., color, size, labels), the appropriateness of design choices for
interpretability, and whether interactive elements (e.g., tooltips)
provide correct contextual information.
• Visual Encoding Accuracy.Measures how truthfully and
clearly the chart maps data to visual channels, using a graded
score per channel (color, shape, opacity, text, size), then av-
eraging across channels. For each channel we combine: (i)
semantic match of bound field, (ii) data-type consistency, and
(iii) design best-practice adherence (e.g., hue for nominal,
gradient for quantitative, contrast, legibility).

function score_encoding_accuracy(expectedSpec, ac-
tualSpec, meta)

channels← {𝑐𝑜𝑙𝑜𝑟, 𝑠ℎ𝑎𝑝𝑒, 𝑜𝑝𝑎𝑐𝑖𝑡𝑦, 𝑡𝑒𝑥𝑡, 𝑠𝑖𝑧𝑒}
scores← [ ]
for each 𝑐 in channels do

𝐸 ← expectedSpec.encoding.𝑐
𝐴← actualSpec.encoding.𝑐
if 𝐸 is none and 𝐴 is none then

append 100 to scores
continue

end if

presence← 0
if 𝐸 and 𝐴 present then

presence← 100
else if 𝐴 present then

presence← 50
end if

sem← 0
if 𝐸 and 𝐴 present then

sem← 100×
cosSimStems(

canon(𝐸.𝑓 𝑖𝑒𝑙𝑑 , meta),
canon(𝐴.𝑓 𝑖𝑒𝑙𝑑 , meta))

end if

typeOK← 0
if 𝐸 and 𝐴 present then

ifmeta[𝐸.𝑓 𝑖𝑒𝑙𝑑].dataType =meta[𝐴.𝑓 𝑖𝑒𝑙𝑑].dataType
then

typeOK← 100
end if

end if

practice← 100×
bestPracticeScore(𝑐 , 𝐸, 𝐴, meta)

𝑠𝑐 ←
0.3 · 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒+
0.4 · 𝑠𝑒𝑚+
0.1 · 𝑡𝑦𝑝𝑒𝑂𝐾+
0.2 · 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒

append 𝑠𝑐 to scores
end for

return mean(scores)
end function
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Examples: Exact, well-designed: Color = Region (nominal)
with categorical palette, text labels on bars, size not used
→ Score 100% ; Good semantics, minor design gap:Color =
Sales (quantitative) but uses categorical palette (should be
gradient)→ Score 80% ; Alternative acceptable: Expected no
opacity, actual uses opacity to mitigate overplotting in dense
scatter (quantitative)→ Score 80% ; Mismatched channel:
Size = Region (nominal) with many categories→ Score 40% ;
Missing expected channel: Expected color by Region, actual
has no color encoding→ Score = 0% for color (averaged
across channels)
• Interactivity Accuracy Scores how well interactive affor-
dances (e.g., tooltips, selection, zoom/pan, drill-down) sup-
port accurate, relevant, and usable reading. Allows multiple
correct answers: if the actual design includes an alternate but
reasonable set of fields or interactions that covers the re-
quired information, it receives partial credit. We combine: (i)
coverage of required info, (ii) correctness of shown values/ag-
gregations, and (iii) usability best practices (formatting, units,
concise lists, interaction consistency).

function score_interactivity_accuracy(expectedSpec,
actualSpec, datasourceMeta)

𝑅 ← requiredTooltipFields(expectedSpec) ⊲ fields
bound to x,y,color,size + key filters/measures

𝐴← actualTooltipFields(actualSpec)
𝑀 ← matchFieldsSemantically(𝑅, 𝐴, datasourceMeta)

⊲ one-to-one best semantic matches
coverage← 100 × |𝑀 |

max(1, |𝑅 |) ⊲ fraction of required

info covered
correctness← 100× mean(aggOK(𝑚) for𝑚 ∈ 𝑀) ⊲

aggregations/values align with spec
extras← 100× normalized count of additional relevant

fields in 𝐴 \𝑀
redundancyPenalty← 100× penalty for duplicates/noise

(e.g., repeating same measure twice)
tooltipScore← clamp

(
0.6·coverage +0.3·correctness

+0.1·extras −0.1·redundancyPenalty
)

interactionsExpected← interactionsFrom(expectedSpec)
⊲ e.g., selection, zoom, drill

interactionsActual← interactionsFrom(actualSpec)
interMatch← 100× softJaccard(interactionsExpected,

interactionsActual) ⊲ partial credit for alternates
consistency← 100× interactionConsistencyOK()

⊲ tooltips/selection respect filters/sorts/encodings
usability← 100× avg(formattingOK(), unitsShown(),

brevityOK()) ⊲ avoid long lists, show units
𝑤𝑡 ← 0.6, 𝑤𝑖 ← 0.2, 𝑤𝑐 ← 0.1, 𝑤𝑢 ← 0.1
return𝑤𝑡 ·tooltipScore+𝑤𝑖 ·interMatch+𝑤𝑐 ·consistency

+𝑤𝑢 ·usability
end function

Examples.
Complete & correct tooltips: Show X, Y, color field, and
measure with correct aggregation, formatted with units; se-
lection highlights series consistently→ Score 100% . Alter-
nate but acceptable: Expected {Month, Sales, Region}, actual

shows {Month, SalesAmount, RegionName, Profit}; semantic
matches for required fields plus a relevant extra; formatting
OK→ Score 95% . Partially correct: Shows X/Y but omits
filter context and uses count instead of sum in tooltip →
Score 60% . Redundant/noisy: Long tooltip lists with dupli-
cate fields, inconsistent units→ Score 50% . Missing: No
tooltips or interactive affordances when expected→ Score
= 0% .

5.2.2 Natural Language Response Quality. These metrics evaluate
natural language responses in CVA. Four out of five of them are
implemented as LLM-as-a-Judgemetrics grounded in human-in-the-
loop evaluations from Formative Study 2 [§3.2], where participants
rated model outputs turn-by-turn and articulated why certain re-
sponses were accurate, incomplete, or misleading. These qualitative
judgments provided a rich, annotated dataset used to craft few-shot
rubrics for automated scoring. For example, vague or contradic-
tory explanations were labeled by participants as “low coherence,"
while detailed responses naming filters, time frames, and assump-
tions were judged “high on assumptions disclosure.” By embedding
these annotated examples into the judge prompts, we ensured that
LLM-based ratings would better align with practitioner expecta-
tions, capture graded correctness, and remain interpretable. This
approach also gave end-users a traceable influence on the design
of automated evaluation, supporting transparency and trust in the
resulting metrics.

Factual Grounding: This is calculated programmatically and en-
sures the explanation conveys the semantically similar facts as the
visualization (measures, magnitudes, directions).

function score_factual_grounding(expectedText, actualText)
𝑒 ← embedding(expectedText)
𝑎 ← embedding(actualText)
similarity←

cosine(𝑒 , 𝑎)
if contradiction(expectedText, actualText) then

return 0
else

return 100 × 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
end if

end function

Examples:

• Expected: “Profit climbed 8% year-over-year” vs Actual: “Profit
up eight percent year-over-year”→ Score = 100% .
• Expected: “Profit climbed 8% year-over-year” vs Actual: “Profit
improved year-over-year”→ Score = 70% (magnitude miss-
ing).
• Expected: “Profit climbed 8% year-over-year” vs Actual: “Rev-
enue grew 8%”→ Score = 0% (wrong measure).

Analytical Thinking:

• AssumptionsDisclosure:
1 Evaluateswhether the response

surfaces relevant assumptions (filters, time frames, aggrega-
tion choices). Examples:

1This is an LLM-as-a-Judge Metric, please see the human annotated few-shot examples
used to prompt this in the supplementary materials.
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– Actual: “This assumes the Region filter is set to North
America and values are aggregated monthly”→ Score = 4
(relevant assumptions).

– Actual: “These insights assume data excludes returns, is
filtered to 2023, and that Sales reflects total revenue, not
net”→ Score = 5 (comprehensive).

• Insightfulness:
1 Captures depth of analysis, identifying

trends, exceptions, and actionable implications. Examples:
– Actual: “Sales increased”→ Score =2 (basic observation).
– Actual: “From Q1 to Q4, Electronics in the West grew 25%,
Apparel in the South fell 10%, suggesting a shift in seasonal
demand”→ Score=5 (rich, actionable).

Conversation Quality:

• Coherence:
1 Evaluates whether the response is internally

consistent and logically structured. Examples:
Actual: “Sales are up, but that means profit is lower, so we
should cut inventory”→ Score = 1 (contradictory). Actual:
“Inventory is down. Sales are good. Profit is low. Maybe a
trend?”→ Score = 2 (disorganized). Actual: “Sales increased,
possibly leading to higher profit. Inventory dropped, which
might be a concern”→ Score = 3 (mostly coherent). Actual:
“Sales rose in Q4, contributing to higher profits. Inventory
dropped significantly, which could create supply issues next
quarter” → Score = 4 (well-structured). Actual: “Q4 sales
increased 20%, profits rose 15%, while inventory declined
30%, raising fulfillment concerns for Q1”→ Score = 5 (clear
and precise).
• Follow-up Relevance:

1 Checks whether the response re-
mains grounded in prior turns of the conversation (multi-
turn only). Examples:
• Previous user utterance: “Focus on high-growth seg-

ments.”
Response: “I included segment data like you asked ear-
lier.”
→ Score = 2 (minimal linkage).

• Previous user utterance: “Focus on high-growth seg-
ments in Q3 only.”
Response: “This line chart filters to Q3 only, shows
Technology outperforming all others, continuing the
trend we saw last week.”
→ Score = 5 (fully grounded).

5.3 Lexara’s Interactive CVA Evaluation Tool

Building on the real-world test cases [§5.1] and user-centered met-
rics [§5.2], effective CVA evaluation also requires an interactive
tool that simplifies setup, supports low-/no-code use, and surfaces
actionable insights. The Lexara interface is designed to address
fragmentedworkflows, opaque outputs, and the disconnect between
aggregate metrics and specific failures, supporting our design con-
siderations [D1–D7]. It enables users to run benchmarks on custom
data and prompts, compare multi-format outputs side by side, and
drill down from high-level metrics to turn-level diagnostics.

5.3.1 Evaluation Setup. (Figure 2) Lexara enables low-code prac-
titioners to run systematic CVA benchmarking experiments across

multiple models and system prompts [D1–D3]. The setup work-
flow includes intentional defaults, helpful templates, and guardrails
for error handling. Each run treats a configuration of one or more
models and system prompts applied to a shared set of test cases as
the object of evaluation. That is, the toolkit focuses on evaluating
model–prompt behavior in the CVA backend (e.g., datasource inter-
pretation, visualization specification, explanation quality), rather
than instrumenting every component of a deployed CVA applica-
tion such as the UI, logging pipeline, or enterprise orchestration.

Upload datasource and test case files. Practitioners can upload
their own datasources and test case files, or select from a sample in
the ’Select Test Case’ dropdown. To create their own files, they are
given guidance on template with required fields, structure, and an
example file stub. When the uploaded files do not match require-
ments, the error messages are specific in explaining how to fix the
issue. Upon successful upload, they can preview the datasource
table and test cases in the Evaluate Test Cases table where each
test case ID is a conversation, each row is a user utterance in the
conversation with labels, clicking on ‘+‘ next to the test case ID
unfurls all the rows/utterances in multi-turn conversations.

Specify system prompts. To compare prompt variants, practition-
ers can define multiple system prompts using an example prompt
template with required variables (e.g., datasource, utterance, and
expected JSON visualization grammar structure). Prompts are
numbered for traceability in results.

Select Models. The toolkit currently supports 10 models: the lat-
est OpenAI (GPT-5, GPT-5-mini, GPT-5-nano, o3, o4-mini),
Anthropic (claude-opus-4, claude-3.7-sonnet, and Deepseek
models (r1). These were selected as commonly used models by par-
ticipants in the formative studies. Practitioners are encouraged to
bring their own API keys for models. In our current implementation,
Lexara treats all evaluated models as text-only chat endpoints: we
send natural language utterances and receive JSON visualization
specifications plus textual explanations. Extending the toolkit to
exercise models’ full multimodal and tool-use capabilities is left as
future work (see §7.2).

Select Metrics. [D7] Practitioners can select specific visualization
and natural response qualitymetrics, or traditional natural language
metrics (F1, Precision, Recall). Each metric has a tooltip with the def-
inition (see §5.2 for details). LLM-as-a-Judge Recommendation:

For metrics that require LLM-as-a-Judge, Lexara recommends one
by annotating the model in the drop-down with (recommended)
next to its name. This recommendation is made heuristically by
following best practices to reduce bias [98]: selecting the strongest
model outside the LLM families of models getting evaluated to re-
duce self-bias. The judge models are instructed to ignore style or
truncate or equalize answer length to avoid verbosity bias. Further-
more, to align the Judge with practitioners’ evaluation criteria, we
apply few-shot learning by sharing examples of ratings distilled
from the formative study with end-users.

Specify Test Cases. Practitioners can specify individual test cases
or contiguous ranges of test case IDs. Leaving this blankwill execute
all test cases in the file.
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Figure 2: Lexara’s interactive CVA evaluation interface supports two core workflows: (1) an Evaluation Setup Panel where prac-

titioners upload datasources, define test cases, specify prompts, models, expected outputs, and configure CVA-specific metrics;

and (2) an Interactive Results Table that streams model outputs—visualizations, structured specs, and natural language—side-

by-side. The table enables multi-granular inspection, with expandable metric categories, on-hover explanations, and tools to

trace divergences between expected and actual outputs.

Specify Number of Runs. By default, Lexara executes three
replications per (model × system-prompt × judge) configuration to
reduce run-to-run variance. Practitioners may adjust the number
of replications to 1–5: set 1 for exploratory spot checks and up
to 5 for increased reliability during benchmarking. Practitioners
can examine the results from each run as they stream in to the
Evaluation Results table.

Pressing the Evaluate button initiates an evaluation experiment,
while the Stop button immediately terminates the ongoing evalua-
tion.

5.3.2 Interactive Test Cases Table. [D4-6] As evaluations run, the
table dynamically populates with multi-format responses, visual-
izations, natural language outputs, and JSON specs for each model
× prompt combination. Corresponding metrics for visualization
quality, language accuracy, and traditional Natural Language Gen-
eration (NLG) scores are computed in real time. To support focused
analysis, the table offers spreadsheet-like features: columns can be
filtered, hidden, or frozen, enabling flexible, side-by-side compar-
isons.

Multi-format Response Cells (Figure 3) display each model’s
response as an interactive Vega-Lite chart and accompanying natu-
ral language explanation. These are rendered using a custom engine
that transforms high-level JSON specs into Vega-Lite, allowing di-
rect visual comparison with expected outputs.

Hierarchical Metrics Drill-Down Cells (Figure 4) Each col-
umn represents a metric category: Visualization Response, Natural
Language Response, and Traditional NLG. A color-coded scale (red
= low, yellow =mid, blue = high) highlights performance at a glance.
The drill-down follows an overview + detail-on-demand pattern.
For example, the Visualization column initially shows an overall
quality score. Expanding reveals subcategories like Data, Semantics,
Functionality, and Design, which further break down into granular
metrics (e.g., Data Fidelity, Sort Accuracy, Visual Encodings). This
layered design supports rapid scanning with selective deep dives.
Interactive explanations enhance interpretability: hovering on a
score reveals the expected vs. actual output (e.g., Sort: Expected
descending, Model: none). For LLM-as-a-Judge ratings, hover text
includes the model’s justification.

Clicking Examine Viz GrammarDifferences (Figure 3 (Right))
opens a JSON spec diff viewer, enabling side-by-side comparison
of visualization grammars to trace structural discrepancies like
missing filters or mismatched encodings.

This combination of overview, detail, and contextual explana-
tions transforms the metric table into an interactive evaluation
workspace, enabling practitioners to interpret scores, and under-
stand how and why they were assigned.

5.3.3 Overview Panel. [D5-6] The Overview panel provides an en-
try point into evaluation by surfacing progress, recommendations,
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Figure 3: For each user request, the system aligns expected and actual outputs across three formats: visualizations, natural

language explanations, and JSON specifications. By surfacing detailed differences (e.g., encodings, aggregations, chart types),

the interface enables practitioners pinpoint divergences, understand model behavior, and diagnose strengths or failure modes

for various analytic tasks.

Figure 4: The overview panel (top left) highlights recommended model–prompt pairs and aggregated metrics. The label view

(top right) breaks down results by chart type, ambiguity, and context-handling. The utterance-level view (bottom) contrasts

expected vs. actual responses with detailed metric explanations.

and aggregate insights. A real-time progress bar tracks completion
across models, prompts, and test cases. To mitigate the risk that
headline scores anchor practitioners on partial or unstable results,
the overview panel is made visible once all utterance-level evalua-
tions for a given run have completed. Each recommendation card
links back to the underlying metric table and per-utterance views,
encouraging users to treat the overview as a starting hypothesis
rather than a definitive judgment. Once evaluation is complete,
the system highlights a data-driven recommendation for the best-
performing model–prompt pair, based on aggregated metrics.

To support interpretability, the panel includesOverviewMetric

Cards (Figures 2, 3) summarizing performance across three key
dimensions: visualization, natural language, and traditional NLG
metrics. Each card supports drill-down inspection, enabling prac-
titioners to trace how high-level scores emerged from individual
test case dimensions, mirroring the overview + detail pattern in the
hierarchical metrics table.

The panel also features a Metrics-by-Label view (Figure 4),
which breaks down results by test case annotations such as chart
type (e.g., bar, line, scatter), ambiguity class (semantic, syntactic,
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pragmatic), and contextual intent (e.g., slot-filling, reference resolu-
tion, filter carryover). This layered, faceted view helps practitioners
move from global trends to specific breakdowns, clarifying why a
model–prompt pairing was recommended, and where it succeeds
or fails.

5.3.4 Implementation. The Lexara toolkit is implemented as a
distributed web application with a React frontend [65] using Type-
Script [86], Ant Design components [3], and a Flask backend [57].
The system follows a microservices architecture with asynchro-
nous job processing and real-time streaming. A Redis Queue li-
brary handles background tasks [67], while connection pooling and
semaphore-based concurrency control manage API rate limits and
prevent resource contention.

5.3.5 Toolkit Deployment. The toolkit is deployed at https://lexara-
6b38293fcdac.herokuapp.com/ and has been iteratively refined based
on feedback from engineers, designers, PMs, and researchers across
multiple CVA teams at a large technology company. It is also avail-
able as an open-source project on GitHub https://anonymous.4open.
science/r/Lexara-CVA-Eval-280B/README.md to support broader
adoption and experimentation within the CVA research and practi-
tioner communities.

6 Field Deployment Diary Study: Method &

Findings

To explore how practitioners use Lexara in real-world settings, we
deployed Lexara within a large technology company that develops
a range of CVA products, and recruited a subset of the CVA tool
developers from our earlier formative study cohort to participate
in a two-week structured diary study [§3.2].

6.1 Study Setup

We recruited six CVA tool developers (two engineers, one designer,
and three productmanagers) with prior experience evaluating LLMs
and prompt strategies for visualization tasks. Before the study, par-
ticipants joined a 30-minute orientation introducing Lexara’s core
features and potential evaluation use cases (e.g., testing prompts,
comparing models, authoring test cases).

During the two-week study, participants completed daily evalua-
tion tasks using their own data and prompts, submitting structured
logs detailing datasources, test cases, model and prompt selections,
rationale, outputs, observations, and confidence levels. A 60-minute
debrief interview followed to review experiments and workflows.

We collected orientation and debrief transcripts, daily diary logs,
Lexara exports, and participant-authored test cases. All materials
were pseudonymized. We conducted thematic analysis using a hy-
brid inductive–deductive coding approach [16] to identify patterns
in real-world evaluation practices and tool gaps.

We now report findings from the two-week diary study with six
participants (𝑃1–𝑃6). Our goal was to understand how practitioners
used Lexara in their daily evaluation workflows, what value they
derived from its test cases, metrics, and interactive features, and
remaining gaps. Participants conducted 38 evaluation experiments
across 57 uniquely authored test cases (rest from existing test case
suite), comparing 10 LLMs and 6 system prompts (see Table 2).

6.2 Lexara’s Test Cases Captured Real CVA Use

Participants valued the realism and variety in the curated test cases,
especially the inclusion of multiple chart types and multi-turn
follow-ups that mirrored real CVA workflows. As 𝑃6 noted, “one
prompt and then the next, then remove nulls, felt like how someone
might actually interact.” The presence of expected reference outputs
also helped participants calibrate model responses; 𝑃3 reflected, “It
was helpful to have the reference of what the expected output would
have been.”

However, the current YAML-based authoring workflow posed
challenges, particularly for participants with non-engineering roles.
PMs and designers found it difficult to contribute, with 𝑃1 remark-
ing, “The YAML barrier makes it harder for PMs to contribute new
cases.” Participants suggested more accessible authoring tools, such
as a point-and-click interface to define utterances, labels, and ex-
pected outputs without needing to write structured files.

6.3 Lexara’s Metrics Were Nuanced and

Interpretable

Participants appreciated that Lexara’s metrics were not black-box
scores but came with drilldowns and on-hover explanations. These
features clarified why a score was given, making the results more
actionable. As 𝑃2 noted, “Hovering over visual encodings told me it
added this extra channel color, which was the fundamental difference.”
Even those who did not use the hovers extensively still emphasized
the value of the metric suite. 𝑃5 remarked, “What I would like to
keep [are] the metrics for sure . . . this was the part that is missing
from other evaluation tools.”

Participants also valued the hierarchical, collapsible structure of
the metrics. 𝑃3 appreciated being able to expand only the relevant
sections, while 𝑃2 filtered by specific dimensions of interest, such
as axis or sort accuracy. The interpretability helped participants
connect high-level scores with concrete differences in outputs.

Importantly, participants recognized the value of graded cor-
rectness and support for multiple plausible outputs. 𝑃4 explained,
“Accuracy isn’t just yes or no. Sometimes it’s close enough to be useful;
other times a valid-looking chart is misleading.” Some participants
wanted more customization, such as evolving the metrics to better
reflect visualization best practices (𝑃3), readability or tone (𝑃4), or
performance measures like latency and cost (𝑃2).

6.4 Lexara Supported Running a Variety of

Experiments at Scale

Participants conducted a variety of evaluation experiments by hold-
ing some variables constant while probing others. Common compar-
isons included large vs. compact models, cross-family competitors,
and different prompting strategies, such as persona-prompting (e.g.,
“as a data visualization expert” 𝑃3), few-shot examples (e.g., “learn
color coding based on these more engaging visualizations” 𝑃6), or
prompts in different languages to test tone and formality (𝑃4). Some
explored edge cases, like howmulti-turn interactions handled filters
and sorts.

Workflows generally followed an overview-to-detail pattern
aligned with Lexara’s design: selecting test cases, running model -
prompt combinations, reviewing summary metrics and system rec-
ommendations, inspecting rendered outputs, and drilling into JSON
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PID # of Evaluation Experiments # of Test Cases Executed # of Models # of System Prompts

P1 5 62 4 3
P2 10 103 10 2
P3 3 16 5 1
P4 8 45 5 1
P5 2 32 4 2
P6 10 85 10 2

Table 2: Summary of evaluation experiments conducted by participants (𝑃1–𝑃6) during the two-week diary study. Each

participant ran multiple experiments across varying test cases, models, and prompts. These figures provide a quantitative

overview of how Lexara was appropriated in practice, complementing our qualitative insights.

diffs. 𝑃2 valued the concise summary: “I appreciate the top-level
recommendation.” P4 praised the structured comparison: “Great for
like-for-like comparisons.” 𝑃6 added, “It’s cool to see the model outputs
side by side and compare how they generated the viz.” Some partic-
ipants ran parallel experiments in separate tabs to test multiple
hypotheses simultaneously.

6.5 Lexara Facilitated Granular, Multi-Format

Evaluation

Lexara enabled participants to inspect model differences across
multiple granularities, formats, turns, and runs, aligning with de-
sign goals (𝐷4–𝐷6). The side-by-side view of expected and actual
outputs emerged as the most intuitive entry point. 𝑃3 appreciated
that it surfaced divergences clearly: “I liked the side-by-side, and
having the notional spec JSON to see exactly where differences came
from.” 𝑃6 emphasized it made follow-up failures obvious: “Seeing it
next to the reference chart made that obvious.” Compared to spread-
sheets or tab-switching, participants found this interface reduced
cognitive load.

The JSON diff viewer added a deeper diagnostic lens, helping
explain score mismatches when charts looked similar. 𝑃3 noted:
“Two vizzes looked the same, but the score wasn’t 100. JSON showed
a tooltip difference.” They used it to uncover hidden mismatches
in encodings: “Empty graphs still got high scores, but the axis bind-
ing was off.” In one sequence, 𝑃1 initially tested GPT-4o-mini but
noticed misaligned encodings when inspecting results. Lexara’s
JSON diff viewer highlighted the mismatch, prompting them to
switch to Claude Opus 4, saying “The Viz Grammar Diff is pretty
handy!. . . More confident than before! The difference in scores do seem
to correlate better with the observed differences in the viz response."

Participants also used the overview metrics and recommenda-
tion cards as starting points. While some appreciated the concise
summaries (𝑃2: “I appreciate the top-level recommendation”), others
cross-checked them with their own assessments. 𝑃6 challenged a
suggestion: “It recommended the mini, but my tally favored another.”
𝑃1 noted subtle visual flaws not reflected in the metrics. P1 said,
“I feel quite confident. I saw quantitatively a stark difference in the
performance of the models and also by clicking through the outputs
could tell qualitatively that Claude Sonnet was matching the expected
outputs more often.” While initial use presented a learning curve
(𝑃4: “The breakdown was almost too much at first”), participants
ultimately integrated the interface into sensemaking workflows,

validating model and system prompt outputs, interpreting discrep-
ancies, and reasoning across CVA’s multi-format outputs.

7 Validating Lexara’s Metrics

To assess whether Lexara’s metrics align with expert judgment,
we conducted a quantitative validation study comparing metric
outputs against human ratings of CVA responses.

7.1 Method

We sampled 𝑁 = 120 CVA responses from the formative and diary-
study experiments (§3, §6), stratified with coverage across: different
metrics and score ranges (lower, medium, higher thirds of scores);
different ambiguity labels (e.g., syntactic, semantic, pragmatic);
different task types (e.g., descriptive vs. comparative vs. trend anal-
ysis). Each sampled response included: the datasource schema, the
user utterance (and conversational context where applicable), and
the model-produced visualization, JSON specification, and natural
language response.

Two raters (R1, R2), diary study participants familiar with Lexara
scored each CVA response on all the metrics defined in §5.2, using
the native scale associated with that metric. Raters completed a
training phase of 10 pilot items, where they could clarify how to
interpret the rubric with the authors, but not discuss individual
items or specific scores. These pilot items were not considered in
the final analysis.

For each metric, we computed (1) inter-rater reliability between
the two raters using linear-weighted Cohen’s 𝜅, quantifying how
consistently raters applied the rubric to the same set of responses
and (2) metric–human alignment between the mean human score
per response (simple average of the two raters) and metric, and
then calculated Spearman’s rank correlation 𝜌 .

7.2 Results

7.2.1 Inter-Rater Reliability. Human raters showed moderate to
high agreement on most metrics (see Appendix Figure 7a). Across
visualization metrics, linear-weighted 𝜅 ranged from 0.45 to 0.78
(median 𝜅 = 0.65), highest for Data Fidelity, Field, Chart Type, and
Axis, Filter, Sort Accuracy, and lowest for Interactivity, reflecting
the greater subjectivity of interaction design. For natural language
response metrics, 𝜅 ranged from 0.46 to 0.80 (median 𝜅 = 0.63), with
Factual Grounding and Coherence exhibiting higher agreement
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than Insightfulness and Follow-up Relevance. These results suggest
that human raters can apply Lexara’s metrics reliably. Some fluctu-
ation is expected in metrics that capture subjective or experiential
qualities like interactivity judgments as they depend on evaluators’
expectations about analytic workflows, prior tool experience, and
task context. Rather than treating these metrics as decisive indica-
tors of overall system quality, we recommend interpreting them as
diagnostic signals. These metrics are intended to complement, not
override, more objective correctness measures, guiding targeted
debugging and design iteration rather than serving as pass or fail
criteria.

7.2.2 Metric–Human Correlation. Lexara’s metrics aligned well
with human judgments: Data Fidelity, Field Similarity, and Chart
Type Similarity showed strong rank correlations with human rat-
ings (Spearman’s 𝜌 in the range 0.68˘0.79, see Appendix Figure 7b).
In natural language response metrics: Factual Grounding exhibited
the strongest alignment (𝜌 = 0.82). The remainder of the natural
language response metrics correlated at (𝜌 = 0.57–0.71, see Appen-
dix Figure 7b), lower than Factual Grounding but comparable to
human–human agreement.

While Lexara incorporates multiple safeguards to reduce LLM-
as-a-Judge biases, disagreements between automated judges and
human evaluators still occur, particularly on subjective dimensions.
For example, in one evaluation instance, a model-generated bar
chart included correct data mappings and filters but omitted in-
teractive tooltips. Human raters penalized this omission due to
its impact on exploratory analysis, whereas the automated judge
assigned a relatively high interactivity score based on the presence
of a rendered chart and valid specification structure. Lexara sur-
faces such disagreements explicitly in the interface by exposing
per-metric scores, judge rationales, and underlying visualization
specifications alongside rendered outputs. This allows practitioners
to inspect where and why judgments diverge, override automated
scores when appropriate, and treat automated evaluations as as-
sistive rather than authoritative. By supporting this human-in-the-
loop workflow, Lexara enables users to balance scalability with
contextual judgment, reinforcing trust in the evaluation process
rather than obscuring uncertainty.

7.2.3 Model Alignment with Human Preferences. For each of the
ten LLMs evaluated in the diary study (§6.1), we computed the mean
score by averaging all visualization metrics and all natural language
response metrics across all test cases and system prompts that par-
ticipants executed with that model. Independently, at the end of the
diary study we had asked participants rankings of each model they
had interacted with: (i) an overall 1–5 quality rating for CVA tasks
and (ii) a rough rank ordering of models from best overall for CVA
to worst (allowing ties). We converted these into per-model human
preference scores by (a) normalizing each participant’s ranks to
[0, 1], (b) averaging across participants for each model (ignoring
models a participant had not used), and (c) using these averages
as the human judgment baseline. We then computed Spearman
rank correlations between each model’s human preference score
and its mean visualization and natural language response score,
quantifying how well the model performance aligns with practi-
tioners’ preferences. Models that participants perceived as stronger
for CVA tasks generally obtained higher mean scores across both

visualization and natural language response metrics (see Appendix
Figures 7c, 7d). The rank correlation between human preferences
and Lexara’s overall visualization score was 𝜌 = 0.79 (p < 0.01), and
𝜌 = 0.74 (p < 0.05) for the natural language response score. These
results do not constitute a full comparative benchmark, but they
provide a sanity check that Lexara’s metrics track practitioners’
qualitative impressions at the coarse model level, complementing
the per-metric validation against expert ratings.

8 Limitations and Future Work

Lexara contributes to a growing body of research on evaluating
LLMs, with a particular focus on the unique demands of CVA. Prior
work has offered important building blocks: large-scale text bench-
marks for reasoning and language quality [42, 101]; visualization-
specific test suites [18, 48]; and interactive LLM evaluation toolk-
its [4, 33, 38]. However, these efforts typically focus on single-
turn, text-only outputs or require significant programming effort
to evaluate, making them less suitable for evaluating multi-format,
multi-turn, and ambiguity-rich CVA workflows. Lexara addresses
these limitations by integrating interpretable metrics, grounded
real-world test cases, and an accessible low-code interface tailored
for CVA evaluation.

8.1 Broadening Scope for Sustained Use of

LLM-based CVA Evaluation Toolkits

While our diary study demonstrates Lexara’s usefulness for sys-
tematic LLM evaluation, several limitations suggest future direc-
tions. The test suite’s coverage, though designed for multi-turn,
multi-format CVA conversations, remains bounded by datasources,
domains, and intents from our formative studies and existing bench-
marks. The toolkit currently assumes access to expected CVA re-
sponses for each test case, reflecting its diagnostic benchmarking
role. Extending the interface for ad-hoc exploratory use remains
an open design challenge. Lexara currently supports common
chart types (bar, line, scatter, histogram, box plots, multivariate
line, pie charts). Building on Vega-Lite’s expressive grammar, the
toolkit is extensible to broader visualizations (maps, Sankey dia-
grams, heatmaps) by authoring new test cases using declarative
Vega-Lite specifications. Additional contributions may uncover new
test cases as conversational intents evolve from analytic questions
to dashboard authoring or data stories.

Broader adoption could reveal how sustained use impacts trust,
model selection, and deployment practices. Future iterations should
expand the test suite across more domains, user types, and data
modalities. As users upload custom test cases, features should sup-
port ethically grounded, opt-in contribution mechanisms, raising
questions around consent, credit, and data quality.

The current YAML/JSON authoring workflow poses challenges
for non-technical stakeholders despite offering transparency and
control. The diary study revealed desire for easier pathways (CSV
templates, point-and-click builders), but simplification risks sacri-
ficing precision and reproducibility critical for benchmarking. A
promising direction is collaborative authoring: engineers specify
formal test logic while designers and analysts contribute natural
language utterances and qualitative labels, aligning with HCI re-
search on participatory evaluation and mixed-expertise workflows.
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This work does not address operational concerns like cost, latency,
prompt/model drift—critical for large-scale deployment. Incorpo-
rating these aspects could enable more holistic, real-world CVA
tool evaluations. We have open-sourced the project and hope the
community continues to develop this.

A limitation of our validation of LLM-as-a-Judge metrics is that
the human raters were Lexara-experienced and trained by the
authors. While this familiarity may bias judgments toward the
toolkit’s rubrics and increase alignment with automated metrics,
we intentionally adopted this setup for an initial quantitative val-
idation to reduce labeling noise when applying nuanced, graded
CVA criteria; this is reflected in high inter-rater reliability (Cohen’s
𝜅 = 0.81). Establishing this calibrated baseline allows us to char-
acterize metric behavior before introducing additional sources of
variance. Future work should evaluate generalizability by involving
independent domain experts and blinded crowd raters, comparing
inter-group agreement, and using randomized and double-blind rat-
ing protocols to detect systematic bias and assess transfer beyond
this expert-curated setting.

8.2 Designing CVA Metrics for More Nuanced

Evaluation Strategies

Lexara extends beyond existing visualization benchmarking ef-
forts [22, 58, 64], by introducing user-centered, graded metrics that
move beyond binary checks of validity, legality, and readability.
These include finer-grained measures of visualization specification
fidelity (e.g., field, axis, sort accuracy) and natural language re-
sponse quality (e.g., insightfulness, grounding), designed to support
multi-format, multi-turn CVA tasks. However, several limitations
remain.

To focus on evaluating the baseline capabilities and limitations of
LLMs, our current metrics evaluate model outputs derived from text
prompts and JSON specifications; they do not yet assess models’ na-
tive multimodal perception of rendered charts or their performance
when using external tools.

Evaluation metrics often encode subjective judgments: thresh-
olds for specification similarity and heuristics for matching may
reflect implicit normative biases[72, 90]. Over-optimization toward
these metrics could obscure genuine analytic quality. We view the
scores as providing a baseline check on whether CVA outputs are
eligible to support analytic reasoning (e.g., correct data, appropriate
encodings, factually grounded explanations), rather than as direct
proxies for the quality of the human sensemaking process itself.
While Lexara visualizes full conversational sequences through
the metrics-by-label and drill-down views, we do not yet provide
explicit trajectory measures such as the number of turns required
to reach an acceptable chart or the frequency of successful self-
correction.

Ecological validity also introduces variability. Real-world utter-
ances yield multiple plausible answers, complicating reproducibil-
ity and inter-rater consistency. While Lexara’s graded metrics
offer partial interpretability, evaluating under ambiguity remains a
broader methodological challenge in HCI and NLP evaluation [8, 9,
21].

8.3 Supporting Actionable Sensemaking in CVA

Benchmarking Workflows

Our work combines interactive visualization rendering, JSON spec
diffs, hierarchical metric breakdowns, and progress overviews to
support more nuanced diagnosis of model and prompt configura-
tions. However, the downside of these interface enhancements is
the learning curve; rich outputs can overwhelm new users, and
auto-generated recommendations occasionally diverge from practi-
tioners’ qualitative judgments, prompting additional manual review.
YAML-based authoring also persists as a bottleneck, and integra-
tion with enterprise tools for collaboration, orchestration, or data
authoring remains limited.

More fundamentally, Lexara functions as a diagnostic CVA
benchmarking toolkit; it reveals where and why models fall short,
but does not yet close the loop to support more actionable sense-
making. Future extensions could support semi-automated prompt
repair [61, 99] or training data augmentation [100] based on fail-
ure patterns, transforming evaluation from a retrospective analysis
into a forward-looking, feedback-driven improvement loop. This
would align evaluation more closely with iterative development
workflows [42, 101].

9 Conclusion

As LLMs increasingly mediate analytical reasoning and visual ex-
ploration, rigorous and user-centered evaluation becomes critical.
Through formative studies with practitioners, we identified key
challenges in evaluating LLMs for CVA, including test cases mis-
aligned with real-world use cases, a lack of interpretable graded
metrics, and ad-hoc fragmented evaluation workflows. We opera-
tionalize these insights into Lexara, a user-centered CVA evalua-
tion toolkit including test cases grounded in real-world CVA use
cases, interpretable metrics that account for multiple or partially-
correct responses, and supporting low-code benchmarking balanc-
ing human and automatic evaluation methods. By enabling scal-
able, nuanced, and CVA-specific evaluation, our work contributes
both conceptual and practical advances toward more transparent,
trustworthy, and user-centered assessment of LLM behavior in
CVA systems. The toolkit is publicly available at https://lexara-
6b38293fcdac.herokuapp.com/ with open-source code at https://
anonymous.4open.science/r/Lexara-CVA-Eval-280B/README.md,
to support broader adoption and extension by the HCI and visual
analytics communities.
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Appendix

Formative Study Apparatus

Figure 5: A browser plugin recorded participants’ interaction

with a popular CVA tool, capturing their utterances, model

responses, in-the-loop evaluations via Likert-type scales, and

corrected expected outputs.
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Datasource Domain Details Source

Superstore Business & Finance Contains information about products, sales, and profits that can be
used to identify key areas of improvement within this fictitious
company.

Tableau

The 2014 Inc. 5000 Business & Finance Inc. Magazine’s annual list of the 5000 fastest growing private
companies in the U.S., compiled by measuring each company’s
percentage revenue growth over a four-year period.

Inc. Magazine

Global Sport Finances Business & Finance The top-paying pro sports teams and the top paid athletes. ESPN
American University Data (IPEDS) Education Primary source for data on colleges, universities, and

technical/vocational postsecondary institutions in the U.S.
National Center for Education
Statistics

edX/HarvardX (AY 2012–2013) Education De-identified data from the first year (Fall 2012, Spring 2013,
Summer 2013) of MITx and HarvardX courses on the edX platform.

Harvard Dataverse

Life Expectancy WHO Healthcare Historical and current life expectancy by country, often paired with
other health indicators.

World Health Organization

Global Vaccination Coverage for COVID-19 Healthcare Tracks immunization coverage for COVID-19 vaccines across
different countries over multiple years.

World Health Organization

Table 3: Overview of datasources across business & finance, education, and healthcare domains, each linked to its original

source.

Figure 6: In the formative study, participants reviewed three anonymized model outputs presented in a static table, alongside

traditional NLG metrics including F1, Precision, Recall for each response.
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https://www.kaggle.com/datasets/vivek468/superstore-dataset-final
https://www.kaggle.com/datasets/prashant808/the-2014-inc-5000-list
https://www.kaggle.com/datasets/prashant808/the-top-paying-sports-teams-and-top-paid-athletes
https://www.kaggle.com/datasets/sumithbhongale/american-university-data-ipeds-dataset
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/26147
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
https://data.who.int/dashboards/covid19/data?n=o
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(a) Inter-rater reliability (Cohen’s 𝜅) for all metrics. (b) Metric–human alignment (Spearman 𝜌) for all metrics.

(c) Model-level alignment for visualization scores. (d) Model-level alignment for natural language/conversation scores.

Figure 7: Lexara metrics are both reliable and aligned with human judgments: (a–b) most metrics show 𝜅 and 𝜌 above 0.6; (c–d)
models with higher Lexara visualization and natural language scores are also preferred by humans.
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