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Figure 1: The SlopeSeeker interface. At the top, the search bar indicates a search for “stocks that increased slowly.” Below
that, the interface includes (from left to right) filter checkboxes showing labels related to “increased slowly” and two search
result tiles, each showing a different stock price over time. The user is hovering over a text annotation in the left result tile. As
a result, the tile’s stock-description text is highlighted in gray, and the corresponding data trend on the stock price chart above
is emphasized in red while other data trends on the chart appear faded.

ABSTRACT
Natural language and search interfaces intuitively facilitate data
exploration and provide visualization responses to diverse ana-
lytical queries based on the underlying datasets. However, these
interfaces often fail to interpret more complex analytical intents,
such as discerning subtleties and quantifiable differences between
terms like “bump” and “spike” in the context of COVID cases, for
example. We address this gap by extending the capabilities of a
data exploration search interface for interpreting semantic concepts
in time series trends. We first create a comprehensive dataset of
semantic concepts by mapping quantifiable univariate data trends
such as slope and angle to crowdsourced, semantically meaningful
trend labels. The dataset contains quantifiable properties that cap-
ture the slope-scalar effect of semantic modifiers like “sharply” and
“gradually,” as well as multi-line trends (e.g., “peak,” “valley”). We
demonstrate the utility of this dataset in SlopeSeeker, a tool that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IUI ’24, March 18–21, 2024, Greenville, SC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0508-3/24/03
https://doi.org/10.1145/3640543.3645208

supports natural language querying of quantifiable trends, such as
“show me stocks that tanked in 2010.” The tool incorporates novel
scoring and ranking techniques based on semantic relevance and
visual prominence to present relevant trend chart responses con-
taining these semantic trend concepts. In addition, SlopeSeeker
provides a faceted search interface for users to navigate a semantic
hierarchy of concepts from general trends (e.g., “increase”) to more
specific ones (e.g., “sharp increase”). A preliminary user evalua-
tion of the tool demonstrates that the search interface supports
greater expressivity of queries containing concepts that describe
data trends. We identify potential future directions for leveraging
our publicly available quantitative semantics dataset in other data
domains and for novel visual analytics interfaces.
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1 INTRODUCTION
Trends are patterns in data that indicate the general change in an
attribute with time [13]. Searching for trends over time is a preva-
lent task in data analysis tools to identify anomalies or deviations
from the normal or expected values in a dataset [6, 18, 34, 40, 54].
Trend analysis has significant relevance across application domains,
ranging from discerning stock market trajectories and economic
fluctuations to studying climate patterns, urban growth patterns,
and monitoring disease epidemiology and health behavior [57].

During the height of the COVID-19 pandemic, for example,
trends in the number of confirmed virus cases were constantly
analyzed and compared between different geographic regions and
time frames to understand the nature of the virus and the impact of
different public health policies and mitigation measures. Enabling
users to search for these types of trends using natural language
(NL) would allow them great power and flexibility to express their
intents. The difference between a “slow increase” and a “rapid in-
crease” in COVID-19 cases could have huge implications for public
policy; similarly, the difference between a stock price “slumping”
and “tanking” is likely to invoke drastically different investment
decisions. The expressive power in these scenarios comes from the
precise, quantified semantics of these words used to describe the
trends, and we argue that there is an opportunity for search tools
to leverage these semantics to interpret expressive user analytical
intents. Specifically, a set of quantifiable semantic labels can provide
useful metadata to necessitate a structured approach to indexing,
classification, and retrieval of trends in a search tool. Metadata
that can encapsulate language that describes slopes and angles can
further enhance the precision and recall of trends in search tools.

Search tools have recently evolved beyond document search,
supporting intents for data exploration and providing results that
include visualizations or widgets displaying data relevant to the
user’s query [50]. Similarly, natural language interfaces (NLIs) for
visual data analysis [3, 7, 19, 24, 49, 51] now enable users to engage
with and query data using NL. However, both these search tools
and NLIs support only basic analytical intents, with limited support
for interpreting temporal trends [9].

Contributions. In this work, we explore the potential of al-
lowing users to search for temporal phenomena in a dataset by
leveraging precise, quantified semantics of language, focusing on
searching for trends in time series data. Specifically, our contribu-
tions are as follows:

• We collect a comprehensive dataset of semantic concepts
describing trends and their quantifiable properties through
crowdsourced data collection experiments. Going beyond
prior work in this space [10], our dataset maps numeric
slopes to semantic trend descriptor words and phrases; for
example, we include slope labels (e.g., “falling”) and slope
labels with modifiers (“slowly falling”), along with multi-
line trends that comprise a combination of “up,” “down,” and
“flat” trend segments (e.g., “peak,” “valley”). We release the

quantified semantic trends dataset publicly1. Based on this
dataset, we also introduce an approach for applying semantic
trend descriptor labels to raw time series data.

• To demonstrate the applicability of our semantic trend labels
dataset, we present the SlopeSeeker tool, which implements
a novel analytical search experience supporting diverse trend
search intents for these labeled trends. SlopeSeeker incor-
porates novel scoring and ranking techniques based on both
the label relevance and visual prominence of trends. The tool
also surfaces a semantic hierarchy of trend descriptor terms
from our dataset, with which the user can interact to filter
results.

• Using the SlopeSeeker tool as a design probe, we conduct a
qualitative study with 12 participants to gain feedback on the
trend querying features in the tool, the system design and
implementation behavior, and how the labeled dataset aids
in returning relevant trend search results. The study verifies
that the trend-focused search paradigm effectively supports
the distinct objectives of searching for pre-identified trend
patterns. Finally, drawing from our observational data and
participant responses, we identify potential directions for
further development of the tool and the underlying semantic
labeled dataset.

• We identify and discuss promising directions for future work
in this space, such as employing LLMs for data augmentation
and generating trend narratives, as well as exploring time
normalization and predictive analytics for more nuanced
interpretations of trend patterns.

2 RELATEDWORK
Prior research relating to search systems in the context of visual
data analysis falls under three main themes: (1) general search
systems, (2) visual query systems, and (3) NLIs for visual analysis.

2.1 General Search Systems
Broadly, general search systems can be categorized into three types:
those built upon structured query languages [16, 23, 27, 46], those
that utilize keywords [14, 15, 26, 37, 61], and those that are based
on natural language processing [15, 17, 21, 38, 39]. Our research
extends the capabilities of general search to support intents that
involve trends and their quantitative properties, i.e., slope and angle
in line charts.

Early research in this area primarily aimed at enhancing con-
ventional text search by integrating metadata using ontological
methods to boost both recall and precision [8, 11, 25, 43]. More re-
cent research has incorporated metadata related to attributes within
curated data sources (e.g., synonyms and interrelated concepts) and
metadata characterizing pre-existing content, such as visualization
techniques, data attributes, and authorship [50]. In this work, we
crowdsource data on the quantifiable semantics of trend descrip-
tor words, specifically focused on capturing the interplay between
language and slope, as well as multi-line trend shapes. This data is
leveraged as metadata to boost precision and recall in the context
of a search tool for retrieving relevant trend results.

1Link: https://osf.io/yzdvt/?view_only=d3723224f9234776a10882eee8b7568a
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To optimize Q&A functionality in semantic search, various sys-
tems have been developed to precisely identify NL patterns. Com-
mon strategies combine statistical methodologies, such as syntactic
parsing with semantic processes, to detect ontology-based con-
cepts within user input. For example, QUERIX [32] integrates the
Stanford CoreNLP parser with WordNet to discern prominent NL
phrases in user queries [35]. Other Q&A frameworks employ lin-
guistic analysis to identify pertinent entities and phrases [55, 58].
SlopeSeeker detects analytical trend intents in the search queries
and finds trends matching the specified quantifiable properties such
as “sharp decline” and “gradual rise” in univariate line charts.

2.2 Visual Querying Systems
Visual querying systems [36] are specifically designed to simplify
the process of identifying desired visual patterns within datasets.
The ZenVisage [52] visual analytics system was designed for this
purpose. Hochheiser & Shneiderman [28] developed a visual query
system for time series data, which relied on an interaction method
of a “time box” by specifying a rectangular region spanning a range
of both time and value. Time Lattice supports interactive analysis
by customizing a data-cube structure for time-series data with an
implicit temporal hierarchy [42]. Zhao et al. employed a KD-tree
to speed up temporal queries to assist analysts in exploring the
local pattern details of interest [62]. However, these systems do not
enable users to employ NL for perusing and exploring the data, nor
does it have the capability to understand quantified semantics in
trends and patterns. Lee et al. subsequently further explored the
space of visual search for data and identified the need for expressive
querying and faceted exploration [36]. Our work focuses on NL
input as a modality for users to express trend patterns in search,
along with faceted browsing to drill up and down the hierarchy of
semantic concepts describing these trends.

Continuing this theme of research, Siddiqui et al. introduced
ShapeSearch [53] to facilitate the search for specific patterns through
sketching, NL, and visual regular expressions. However, the tool
does not support the interpretation of quantified semantics for
trend descriptors. While basic descriptors like “up” or “down” are
supported, the tool does not accommodate variations in slope and
magnitude properties present in trend patterns. In addition, there is
no integration of text with the charts to provide additional context
to the user during their search task. Our work further explores
the nuances of trend patterns and their properties using NL as
the modality for expressing such queries. We also integrate text
with the search results, along with faceted browsing, to provide
additional information and expressivity for navigating the search
results.

Bromley and Setlur [10] recently established an approach for
labeling semantic visual features in line charts and proposed its
use in supporting the search of shape descriptors for trends. We
further improve upon this work by carefully designing our experi-
ments and curating our dataset to leverage the precise semantics
of trend descriptor words, trend descriptors with modifying ad-
verbs, and multi-line shape trends. In particular, our experiments
are aimed at understanding nuances between singleton slope labels
(e.g., “falling”), slope labels with modifiers (“slowly falling”), and

multi-line trends that comprise sequential combinations of line
segments (e.g., “peak,” “valley”).

2.3 NLIs for Visual Data Analysis
NLIs for visual analysis are designed to facilitate analytical Q&A [3,
7, 24]. They generate charts based on inferred user intent and sub-
sequently introduce ambiguity widgets, allowing users to modify
predefined system selections. Both Eviza [49] and Analyza [19]
operate upon this premise by integrating contextual inferencing
capabilities. Other systems, such as Evizeon [31] and Orko [56], ex-
plore the support of pragmatics within an analytical conversation,
leveraging an understanding of the conversational context in play.
Flowsense enables NL-based interactions in a dataflow system [60].
However, the scope of these NLIs focuses on the general support
of analytical inquiry and does not consider the interpretation of
intents specific to trends and their semantic concepts.

The iGraph system [22] focuses on querying trends observed in
line graphs; however, the linguistic model employed in the system
provides limited support for querying trends and their semantic
features pertaining to their quantifiable properties in their slope
features. Hoque et al. presented a comprehensive overview of the
existing landscape of chart question-answering systems [30]. Their
survey identified opportunities for supporting more open-ended
queries for visual representations and the use of language and se-
mantics to provide more sophisticated models for Q&A support for
data exploration. More recently, the Olio [50] hybrid search system
combined semantic Q&A search with document-based exploratory
search over data repositories. While the system supports basic ana-
lytical intents such as groupings, filters, geospatial, and temporal
queries, there is limited support for querying specific semantics for
quantifiable concepts such as “gradual,” “sharp,” or “plateau” pat-
terns in trends. Our work further builds upon these search and NLI
systems to support the exploration of trends with a comprehensive
labeled semantic concept map of trends and their properties.

3 CREATION & UTILIZATION OF QUANTIFIED
SEMANTIC LABEL DATASET FOR TRENDS

To support an expressive analytical experience for exploring rele-
vant trends in a time series dataset, having a quantifiable under-
standing of the semantics of the trends can be useful. For example,
while describing a stock price as “slumping” intuitively corresponds
to a less severe decline than “crashing,” quantifying the nuanced
differences between these terms will enable visual data analysis
tools to more easily leverage the words’ expressive power. Brom-
ley and Setlur [10] previously proposed a crowdsourced dataset
of quantifiable visual features for supporting the search of trend
shape descriptors.

However, our experiment design and subsequent analysis extend
beyond their work and address shortcomings in several key areas:

• Greater precision in quantifying slope semantics. In
our experiments, we ask participants to directly label isolated
slopes with trend descriptor labels. In Bromley and Setlur’s
work, participants were instead asked to label line charts
(rather than slopes), making it difficult to isolate the direct
correspondence between labels and quantifiable slopes. For
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instance, a participant may have labeled a particular chart
with the word “soaring,” but each chart contained multiple
line segments, making it difficult to ascertain exactly which
line segments the participant considered to correspond to a
“soaring” slope.

• Identification of nuances between trend descriptors.
We carefully account for and quantify the effect of modi-
fying adjectives or adverbs (e.g., “fast”) on trend descriptor
verbs (e.g., “falling”) when describing trends. By contrast,
Bromley and Setlur treated trend descriptor verbs and modi-
fying adjectives/adverbs as equivalent entities, ignoring the
nuances of how these word types can interact to change the
semantics of a quantified trend description.

• Support for multi-line shape descriptors. We take a
thoughtful approach in dealing with multi-line segment
shapes in the data (e.g., “peak” or “valley”). In Bromley and
Setlur’s work, these shape descriptors were treated as equiv-
alent to slope descriptor verbs and associated with a single
slope.

• Consideration of semantic relationships betweenwords.
Our analysis of collected trend descriptor word data includes
a discussion of suggested semantic relationships (synonym,
hyponym, and hypernym relationships) between trend de-
scriptor words. Bromley and Setlur simply treated all words
as a flat list with slopes assigned along a continuum.

Figure 2: The interface for the data collection web tool used
in Experiment 1. (1) The participant is prompted with a word
and asked to select all arrows that best visualize the word.
Once complete, the participant can click the “Next” button
to proceed to the next word. (2) The participant is shown
13 arrows corresponding to an array of angles between -90°
and 90°. Clicking anywhere inside an arrow’s box applies
the current word as a label to the clicked arrow. Note that
the interface is similar in Experiment 2, except that in (1),
participants are first shown an individual anchor word and
then four compound labels, which can be assigned to arrows
in turn.

3.1 Quantified Semantic Label Dataset
Collection & Analysis

To achieve the advances mentioned above, we designed and con-
ducted three crowdsourced experiments to collect a dataset of quan-
tified semantics for trend descriptor words. We recruited all par-
ticipants through an internal mailing list at an analytics software
company.

We first collected a set of 41 words used to describe trends that
can be mapped to a single quantified slope. We started with the ini-
tial list of 21 verbs from Bromley and Setlur’s work, then removed 5
words (namely “accelerating,” “intensifying,” “decelerating,” “subsid-
ing,” and “bouncing”) that we deemed could not be mapped to single
slope values. We subsequently added six nouns and adjectives from
Bromley and Setlur’s work that correspond to flat slopes (namely
“flatline,” “plateau,” “stagnant,” “constant,” “stable,” and “even”). Fi-
nally, we augmented this list with 19 additional words sourced
from GPT-4 [45] and WordNet [41] by querying for synonyms of
the words already on the list. The synonyms suggested by GPT-4
were manually inspected by the authors to filter out hallucination
responses. Synonyms were only included in the final list if deemed
appropriate by all authors.

In the final set, 17 of these words correspond to negative slopes
in time series data (e.g., “falling,” “dropping”), 14 correspond to posi-
tive slopes (“growing,” “rising”), and 10 correspond to relatively flat
slopes (see examples above). These words collectively formed the
word corpus used for Experiments 1 and 2. For Experiment 3, we
included four words from Bromley and Setlur’s work that described
multi-segment shapes rather than individual slopes (e.g., “peak,”
“valley”). We also included 14 additional multi-segment words from
GPT-4 with an input prompt, “what are the most common multi-
segment words similar to ‘peak’ and ‘valley’?,” for a total of 18 such
words. As before, these words from GPT-4 were checked for appro-
priateness by the authors. The data collected from all experiments
is included as supplemental material.

3.1.1 Experiment 1: Quantifying Precise Slope Semantics for Indi-
vidual Trend Descriptors.

Method. In Experiment 1, our goal was to collect slope informa-
tion for each of our 41 single-slope trend descriptor words. The
tool’s interface (Figure 2) presented a set of 13 arrows whose slopes
ranged from 90° to -90° (straight up to straight down, respectively)
in increments of 15°. Slopes were jittered by ±7° to provide diversity
in the labeled angles. The 7° jitter (just under half of the angle
increment between adjacent arrows) was chosen so that the order
of the arrows being arranged with increasing magnitude from left
to right across the screen would always be preserved. We also made
sure that jittered slopes would not exceed the 90° or -90° boundaries
since an arrow with such a slope would point backward and thus
not make intuitive sense for correspondence with time series data.

The experiment was presented as a sequence of trials, each with
one trend descriptor word, rather than as a single page with all
41 terms present at once. Our reasoning was that we wanted to
reduce cognitive burden and avoid visual clutter. For every trial,
the participants were shown one of the trend descriptor words (e.g.,
“declining”) and were asked to select all of the arrows whose slopes
they felt best described that word. The trials were randomized
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tanking dipping flatlining growing ascending

plunging depreciating plateauing mounting taking off

collapsing diminishing even advancing surging

tumbling slumping unvarying increasing soaring

falling descending stable expanding

-50.0 0.0 50.0
Angle

booming

dropping shrinking static rising

sinking ebbing steady elevating

decreasing fading constant escalating

-50.0 0.0 50.0
Angle

declining

-50.0 0.0 50.0
Angle

stagnating

-50.0 0.0 50.0
Angle

unchanging

-50.0 0.0 50.0
Angle

climbing

Figure 3: Experiment 1: One-dimensional KDEs indicating probability density for each label over the range of -90° to 90°. Peak
probability density was used to sort the labels from the most negative angle (steepest down) to the most positive angle (steepest
up) from the top left (“tanking”) to the bottom right (“booming”), respectively. Note that the distributions are not normal.

for each participant to mitigate the effects of word presentation
order and ensure close to even labeling coverage across words,
even if participants did not complete all trials. When a participant
clicked an arrow to apply a word label, we recorded the arrow
identifier, the arrow slope, the word label, a timestamp of when the
annotation occurred, and a unique anonymous participant identifier
in a PostgreSQL database [48].

Analysis. 80 participants participated in Experiment 1. Overall,
5,346 angle labels were collected for an average of 67 labels per par-
ticipant. Across the 13 arrow positions (see Figure 2), there was an
average of 421 (min=301, max=531) labels and 21 (min=16, max=29)
unique labels per arrow position. The data was analyzed with the
goal of estimating a slope distribution for every label. We employed
Kernel Density Estimation (KDE) [47] as a technique for estimating
the slope distribution for each label, as KDE is a common tool for
estimating the probability density function of a random variable
without making assumptions about the nature of the distribution.
The Gaussian kernel is a common choice for smoothing KDE data

points as the shape is symmetric, it has well-understood mathemat-
ical properties, and, notably, the “bandwidth” KDE parameter can
be interpreted as the Gaussian standard deviation. We selected a
bandwidth parameter of 5° to balance between under-fitting and
over-fitting the per-label angle data – a reasonable scale for the
range being analyzed (-90° to 90°). Figure 3 shows the slope dis-
tribution of each label. It is worth noting that final slope labeling
is not particularly sensitive to choices of bandwidth value. Final
labeling is performed by taking the KDE data point with the highest
probability density at a given angle (i.e., slope). Since we use the
same bandwidth parameter for all data points, changing the band-
width would cause all Gaussian distributions to move up and down
together, changing the absolute density values but not changing the
stack-ranked order. Thus, reasonable changes in bandwidth should
not affect the “winning” label at any point in KDE space.

3.1.2 Experiment 2: Identifying Nuances Between Trend Descriptors
with Modifiers.
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Figure 4: Experiment 2: One-dimensional KDEs indicating probability density for each label over the range of -90° to 90°.
Peak probability density was used to sort the labels from the most negative angle to the most positive angle from the top left
(“sharply collapsing”) to the bottom right (“sharply booming”), respectively. Note that the distributions are not normal.

Method. In Experiment 2, our goal was to assess the impact of
modifier adverbs on the quantified semantics of two-word trend
descriptor phrases, e.g., “slowly falling.” Of the original set of 41
words from Experiment 1, we excluded 10 words corresponding to
flat slopes since we would not expect to use modifiers to change a
label like “constant” or “even” to subsequently refer to a different,
non-zero slope. We thus only considered the remaining 31 words
that corresponded to positive or negative slopes. To create two-
word phrases, we selected two adverbs that wouldmake slopesmore
extreme (“quickly,” “sharply”) and two that would make slopes less
extreme (“gradually,” “slowly”) compared to the anchor label.

For each trial, participants were first shown a verb and asked
to select a single arrow whose slope they felt best matched the
word. This single slope was then used as the label “anchor” so
that participants had a fixed point of reference for the slope labels
with modifiers. The participant was then shown four compound
labels with the anchor word and the modifiers (e.g., “quickly falling,”
“sharply falling”) and asked to select all arrows that were described
by each label. Participants could also choose to discard a compound

label if they did not find it to be meaningful (e.g., “slowly tanking”).
Participants were restricted from assigning a compound label to
the same slope arrow as the anchor word itself, since we expect
the modifying adverbs to always have some effect on the slope of
the verbs they modify. In all other cases, a single slope could be
assignedmultiple compound labels (e.g., a single slope could be both
“quickly tanking” and “sharply tanking”). Similar to Experiment 1,
the trials were randomized such that anchor words were presented
to each participant in a random order. The compound labels with
modifiers were listed in a randomized order for each participant (to
mitigate bias) but not for each trial to avoid disorienting participants.
Whenever a participant clicked an arrow to apply a word label, we
recorded the same data as in Experiment 1 with the addition of the
current modifier word (or an empty string if the user was setting
an anchor arrow).

Analysis. 37 participants participated in Experiment 2. A total of
2,005 labels (excluding anchor words) were collected. Five partici-
pants only picked anchor words; their data was implicitly excluded
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as there were no modifiers to analyze. The remaining 32 partici-
pants had an average of 62 (min=1, max=196) labels per participant.
Of the total labels, 144 were “trashed” label modifications that par-
ticipants did not deem reasonable (e.g., “slowly plunging”). Of the
31 anchor labels, 28 labels were trashed for at least one modification
(“rising,” “sinking,” and “climbing” did not have any trashed modi-
fiers). However, all of these trashed labels were assigned angles by
other participants, so there was no general consensus on what label
modifications were unreasonable. The remaining 1,861 non-trashed
label modifications were spread across all 13 arrow positions (see
Figure 2), resulting in an average of 157 (min=13, max=204) total
label modifications and 33 (min=11, max=49) unique label modifi-
cations per arrow position. The following rules were used to clean
the crowdsourced label data from Experiment 2. In total, 93.4% of
label/modifier pairs passed these tests and were used for subsequent
analysis:

(1) Remove label/modifier pairs where the modifier
anchor ratios for

“slowly” and “gradually” were > 1.0 or “quickly” and “sharply”
were < 1.0; these values were deemed to not be consistent
with the common semantic meaning of those words (e.g.,
the modifier “slowly” should not make the slope of “falling”
more extreme).

(2) Remove label/modifier pairs where the anchor angle against
which the modifiers were compared was 0°; calculating this
scalar modifier

anchor ratio led to a divide-by-zero error.

Slope analysis of compound labels (e.g., “slowly falling”) was
identical to the analysis of singleton labels in Experiment 1. Figure
4 shows the KDE distributions of Experiment 2’s compound labels.

The data from this experiment also enabled the computation of
the overall scaling effect each modifier adverb had on each label’s
associated angle. For example, consider a data point from a single
participant indicating that the “anchor” angle associated with the
label “dropping” is approximately -48°. A subsequent data point
from the same participant indicates that the angle associated with
the compound label “sharply dropping” is -88°. In this case, we can
calculate the scalar effect of the modifier “sharply” to be -88/-48 =
1.8. The slope difference between “dropping” and “sharply dropping”
can thus be quantified: “sharply dropping” is 1.8 times steeper than
simply “dropping” for this participant. We collected these ratios
for all angle/modifier data points across all participants and, as
before, used KDE analysis to estimate a scalar distribution for every
modifier. We again used a Gaussian kernel, and for this analysis, we
used a bandwidth parameter of 0.1 to balance between under-fitting
and over-fitting the data. As shown in Figure 5, in general, “slowly”
reduces slope steepness by a factor of 0.4, “gradually” reduces slope
steepness by a factor of 0.6, and “quickly” and “sharply” increase
slope steepness by factors of 1.3 and 1.5, respectively.

3.1.3 Experiment 3: Supporting Multi-Segment Shapes.

Method. In Experiment 3, we aimed to gather labels for different
shapes found in time series data. Given that such shapes, in general,
can be arbitrarily complex, we focused on performing a relatively
thorough sampling of the space of simple shapes consisting of two
line segments (e.g., peaks, valleys, plateaus, up-ramps, down-ramps,
etc. – see top inset in Figure 6). We define a shape as a pair of con-
nected line segments with varying degrees of (1) inclination angle
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0.4

0 2 4 6 8 10 12

gradually

0.6

0 2 4 6 8 10 12

quickly

1.3

0 2 4 6 8 10 12

sharply

1.5

Scalar Effect on Modified Angle

Figure 5: One-dimensional KDEs indicting the scalar range
over which different label modifiers scaled the base angle
of the label. The solid green line indicates the 1.0 line, and
the labeled dotted blue line indicates the scalar value at the
peak probability density. Notice that “slowly” and “gradu-
ally” have scalar values between 0 and 1 (0.4 and 0.6, respec-
tively), i.e., they reduce the steepness of a label’s angle, while
“quickly” and “sharply” have scalar values greater than 1 (1.3
and 1.5 respectively), i.e., they increase the steepness of a
label’s angle.

between the two lines and (2) overall 360° rotation or orientation.
Using a similar web interface as before (see Figure 6), participants
were asked to label shapes by dragging words from a word list onto
the shapes they felt best matched that word. Shape angles spanned
the range of 0-180°, and shape rotation spanned the range of 0-
360°. Some angle/rotation combinations resulted in non-monotonic
shapes; these were removed from the interface (see Figure 6). Par-
ticipant data was again collected in a PostgreSQL database. Word
lists and shapes were randomly arranged to avoid positional bias.

Analysis.We collected 347 labels from 24 participants for an av-
erage of 14 shape labels per participant. The average shape was
assigned six different labels (min=3, max=9), e.g., one shape was as-
signed the labels “valley,” “trough,” “spike,” and “crash.” Conversely,
the average label was used to describe eight different shapes (min=4,
max=15), e.g., “uptick” was assigned to 12 different shapes. Similar
to Experiments 1 and 2, KDEs were used to describe the label/shape
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Figure 6: Screenshot of the user interface for Experiment 3. Participants dragged descriptive labels from the left onto shapes
on the right. Top Inset: Shapes were generated by transforming two-segment angles: angles became more obtuse from top to
bottom and were rotated from left to right. Non-monotonic shapes (shown in red) were removed and not shown to the user.
Bottom Inset: User labels were recorded in a PostgreSQL database; a snapshot of illustrative data rows is shown.

distributions. However, because shapes were parameterized by both
angle and rotation, Experiment 3 used two-dimensional KDEs in-
stead of one-dimensional KDEs, resulting in 2D density plots in-
stead of 1D density plots like those from Experiments 1 and 2. We
employed Gaussian KDE kernels with a bandwidth of 15°, an em-
pirically derived balance between under-fitting and over-fitting the
data that was a reasonable scale for the values being analyzed (0-
360° for rotation and 0-180° for angle). Also, as discussed above, the
final label selection is tolerant to a reasonable range of bandwidth
values, so extreme precision is not a significant concern.

Since the shape rotation was periodic, the 2D shape KDEs were
made periodic by wrapping them at the 0°/360° boundary. For ex-
ample, say we wanted to know the data density at a rotation of 3°.
To make sure we account for probability density from a point at
355°, we calculated the 3° mark’s virtual point to be 360 + 3 = 363°,
which is influenced by data at the 355° mark after the boundary
wrapping. We then summed the data for the 3° mark and the 363°
mark to calculate the final reported value. To calculate periodic-
ity, the 0°/360° boundary overlapped by ±3*bandwidth = ±45°. The
±3*bandwidth overlap was chosen because three standard devia-
tions (for Gaussian KDE, bandwidth = standard deviation) include
99.7% of the Gaussian distribution. Figure 7 shows the 2D KDE
plots for Experiment 3.

Quantifying Semantic Relationships.We were also interested
in exploring how the quantitative labeled data from the experi-
ments could inform the creation of a semantic ontology akin to
Wordnet, where semantic concepts are linked by various semantic
relations such as synonyms and hypernym/hyponym (superordi-
nate/subordinate) relations [41]. Such a structure could be useful for
supporting faceted search behavior to drill down or up the semantic
hierarchy.

Figure 8 shows a scatterplot of the median, mode, and IQR for the
angle distribution of each Experiment 1 label. Wider IQRs are placed
higher up, highlighting that the angle ranges of some labels could
subsume the angle ranges of other labels, suggesting a hypernym-
hyponym relationship (e.g., “rising” subsumes “climbing” and thus
could act as a hypernym).

While the quantitative semantic data shown in Figure 8 suggest
synonym or hypo/hypernym relationships that might be derived
(plateauing >= stable >= steady >= ...), many of the relationships
appear to be more nuanced and suggestive of either partial or multi-
category hyponymy and hypernymy. For example, “ebbing” could
perhaps be considered a partial hypernym of “fading;” there is
a partial subsumption relationship, but at the extrema, “ebbing”
suggests a more positive angle while “fading” suggests a more
negative angle. Similarly, “tumbling” could be seen as a hyponym of
both “falling” and “diminishing.” While these statistical methods are
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Figure 7: A grid showing a two-dimensional KDE plot for
every shape label. Angles range from 0-180° along the 𝑥-axis
and 0-360° along the 𝑦-axis. The 𝑦-axis is periodic; thus, the
probability density is continuous across the 0°/360° border.

quite basic, they suggest that future quantitative semantic analysis
could inform the automatic creation of semantic networks and
ontologies.

Across the three experiments, we collected 7,554 crowdsourced
labels for slopes (5,346 labels), adverb-modified slopes (1,861 labels),
and shapes (347 labels), and the data is publicly available in the
supplementary material.

3.2 Labeling Events in Time-Series Data
Once the KDE distributions for both slope labels and shape labels
were established, we aimed to use these distributions to label new
time series data represented as raw, univariate input signals.

At a high level, the algorithm for label assignment is as follows:
decompose the input signal into linear segments, calculate angles
and rotations over those segments, use those angles and rotations
to index into the KDEs from the three experiments, and discover
appropriate labels. Before we could execute these steps, however,
we needed to account for a discrepancy between the aspect ratio
of the slope arrows labeled in our data collection experiments and
the stock data charts that we plan to use to display stock data in
SlopeSeeker.

Say that in a chart with a 1:1 aspect ratio, a participant labeled a
45° angle (slope of 1.0/1.0 = 1.0) as “ascending.” If we stretched that
same chart to be 100x as wide as it was tall (aspect ratio = 1:100), the
participant would probably label that slope as “flat.” Conversely if
we compressed the chart to be 100x as tall as it waswide (aspect ratio
= 100:1), the participant would likely label that slope as “soaring.”
Thus, it seems reasonable to account for aspect ratio when labeling

the perceived “steepness” of a line. In this example, we are analyzing
a slope where the stock price increased 100% in 100% of the time –
that is, it spanned an equal distance along both the 𝑥 and 𝑦 axes.
In a chart with a 1:1 aspect ratio, this slope would be 1.0/1.0 =
1.0 = 45°, and we would label it “ascending” per the participant’s
input. However, when we present the chart visually to the user, we
present it with an aspect ratio of approximately 3:1, stretching the
𝑥-axis such that the same [0.0, 1.0] span looks three times longer
on the 𝑥-axis than the 𝑦-axis. This leads to a perceived slope of 1/3 =
0.333 = 18.4°. Thus the user actually sees a line with a slope of 18.4°,
not 45°, and the “ascending” label looks incorrect because an 18.4°
slope, according to our crowdsourced data in Figure 3, is closer to
“growing” or “mounting” than to “ascending.” The core issue is that
the participant labeled a perceived 45° angle as “ascending” and then
we showed them a perceived 18.4° angle and labeled it (seemingly
incorrectly) as “ascending” because we did not compensate for the
aspect ratio of the visual presentation. While we realize that there
is no “correct” data transform as such for this scenario, it seems
reasonable that the labeled angle from the input tool should look
like the labeled angle in the visual output. Without accounting for
the aspect ratio of how the data is presented, the angle and rotation
calculations would thus not be true to our collected crowdsourced
data. To resolve this issue, we made two observations:

(1) Participants labeled angles in a user interface with an aspect
ratio of 1:1, meaning that the visual space was “square.”

(2) The quality of “steepness” is, to a large degree, perceptual and
anchored to both the time range we are analyzing and the
shape (aspect ratio) of the chart and how lines are drawn on
that chart. Note that this has nothing to do with display size
or display device configuration or resolution; this aspect ratio
correction is necessary because these labels are perceptual
labels, not absolute data labels, and as such, we need to
correct for the perceived change in angle when a chart is
compressed or expanded to an aspect ratio other than 1:1.

Our goal was to design an algorithm that would provide percep-
tually reasonable results; in particular, slope labels in the output
visualizations should visually correspond to the slope labels in the
data collection experiments. To this end, we transform the input sig-
nal in two ways before we perform the analysis. First, we normalize
both the temporal measure (𝑥-axis data) and the stock-price mea-
sure (𝑦-axis data) to span the range [0.0, 1.0], placing both measures
on the same scale.

We then scale both measures by the aspect ratio of the expected
visual presentation, in this case, 3:1. As a result, the 𝑦-axis spans
the range [0.0, 1.0], and the 𝑥-axis spans the range [0.0, 3.0]. This
causes the [0.0, 1.0] span of the 𝑥 axis to be the same perceived
distance as the [0.0, 1.0] span of the 𝑦 axis. Thus, a line that spans
equal distances along the 𝑥− and 𝑦-axes (say, 0.5 along both) will
have a perceived slope of 0.5/0.5 = 1.0 = 45° and will be labeled
“ascending” as expected.

Following this axis normalization, we proceeded to identify and
label temporal stretches of raw input data. The first step was to
decompose the input signal into consecutive linear segments using
the Ramer-Douglas-Peucker signal linearization algorithm [20] as
implemented in the rdp python package (https://pypi.org/project/
rdp/). Epsilon values for the Douglas et al. algorithm, which control

https://pypi.org/project/rdp/
https://pypi.org/project/rdp/
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Figure 8: A scatter plot suggesting implicit semantic hierarchies. The 𝑥-axis shows the angle range to which the label has been
assigned by experiment participants, and the 𝑦-axis indicates the width of the inter-quantile range (IQR) of the label angle
distributions; labels with a broader definition (applicable to more angle ranges) are at the top, labels with narrower definitions
are at the bottom. The blue lines indicate the IQR for each label, the blue dots indicate the center of the IQR, and the gray dots
indicate the location of the peak value (mode). Note that the label distributions are not normal (see Figure 3), so the mode may
lie outside of the IQR.

allowable linearization error and thus the length and scale of the
linear stretches, were empirically chosen as 0.03, 0.1, and 0.2 to
provide three different linearization resolutions relevant to the
stock data under analysis (these values could be adjusted for specific
datasets and analyses).

We then determined labels for these linear segments. For single-
segment temporal stretches, we first calculated the slope of the
segment. We used that slope to index into all the single-label (Ex-
periment 1) or compound-label (Experiment 2) 1D KDEs. The label
whose KDE returned the highest probability density was chosen as
the label for that segment. Since the KDE models are a continuous
surface (1D for Experiments 1 and 2, and 2D for Experiment 3), any
data point (i.e., line segment) – even one that is far away from all
labels – will always return a non-zero probability density score, re-
sulting in some (possibly inappropriate) label. To resolve this issue,
we took the set of all segment labels (one label per segment), sorted
them by their probability density, and only used the top-scoring
75% of labels for the SlopeSeeker database. Examples of segment
labeling with single-label and compound-label are shown in Figure
9 and Figure 10, respectively. For two-segment (shape) temporal
stretches, the process was very similar. We first calculated the angle
and rotation of each shape. We then used the angle and rotation to

index into all the 2D label (Experiment 3) KDEs and kept the top
75% of labels. Examples of shape labeling are shown in Figure 11.

To support the querying of superlative features within a trend
(e.g., “maximum,” “minimum,” “highest point”), we additionally
identify the highest and lowest values over the length of the time
series data. An event consisting of 15 days before and after the
maximum or minimum is subsequently incorporated into the event
label to result in month-long labeled events that are visually easy
to locate (see Figure 12).

3.3 Visual Saliency Scoring
Prior research has shown that line chart annotations that empha-
size the most visually prominent features of the chart are more
effective at helping readers glean meaningful takeaways [33]. To
operationalize this concept during search, we establish a way to
quantify the visual saliency of each labeled trend event. Otherwise,
it would be difficult to identify the most relevant results for a given
search query when several matching results could have the same
labels based on slope. Consider the simple case in Figure 13; while
both events match a user query of “gradually increasing” based on
slope, the event that occurred during 2016 intuitively appears more
prominent and impactful than the event in 2015.
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Figure 9: Experiment 1: Angle label assignment. The three
sub-charts correspond to the three levels of linearization.
The x axis indicates time, and the y axis indicates stock price.
The original stock data (top) uses the original date and stock
value for the x and y axes, respectively. The remaining three
charts use normalized x and y values, scaled by the chart’s
3:1 aspect ratio, resulting in an x range of [0.0, 3.0] and a y
range of [0.0, 1.0]. For clarity, only the top 25% of labels are
shown.

The intuition behind our visual saliency scoring approach is
to view each trend event as a vector that covers some of the en-
compassing chart’s visual space in both the 𝑥 direction (i.e., the
temporal range of the trend) and in the 𝑦 direction (i.e., the value
range of the trend).

Algorithm 1 Visual saliency computation algorithm

for each trend result (single-segment slopes): do
Compute the 𝑥 vector component as the ratio of the entire

time range taken up by the trend.
Compute the 𝑦 vector component as the ratio of the entire

data value range taken up by the trend.
Take these two vector components and use the Pythagorean

theorem to compute the L2 norm.
end for
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Figure 10: Experiment 2: Angle label assignment. The three
subcharts correspond to the three levels of linearization. The
x axis indicates time, and the y axis indicates stock price.
The original stock data (top) uses the original date and stock
value for the x and y axes, respectively. The remaining three
charts use normalized x and y values, scaled by the chart’s
3:1 aspect ratio, resulting in an x range of [0.0, 3.0] and a y
range of [0.0, 1.0]. For clarity, only the top 25% of labels are
shown.

Formally, we use the following equation (or see Algorithm 1 for
a procedural representation):√︄(

𝑥𝑒𝑣𝑒𝑛𝑡𝑒𝑛𝑑 − 𝑥𝑒𝑣𝑒𝑛𝑡𝑠𝑡𝑎𝑟𝑡

𝑥𝑐ℎ𝑎𝑟𝑡𝑚𝑎𝑥
− 𝑥𝑐ℎ𝑎𝑟𝑡𝑚𝑖𝑛

)2
+
(
𝑦𝑒𝑣𝑒𝑛𝑡𝑒𝑛𝑑 − 𝑦𝑒𝑣𝑒𝑛𝑡𝑠𝑡𝑎𝑟𝑡

𝑦𝑐ℎ𝑎𝑟𝑡𝑚𝑎𝑥
− 𝑦𝑐ℎ𝑎𝑟𝑡𝑚𝑖𝑛

)2
where 𝑥𝑒𝑣𝑒𝑛𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑒𝑣𝑒𝑛𝑡𝑒𝑛𝑑 are the data values on the 𝑥 axis
at the start and end of the event (and likewise for 𝑦𝑒𝑣𝑒𝑛𝑡𝑠𝑡𝑎𝑟𝑡 and
𝑦𝑒𝑣𝑒𝑛𝑡𝑒𝑛𝑑 ). Using similar notation, 𝑥𝑐ℎ𝑎𝑟𝑡𝑚𝑎𝑥

and 𝑥𝑐ℎ𝑎𝑟𝑡𝑚𝑖𝑛
are the

maximum and minimum data values on the 𝑥 axis over the entire
time period of the chart (and likewise for 𝑦𝑐ℎ𝑎𝑟𝑡𝑚𝑎𝑥

and 𝑦𝑐ℎ𝑎𝑟𝑡𝑚𝑖𝑛
).

Intuitively, trends described by words like “tanking” will mostly
be short in 𝑥 , in which case the most visually salient results will
have the largest change in 𝑦. On the other hand, we anticipate that
trends described by words like “flatline” will have little change in 𝑦,
and so their visual salience will mostly depend on the duration in
𝑥 . However, an intuitive correspondence between trend labels and
their visual span in 𝑥 or 𝑦 does not need to hold for our scoring to
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Figure 11: Experiment 3: Shape label assignment. The three
subcharts correspond to the three levels of linearization. The
x axis indicates time, and the y axis indicates stock price.
The original stock data (top) uses the original date and stock
value for the x and y axes, respectively. The remaining three
charts use normalized x and y values, scaled by the chart’s
3:1 aspect ratio, resulting in an x range of [0.0, 3.0] and a y
range of [0.0, 1.0]. For clarity, only the top 25% of labels are
shown.

provide a useful quantification of visual saliency. Consider again the
two events in Figure 13, both labeled as “gradually increasing”. The
event during 2016 is longer temporally (i.e., 𝑥𝑒𝑣𝑒𝑛𝑡𝑒𝑛𝑑 − 𝑥𝑒𝑣𝑒𝑛𝑡𝑠𝑡𝑎𝑟𝑡
is greater) and spans a larger value range (i.e.,𝑦𝑒𝑣𝑒𝑛𝑡𝑒𝑛𝑑 −𝑦𝑒𝑣𝑒𝑛𝑡𝑠𝑡𝑎𝑟𝑡
is greater), therefore giving it a higher saliency score.

For multi-segment shapes, we compute the 𝑦 vector component
using the max and min values of 𝑦 over the duration of the shape
event rather than the start and end values. More precisely, we use
𝑦𝑒𝑣𝑒𝑛𝑡𝑚𝑎𝑥

−𝑦𝑒𝑣𝑒𝑛𝑡𝑚𝑖𝑛
in the equation above rather than 𝑦𝑒𝑣𝑒𝑛𝑡𝑒𝑛𝑑 −

𝑦𝑒𝑣𝑒𝑛𝑡𝑠𝑡𝑎𝑟𝑡 .
The final labeled stock data loaded into the SlopeSeeker tool

contains 8,353 data points (labeled events) for 100 different stocks
over a three-year period (2014 – 2016).

4 SLOPESEEKER TOOL
We developed SlopeSeeker as a search tool to operationalize our
dataset of quantified semantic trend labels. In this section, we first

Figure 12: The highlighted event shows the global maximum
for this stock over the entire time series.

Figure 13: The two highlighted events have identical labels
based on their slopes, but the event during the year 2015 is
less visually salient than the event during 2016.

describe the tool’s architecture and interface. We then detail the
search framework underlying SlopeSeeker’s functionality and
how results are scored. We also outline the different types of trend
queries supported by the tool – single trend events (e.g., “sharp
increase” or “peak”) and arbitrary event sequences (e.g., “up, down,
flat”).

4.1 Architecture Overview
SlopeSeeker is implemented as a web-based application using
Python and a Flask backend [2] connected to a React.js frontend [4].
For data storage and retrieval, we employ Elasticsearch [1], a ro-
bust distributed search platform built on the open-source Apache
Lucene. The platform offers scalability of data and real-time index-
ing for fast querying. We employ a RESTful API for easy integration
with SlopeSeeker. Figure 14 illustrates the tool’s architecture, with
the following main components: a semantic parser (Section 4.3),
a search index, and an interface manager that facilitates commu-
nication between these back-end components and the front-end
interface to implement our end-to-end search framework (Section
4.4).

4.2 Interface
SlopeSeeker’s interface (Figure 15) is designed to provide an ex-
perience similar to that of a common web search engine. The user
is presented with a search box (Fig. 15.1), enabling them to enter
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Figure 14: SlopeSeeker architecture overview.

a query to search for a trend of interest. After a query has been
typed and the Enter key is pressed (or the magnifying glass search
button is clicked), results appear as tiles below the search bar (Fig.
15.4). Each tile corresponds to one stock and shows a line chart of
the stock price over time, the stock ticker, the number of matches
for the input query for that stock, and text snippets (composed
into a single sentence) describing up to the three highest-scoring
matches for the stock. The time periods corresponding to these
highest-scoring matches are also emphasized in a red color in the
line chart. Each emphasized chart segment is interactively and bi-
directionally linked with its dedicated text snippet, which describes
the corresponding segment’s trend label, start date, and end date.
Hovering over a chart segment fades out other emphasized seg-
ments and will highlight the corresponding text in gray; hovering
over a text snippet works similarly. If a stock has more than three
matches, the user can expand the tile to show a list of the rest
of the matches; hovering over each list item then highlights the
corresponding trend in the line chart.

When results do not exactly match the user input, a notifica-
tion box (Fig. 15.2) informs the user which terms are not being
matched exactly. The faceting sidebar (Fig. 15.3) allows users to
optionally filter the results to only include specific labels of interest.
The checkbox filters are nested hierarchically by individual label
families, e.g., “soaring” is a parent of both “slow soaring” and “fast
soaring,” based on the notion of semantic hierarchy discussed at
the end of Section 3.1.3.

4.3 Semantic Parser
We implement a semantic parser module for parsing trend search
queries that contain semantic labels, attributes, and temporal filter
attributes. Given that the premise of SlopeSeeker is to demonstrate
the utility of the quantified semantic trends dataset in the context of
a search tool, we focused on supporting the interpretation of queries
specifically intended to search for trends within the stock data.

Prior research has demonstrated the effectiveness of a semantic
parser in converting NL into a structured representation, which
allows for explicit reasoning, reduced ambiguity, and consistent
interpretation [59]. Semantic parsers also provide the convenience
of better traceability and are performant for structured tasks. Future
work could consider combining both semantic parsers for structured
tasks and LLMs for open-ended tasks in the context of a more
comprehensive analytics tool.

We implement our semantic parser using an open-source Python
NLP library, SpaCy [29], that employs compositional semantics to
identify tokens and phrases based on their semantics to create
a valid parse tree from the input search query. The parser takes
as input the individual tokens in the query and assigns semantic
roles to these tokens. The semantic roles are one of four categories:
(1) event_type (single or multi-sequence), (2) trend_terms (e.g.,
“tanking” or “plateau”), (3) attr (data attribute names such as stock
ticker symbols or company names), and (4) date_range (absolute
and relative data ranges). The tokens and their corresponding se-
mantic roles are translated into a machine-interpretable form that
can be processed to retrieve relevant search results in SlopeSeeker.
For an input search query, “Show me when Alaska Airlines was
tanking before November 2016,” the parser output is as follows:

4.4 Search Framework
The goal of the search framework is to take the trend_terms tokens
identified by the parser (as well as the attr and date_range, if
applicable) to return relevant results. Each labeled trend event
is considered an Elasticsearch “document” in our search context.
Documents are the basic units stored in an Elasticsearch index.
Once added to the search index, indexed documents can be first
retrieved and then ranked according to a match score. We combine
Elasticsearch’s built-in scoring logic with our own visual saliency
score to produce a scoring mechanism tailored to our use case.
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Figure 15: The SlopeSeeker interface. (1) The search box accepts natural language search queries from the user. (2) The
notification box informs the user of inexact matches in the search results. (3) The faceting sidebar enables hierarchical filtering
of the results. (4) Search results are shown as interactive tiles containing line charts and textual annotations.

Finally, matching documents are grouped by their parent chart for
presentation to the user.

4.4.1 Indexing. The indexing phase creates indices for each doc-
ument in a dataset along with their metadata. Each of the 𝑛 docu-
ments (i.e., each labeled event – a portion of a line chart identified
by a chart ID, start point, end point, and set of labels) is represented
as a document vector 𝑑𝑖 where:

D = {𝑑1, 𝑑2, · · · , 𝑑𝑛}
We also store sets of string tokens from each document vector to
support both partial and exact matches at search time:

S = {𝑠1, 𝑠2, · · · , 𝑠𝑛}

where 𝑠𝑖 = 𝜀 (𝑑𝑖 ) for an encoding function 𝜀 that converts each
document vector into a set of string tokens. The original vectors
D and encoded tokens S are stored in the semantic search engine
index by specifying the mapping of the content, which defines the
type and format of the fields in the index. In other words, each
semantic trend label and its associated stock data are stored as
tokens in the search index in multiple processed formats (i.e., in
different fields), enabling fast and flexible retrieval at search time.
This indexing enables full-text search on the labels in the index,
supporting exact-value search, fuzzy matching to handle typos and
spelling variations, and n-grams for multi-word label matching. A
scoring algorithm, tokenizers, and filters are specified as part of the
search index settings.

4.4.2 Search (Individual Documents). The search phase can be con-
ceptualized as having two steps – retrieval and ranking. For re-
trieval, consider a user input query 𝑞 that is represented as a query
vector 𝑞 with query tokens 𝑞1, 𝑞2, · · · , 𝑞 𝑗 . We encode 𝑞 into string
tokens using the same encoding function 𝜀 from indexing, such

that 𝑠 = 𝜀 (𝑞). The search retrieval process then returns the most
relevant 𝑟 document vectors R = {𝑑1, 𝑑2, · · · , 𝑑𝑟 } based on the de-
gree of overlap between the set of query string tokens 𝑠 and the
document string tokens inS. Specifically, the scoring function 𝑟𝑚𝑎𝑥

maximizes search relevance as follows:

{𝑑1, 𝑑2, · · · , 𝑑𝑟 } = 𝑟𝑚𝑎𝑥 𝑖∈{1,2,· · · ,𝑛} |𝑠 ∩ 𝑠𝑖 |

For search inputs that contain both a noun/verb descriptor (e.g.,
“decline”) and a modifying adjective (e.g., “fast”), we subsequently
filter out partially matching documents that contain only the ad-
jective. This logic would prevent a query of “fast decline” from
returning documents labeled “fast increase” as partial matches, for
example. More formally, if 𝑠 contains at least one token that matches
a noun/verb descriptor in at least one document, then every match-
ing document 𝑑𝑖 must contain that descriptor in its set of string
tokens 𝑠𝑖 . However, users may still enter search queries consisting
only of an adjective and see documents where that adjective is
paired with a variety of noun/verb descriptors.

After retrieval, SlopeSeeker ranks document results based on
two components. The first component is how precisely the search
term matches the event labels of the document. Consider a docu-
ment with a single event label. We utilize a simple scoring scheme
where this document’s score is the frequency with which the search
terms occur in its label, divided by the length of its label, i.e., events
with longer labels (e.g., those with modifying adjectives like “slow”
or “fast”) will be scored higher than events with shorter labels if
and only if the additional tokens accounting for the added length
match the search terms. (Note that only trend_terms parsed search
tokens affect scoring, while attr or date_range tokens are simply
used during retrieval to filter results.)

Consider a document 𝑑1 with the label “slow climbing.” For a
search query of “slow climbing,” the score for the document would
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be 2√
12

≈ 0.577 since it has 2 matching tokens and 12 non-space
characters in its label, and thus the label score for 𝑑1 for this search
would be 0.577. Now additionally consider document 𝑑2 with the
label “climbing” and a query concerning stocks that are “climbing.”
The label score for 𝑑1 will be 1√

12
≈ 0.289 while the label score

for 𝑑2 will be 1√
8
≈ 0.354, demonstrating how longer labels with

the same number of matching tokens are penalized for being less
precise matches.

The second scoring component is the visual saliency score of
the document’s labeled event (Section 3.3), and the final composite
score used to rank events in the results is then the product of the
Elasticsearch and visual saliency components. The visual saliency
component of scoring is most useful when there are a large number
of matching results for a user query. Consider a case where the
user is interested in “stocks that increased.” There could feasibly
be very many document results with a label of “increasing” which
will all have identical (or at least very similar) Elasticsearch scores.
However, these results are not likely to all be of equal interest to
the user. For instance, a short three-day increase in stock price is
probably less interesting, both visually and in terms of the analytical
task at hand, compared to a three-month increase during which
much more stock value was gained. (Note that these could both
have similar slopes and thus identical labels.) The visual saliency
scoring component thus serves as a tiebreaker to boost results with
greater prominence and relevance over others that share identical
labels.

4.4.3 Bucketing. The indexed data and result scoring are at the
level of the document, where each document is an event, i.e., a
labeled slope segment. Any individual chart (e.g., stock) could have
multiple matching events for a query. Events within a bucket are
sorted by their composite score. Buckets themselves are also scored;
the final score for each bucket is the sum of the composite scores
of its individual events, and buckets are presented in sorted order
according to this final score. We chose this scheme to create an
experience akin to standard document search, where more matches
in a bucket bump that bucket higher in the results. Figure 16 demon-
strates the differences between high-scoring results (buckets) for
the queries “falling slowly” and “falling fast,” respectively.

4.4.4 Sequence Queries. A sequence query consists of a list of
trend events (single-word or multi-word) in a specified order, and
the sequence query results are generated as follows. First, each
individual constituent event is run through Elasticsearch as its
own single-word or multi-word query but not yet bucketed. Then,
sequences are constructed by taking these results and performing
an SQL join based on chart identifier and start/end dates (with
a tunable parameter to allow for some temporal delay between
adjacent events).

We also have partial matching support for sequences. In partic-
ular, we support two types of sub-sequences: edge sub-sequences
(e.g., examples for “up, flat, down” include “up” and “up, flat”) as
well as other in-order sub-sequences (e.g., examples for “up, flat,
down” include “flat,” “down,” and “flat, down”).

We additionally define a scoring scheme for sequences and par-
tial sequence matches. At first, each sequence’s score is assigned
to be the sum of the composite scores of its constituent segments.

Figure 16: Users can employ modifying adjectives such as
“slowly” (bottom) or “fast” (top) to provide SlopeSeeker
with semantic information about the types of trends they
want to see.

Although partial matching sequences have fewer constituent com-
ponents and will generally have lower composite scores than full
matches, we found it beneficial to additionally down-weight the
composite scores of partial sequence matches. In particular, we
use the following formula where the un-penalized score is notated
score0, the number of events in the sequence being scored is no-
tated 𝑙𝑠𝑒𝑞 , the number of events in the query is notated 𝑙𝑞 , and the
sequence offset is the number of sequential events missing from
the beginning of the sequence compared to the query:

score0
(

𝑙𝑠𝑒𝑞

𝑙𝑞 + offset𝑠𝑒𝑞

)2
This custom scoring scheme applies two different penalties. First,

longer sub-sequences (𝑙𝑠𝑒𝑞 ≈ 𝑙𝑞 ) are penalized less and thus scored
higher than shorter ones (𝑙𝑠𝑒𝑞 < 𝑙𝑞). For example, if the user is
interested in stocks with the pattern “up, flat, down” which has
length three, a sub-sequence of length two (e.g., “up, flat”) will
be scored higher than a sub-sequence of length one (e.g., “up”)
because the sub-sequence matches more constituent events of the
sequence. Second, a non-edge sub-sequence (with a large offset)
will be penalized and scored lower than an edge sub-sequence (with
zero offset). Continuing with the same example, the sub-sequence
“up, flat” has zero offset because it begins at the same place as the
initial query pattern, but “flat, down” has an offset of one since
it starts one event later in the sequence. Intuitively, sub-sequence
partial matches that begin similarly to the desired sequence from
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Figure 17: A top search result when the user searches for the
sequence “up, down, up.” Each color corresponds to a unique
position in the sequence.

the query should be scored higher than those that end similarly to
the desired sequence. Finally, after applying any score penalties to
the sequence results and any partial results, all results are bucketed,
and the bucket scores are computed as before.

5 PRELIMINARY EVALUATION OF
SLOPESEEKER

Using SlopeSeeker as a design probe, we conducted a prelimi-
nary evaluation to gather feedback on the utility of the quantified
semantic label dataset in the context of a search tool for trends.

5.1 Participants and Setup
We recruited 12 participants (P1-P12, six male and six female)
through a mailing list at an analytics software company. Partic-
ipants volunteered their time on a first-come, first-served basis,
and due to company policy, they were not compensated for their
participation. Based on self-reporting, participants comprised three
data scientists, three sales consultants, two product managers, one
program manager, one account executive, one UX researcher, and
one HR analyst. Half of the participants reported that they perform
data analysis on a regular basis (daily or almost daily), while the
other half reported that they occasionally perform data analysis
(weekly or biweekly). All participants reported that they regularly
use a search tool like Google.

All sessions were conducted in person. The SlopeSeeker tool
was hosted on a local server running on the experimenter’s laptop2.
The audio, video, and on-screen interactions were recorded for all
sessions after receiving permission from each participant.

5.2 Procedure
Study sessions lasted about 45 minutes and followed the protocol
outline below:
[∼10 min.]: Participants were given an overview of the evaluation
andwere asked to self-report their relevant background information
in visual analysis. Participants were then briefly introduced to the
SlopeSeeker interface. The introduction included the capabilities

22.4 GHz MacBook Pro running macOS Ventura 13.5 set to a resolution of 3072 × 1920.

Figure 18: Participant responses to post-session questions
about utterance recommendations in SlopeSeeker. State-
ments were rated on a scale of 1 (Strongly Disagree) to 5
(Strongly Agree).

of the search tool without providing any explicit NL queries to
avoid biasing participants.
[∼25 min.]: Participants were given a set of four tasks involving a
dataset of labeled time series stock data and were asked to complete
the tasks using SlopeSeeker. The first three tasks were designed
to prompt users to utilize at least one of the types of supported
queries, i.e., single slopes (downward and upward slopes) and multi-
segment shapes. The task prompts were as follows: (1) “find an
instance where a stock gained a lot of value (in a certain year
or time frame),” (2) “Find an instance where a different stock lost
only a small amount of value,” and (3) “Find two stocks whose price
followed this pattern” (showing a visual of a valley). The fourth task
was open-ended, wherein participants were prompted to identify a
stock they would want to invest in based on the historical patterns
of stock prices in the dataset.
[∼10 min.]: The sessions concluded with a post-session question-
naire (Figure 18), ten questions from the standard System Usability
Scale (SUS) questionnaire [5] to help evaluate the prototype’s us-
ability, and a semi-structured interview discussing participants’
overall experience using SlopeSeeker for trend search and areas
for further improvement.

The SlopeSeeker tutorial, study protocol, and questionnaire are
included in the supplementary material.
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5.3 Results and Discussion
Overall, participants found SlopeSeeker to be a useful tool for
searching and exploring trends in the stock data. We detail partic-
ipant feedback and usage behavior with respect to the tasks and
open-ended exploration during the evaluation. All participants were
able to complete the four tasks, spending between 16–22 minutes
(mean: 18 min.). Participants gave SlopeSeeker an average SUS
score of 79.4 (a score of ≥ 68 is considered as an indicator of good
usability [5]).

5.3.1 Intuitiveness of Interface to Search for Trends. Participants
generally agreed that SlopeSeeker was intuitive for trend explo-
ration (Figure 18, Q1). For instance, P2 found the interface and the
faceted search to be similar to that of familiar search systems –
“This looks similar to Google and Amazon, and I could get started
right away.” Participants predominantly used the facet filters to
see more general and specific trends such as navigating between
“slight increase” and “increase.” P7 noted the “ability to drill down
into a specific trend description” by using the faceted search options.
Participants also found the display of results in the interface to be
useful. P1 commented, “I like the tile-like view of all the trends. Helps
with quick glanceability, and I know what’s going on.”

5.3.2 Interpretation of Search Queries. Participants indicated that
SlopeSeeker appropriately interpreted their search queries for sin-
gle slopes and multi-segment shapes (Figure 18, Q2). However, we
noticed that the quality of search results deteriorated when queries
included additional information such as relative time periods (e.g.,
“did the apple stock go up recently?”), subjective concepts (e.g., “best
stocks to buy in 2014”), or attributes that were not included in
our stock dataset. However, all participants appreciated the text
accompanying each trend result that showed the quantifiable trend
with the corresponding trend segment in the chart upon hover (Fig-
ure 15.4), commenting, “this is pretty neat” [P5] and “I can compare
the labels for what ‘cliff’ means and see it visually. That’s helpful to
know what’s going on” [P11].

5.3.3 Relevance of Search Results. Generally, participants were
in agreement that the search results were relevant to their input
queries (Figure 18, Q3 and Q4). Participants specifically appreciated
that the tool could differentiate between nuances in quantifiable
semantics in the trends. P7 cited an example from her session and
said, “Wow, I asked for trends that hit a cliff in 2014, and it’s pretty
cool to see an array of results with cliffs in them.” Others found
SlopeSeeker’s capability to detect a sequence of trends to be use-
ful. P12 stated, “I was curious to see what stocks went up and then
suddenly down, and I was impressed that it recognized ‘suddenly’
for ‘down.’” However, there were also some mixed reactions on the
relevance of the results, where participants indicated limitations in
the capabilities of the tool, as described in the takeaways below:

Consider pragmatics in search. The evaluation indicated a need
to consider pragmatics to support a more natural conversational
flow in search interfaces, a paradigm present in various natural
language interfaces for data exploration [44, 49]. Several (5 out of
12) participants typed a full query such as, “which stocks went up
in 2014?,” followed by an underspecified query, “what about 2015?”
that would need to be interpreted in the context of the previous

search history. P3 commented, “I’m now used to just asking the next
question assuming the system already knows what I mean. I expect
the same [behavior] here too.”

Integrate trend searchwith visual analytical tools. For support-
ing a more comprehensive data exploration, SlopeSeeker would
need to be integrated into visual analysis tools that support a wider
range of analytical inquiry. For example, three participants wanted
to see categories of stock that did poorly or compare their relative
performance with each other, as noted by P1: “while I saw a bunch
of stock tanking around the same time, I’d like to bucket them into a
multi-line chart by tech vs. retail stock to get a better understanding
of the trend patterns.”

Provide external knowledge that gives context around a cer-
tain trend pattern. A deeper understanding of any trend necessi-
tates an awareness of the contextual information surrounding it.
While the search results in SlopeSeeker indicated a certain trend
pattern, external knowledge can provide the why and how behind
such a pattern, such as augmenting data with external information
from knowledge graphs and web corpora [12]. 8 out of 12 partic-
ipants expressed a need for including additional context beyond
what is in the underlying data to enable them to make informed de-
cisions and assess how the trends are influenced by external events.
P4 stated, “I can see what is the trend, but I’m curious to know more.
Why did that stock suddenly go bust at that time? Feels like I want a
Google button right next to that sharp drop.”

Support control over time granularity as well as fuzzy time
concepts. Finally, SlopeSeeker returns trend results by year, and
participants expressed the need for more flexibility in exploring
trends with varying granularity, from specific dates to weekly,
monthly, and quarterly views, as well as fuzzy temporal descrip-
tors, like “stocks that remained stagnant for an extended period.”
P5 wanted to see the “fluctuating trend quarter-by-quarter to check
if there’s anything seasonal going on there.” Computing trend pat-
terns at different levels of time granularity could support more
nuanced analyses and expose patterns such as seasonal variations
or temporal outliers.

6 FUTURE DIRECTIONS FOR SEMANTIC
TRENDS DATASET AND ITS APPLICATIONS

In this work, we demonstrate the utility of a labeled dataset of se-
mantic trends and their properties by implementing SlopeSeeker
to help search and discover trends in line charts. However, we en-
vision multiple directions for future work to utilize our dataset and
contributions to go beyond the current capabilities of SlopeSeeker.

6.1 Extending Semantic Trends Dataset
One future direction for extending our dataset is to support users
searching for more global descriptions of time series data behavior
over a longer period of time (e.g., a user may want to search for
when a certain stock was “volatile” versus “consistent”). We could
also leverage the fact that a conceptual duality exists between
event sequences and global descriptors. For instance, one way of
expressing that a stock is “volatile” is to describe the price as going
up and down repeatedly, which could be represented by a sequence
of trend events comprising “up” and “down” events.
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Figure 19: GPT-generated narrative based on quantitative
semantic observations. Line color is for clarity only. (Num-
bers) refer to trend identifiers. “In the realm of biotechnology
stocks, AMGN exhibited a distinct pattern of ups and downs.
The stock started 2014 by (1) slowly expanding, growing by 32%
until December of that year. This upward movement evolved
into a (2) hump shape that continued until July 2015,marking
a 20% increase from its starting point in mid-2014. The larger
events were interspersed with smaller but still noteworthy fluc-
tuations. For instance, the stock experienced a (3) rebound in
July 2014, followed by a (4) lull that extended into September.
Towards the end of 2016, the stock went through a (5) cliff-like
decline of 17%, a sharp contrast to its earlier growth. These
smaller events added intricate layers to AMGN’s overall per-
formance, rendering it a stock of compelling dynamics.”

LLMs, when trained on domain-specific corpora, can also help
identify and label trends that are specifically meaningful to a partic-
ular domain. For instance, rather than identifying a trend as simply
“positive” or “negative,” LLMs could be used to discern and label sub-
tleties such as “bullish,” “stagnant,” and “bearish” for market trends,
“growth,” “plateau,” and “decline” for financial data, or “increasing,”
“steady,” and “falling” for weather information. LLMs also show
promise in labeling trends at different temporal scales based on the
data domain. We hence think it would be worthwhile to explore
leveraging LLMs to label trends across different temporal scales –
for example, a short-term “daily rally,” a medium-term “monthly
correction,” or a long-term “annual growth trajectory.”

While our work introduces a search tool for trends, there are
still opportunities with respect to data presentation (e.g., text in-
terfaces, text summaries, accessibility tools, etc.). LLMs could be
employed to craft a narrative from a set of quantitative semantic
observations such as those depicted in Figures 9, 10, and 11. For
example, in Figure 19, we asked GPT-4 to respect the specific trend
labels but, if appropriate, to aggregate several events with labels like
“fluctuation.” This ability to “smooth out” a set of events into a sin-
gle engaging narrative could provide alternative ways to consume
quantitative semantic observations. However, given the possibility
of LLMs hallucinating in their responses, future work should also
consider methods of checking for hallucinations in LLM-generated
narratives and exposition text [63].

6.2 Future Extensions of Trend Search Tools
Our work also points to potential new modalities and approaches
for trend querying. For instance, the underlying labeled dataset and
subsequent search techniques can be integrated with sketch-based

input to help bridge the semantic gap between visual specification
and trend semantics. While SlopeSeeker incorporates domain-
specific labels for describing trends in data, the labeled dataset
could be applied to provide analysis and data narratives bespoke
to that domain. Search tools and visual analytics tools can also
employ distinct lexicons to provide more targeted data exploration,
insight, and narrative generation. While SlopeSeeker currently
supports search queries that involve trend descriptors andmodifiers
such as “fast falling” and “slow rising,” the tool can be augmented
with additional corpora and knowledge, including LLMs, to offer
interpretations of trends that are contextually relevant, such as the
query, “Do stocks always fall after they bounce twice?”.

7 CONCLUSION
Search systems have begun to support basic analytical intents when
displaying data and charts in response to users’ natural language
queries. However, user workflows often expect more specific tasks
than can be robustly handled by search tools, such as identifying rel-
evant trends in temporal data. In this paper, we present a dataset of
trend descriptor labels and associated quantified semantics and then
employ this dataset in a search tool called SlopeSeeker, which sup-
ports diverse trend search intents. The tool utilizes custom scoring
and ranking logic to return relevant results based on users’ nat-
ural language queries. A preliminary evaluation of SlopeSeeker
demonstrates that the tool is intuitive for finding trends in data, and
the underlying quantifiable semantic trend labels provide relevant
search results for various nuances of trend descriptors in the input
queries. We hope that our publicly available semantic trend label
dataset can enable future research in developing intelligent search
interfaces that can understand and leverage precise quantified se-
mantics and support users’ increasingly diverse visual data analysis
intents.
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