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(a) Default binning scheme.

(b) Binning scheme recommended by OSCAR

Figure 1: Visualizations showing comparisons of bins for data on per-country life expectancy (left) and per-U.S. county obesity
rates (right). The top-row bins are computed based on statistical properties, while the bottom-row bins are computed by OSCAR.
Semantic bins have benefits for legibility, reducing the number of bins (i.e., the visual complexity of the map or histogram), and
taking advantage of non-uniformity to either highlight areas of interest or compress long tails of the distribution into single bins.

ABSTRACT

Binning is applied to categorize data values or to see distributions of
data. Existing binning algorithms often rely on statistical properties
of data. However, there are semantic considerations for selecting
appropriate binning schemes. Surveys, for instance, gather respon-
dent data for demographic-related questions such as age, salary,
number of employees, etc., that are bucketed into defined semantic
categories. In this paper, we leverage common semantic categories
from survey data and Tableau Public visualizations to identify a set
of semantic binning categories. We employ these semantic binning
categories in OSCAR: a method for automatically selecting bins
based on the inferred semantic type of the field. We conducted a
crowdsourced study with 120 participants to better understand user
preferences for bins generated by OSCAR vs. binning provided in
Tableau. We find that maps and histograms using binned values
generated by OSCAR are preferred by users as compared to binning
schemes based purely on the statistical properties of the data.
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1 INTRODUCTION

Binning of quantitative attribute data is a prerequisite step for many
aspects of data visualization— the bins can be used to reduce con-
tinuous data down to more manageable categories, preserve data
privacy through aggregation, generate histograms, or create breaks
for ordinal color scales. Different binning schemes prioritize dif-
ferent goals: for instance, the selection of the number of histogram
bins may be chosen to minimize error compared to an unknown
but estimated population distribution [10], or the bins used for a
color palette set in order to maximize both intra-bin coherence and
inter-bin difference [15]. Yet, these schemes based on statistical
properties can ignore what might be the most crucial property of
a binning scheme meant for use in visualization: the legibility and
semantic coherence of the bins. The ultimate consumers of these
binning schemes are human readers of charts and maps, and so a
human-centered binning scheme ought to leverage not just the statis-
tics of the quantitative field in question but also data semantics as
well as the legibility and interpretability of the resulting bins.

In this paper, we present OSCAR 1, a human-centered binning
technique that leverages data semantics and legibility constraints to
suggest bins for quantitative data for use in histograms, maps, and
1 The name OSCAR is inspired by the beloved Sesame Street character who
embraces his life living out of a trash bin [30].



other charts. OSCAR leverages information from Tableau Public [35]
to suggest common bin sizes for a particular field based on the
field’s name (or those of fields with semantically similar names),
then allows the user to refine the resulting bins. The resulting bins
provide a number of useful features for legibility (Fig. 1), including a
focus on particular values of interest for specific use cases, a respect
for the grain of the data, and the use of non-uniform bins to condense
long tails or outliers into single bins. OSCAR addresses attribute
”binning” or classification; it does not perform any spatial binning.

We conduct a crowdsourced evaluation of the bins generated from
OSCAR and find a general preference for “semantic” bins over bins
created via software defaults such as Tableau’s [34]. Beyond our
binning scheme, findings also suggest generalizable principles for
“human-centered” binning, such as user preferences for “nice” bin
boundaries (e.g., whole numbers or numbers rounded to multiples
of 5 or 10) and bin boundaries with appropriate granularities that do
not collapse information about critical semantic values (e.g., having
finer-grained bins for higher age values for life expectancy). In
addition to specific recommendations for creating human-legible
bins, preliminary evidence indicates that OSCAR provides useful bin
semantics for creating charts that better match the needs of users.

2 RELATED WORK

2.1 Histogram Binning
Selecting the correct number of bins in a histogram is often portrayed
as a tradeoff— too few bins and the distinct shape of a distribution
is lost; too many, and the resulting noisy histogram makes shape in-
formation difficult to recover. A common assumption is also that the
quantitative data in a histogram are samples from an unknown popu-
lation distribution: the choice of the number of bins is characterized
as an estimation problem, and common histogram binning schemes
(such as Sturges’ rules [29], the Freedman-Diaconis rule [10], and
Scott’s rule [28]) are based on minimizing error under certain as-
sumptions about the population distribution (e.g., for Sturges’ rule,
that it is a unimodal Gaussian) and under certain definitions of error
(e.g., for Scott’s rule, Mean Integrated Squared Error).

However, histograms are generated for diverse audiences and for
diverse purposes, and these rules may fall short for different human-
scale tasks. For instance, Correll et al. [8] find that common rules
may generate too few bins for people to reliably identify data quality
issues like missing data in distributions (rather than merely their
shape). Conversely, Sahann et al. [26] find that relatively few bins
are sufficient for viewers to reliably distinguish between different
population distributions and suggest there are diminishing returns for
creating more bins. Lastly, Gopal Lolla et al. [13] find that important
shape information can be lost within traditionally assigned bins and
suggest an error function that incorporates shape information when
selecting bin boundaries for histograms. We point to these works to
suggest the potential benefits of a human-centered binning schema
that is mindful of how people read (or, just as importantly, fail to
read [6, 17, 19]) histograms and how they are employed for a variety
of analytical goals beyond estimating the shape of a distribution.

2.2 Cartographic binning
With maps, binning provides an opportunity to explore patterns
across spatial distributions. The color encoding on the map enforces
visual grouping of regions based on bin category. While continuous
or un-classed maps are valuable for maintaining absolute numeric
data relationships [36], it is more common to use discrete bins to
emphasize the similarity between locations. These bins should be
meaningful for the dataset and the question(s) being explored; they
may be driven by data distribution (e.g., standard deviation), be more
arbitrary and unrelated to data distribution (e.g., equal interval), or
tied to specific visual / data values of relevance to the cartographer
or map reader (e.g., diverging bins arranged around the income re-
quirement for a Federal assistance program) [33]. Some of the most

commonly provided cartographic binning methods [7] are equal
interval, Jenk’s optimal or natural breaks [15], mean/standard de-
viation, quantiles, and “pretty breaks” (rounding to nice-looking
numbers), though there are generally also options for manual bin
range selection providing more opportunity to tailor the view based
on user goals or understanding of data distribution. Less commonly
implemented for commercial usage, but still academically interest-
ing to consider are automated methods such as those relying on
genetic algorithms [4], or proximity-based binning schemes [23] to
encourage more spatially compact, homogeneous regionalization on
the map. The use of color also places a constraint on the number of
bins: MacEachren [20] has noted that while more detailed maps may
be interpretable, the information retained from map reading tends to
be reduced to roughly three ordinal categories (high, medium, low).

2.3 Incorporating semantics into visualization design
Other techniques have augmented visualization designs through the
use of automatic lookups meant to resonate with the semantic back-
grounds of viewers. Kim et al. [18] create personalized analogies
based on location data to help users better interpret distances (e.g.,
explaining concepts in terms of the distance from San Francisco to
San Jose might be easier to conceptualize for a Bay Area resident
than for the distance from London to Reading). Most similar to
our work is that of Setlur & Stone [31], who employ a linguistic
approach for automatically generating semantically resonant color
palettes for categorical data. Their algorithm uses Google Image
data to find associations between words and colors (e.g., for a bar
chart of vegetable produce sales, assigning green and orange colors
to the data values ‘broccoli’ and ‘carrot’, respectively). Inspired by
this work, we demonstrate a technique for applying external domain
knowledge and semantics of common binning patterns and cate-
gories to help inform reasonable defaults for histograms and breaks
for classes in data. For data attributes that do not have semantic
associations, we apply best practice binning techniques to provide
default bins.

3 OSCAR BINNING PROCESS

The algorithm employs a two-step process for creating more useful
bins for numerical data attributes: (1) Semantic bins for fields that
have semantic lookups and (2) default bins that create human-legible
bin breaks based on the underlying statistical properties in the data.

3.1 Generate Semantic Bin Lookup
To generate a lookup of semantic categories and their corresponding
bins, we employ a data-driven approach of mining both a public
corpus of survey questionnaires [38] and published Tableau Pub-
lic [35] visualizations containing binned fields. Leveraging a corpus
of prevalent semantic categories provides recognizable and familiar
bin breaks that are often used in data analysis. The core idea of
our technique is employing Latent Dirichlet Allocation (LDA) [5],
a popular topic modeling technique to extract topics from a given
corpus as proxies for semantic bin concepts.

Build the LDA model for bin concepts. We build an LDA model
from the binned field names from Tableau dashboards along with
common demographic information commonly found in surveys that
have binned numerical responses such as age, salary, population, etc.
The LDA model is trained using MALLET [22] for 1000 iterations
with the top 100 binned field names. We then apply the LDA model
on the survey corpus to get probabilities for bin concepts in each
survey to generate a lookup of strings and their associated bin sizes.

Create a list of related concepts. For each bin concept, we have a
label name and a set of related concepts such as synonyms. Enriching
the bin concept with related concepts increases the probability of
a match with the LDA model. These seed lists are created using a
thesaurus service [25] and Wordnet synsets [9]. For example, the



Figure 2: Semantic bin lookup for the attribute base pay in OSCAR.

bin concept ‘salary’ has a seed list:[ ‘pay’, ‘payroll’, ‘base salary’,
‘wage’, ‘remuneration’, ‘stipend’, ‘earnings’, ‘income’].

Align bin concept and bin breaks. The final step to creating the
semantic bin lookup is an alignment between the bin concept c,
along with its related concept list (together we denote as R(c)),
and question topic t in the surveys with every topic being mapped
to at most one concept. We align each t to c with the maximum
score, S(c, t) that measures the summed probabilities of c and R(c)
in t: S(c, t) = ∑w∈R(c) p(w|t). We remove all alignments where
S(c, t) < athreshold . In practice, we found that athreshold = .06 pro-
vides reasonable results for precision and relevance.

3.2 OSCAR binning algorithm
3.2.1 Compute Semantic Bins
Given an attribute, OSCAR first checks if there is a match with the
attribute and the semantic bin lookup, as described in Section 3.1.
We employ fuzzy matching and lemmatization to match attribute
strings to bin concepts in the table [21]. If there is a match and
there is a semantic bin option, these bins are applied to the attribute
to generate the corresponding visualization (e.g., a histogram or a
map shown in Figure 1b). If multiple options of semantic bins are
available, the semantic bin option that is closest to the data bounds
of the attribute is selected. An overview of this process is illustrated
in Figure 2.

3.2.2 Compute Default Bins
In the absence of semantic bins, OSCAR attempts to use smart
defaults to select human-legible bins (Figure 3). After choosing a
binning based on the statistical properties of the distribution (e.g.,
Sturges rule [29]), OSCAR performs the following optimizations:

Constrain the number of bins to a maximum number. For use in
a color ramp, the designer might wish to limit the number of bins
in order to maximize the discriminability of colors or reduce the
complexity of the legend (see Figure 1a, right for an example of a
perhaps overly complex color legend). For use in a histogram, the
designer might wish to make sure that there are not so many bins
that features in the distribution or the labels of bins are illegible (see
Figure 3a). While these maximums are to some extent dependent on
contingent properties such as display resolution or color ramp choice,
we note that the default maximum number of bins in VegaLite [27]
is 20, and the maximum number of bins for stepped color ramps in
ColorBrewer [14] is 12 (and even then, only with a subset of ramps).

Round the bin extents to match the precision of the data. Many
existing rules for selecting histogram bins can produce arbitrary
precision floating point bin boundaries. These boundaries can be
misleading if they promise or suggest precision beyond the precision
of the data. For instance, integer data should not have decimal bins
(see Figure 3b), and data expressed in terms of round millions of
dollars should not have bin widths of tens of thousands of dollars.

Round the bin extents to convenient values of 5 or 10. We draw
inspiration here from VegaLite’s [27] “nice” operator, which rounds
bin or scale extents to an appropriate power of 10 given the precision
of the value (e.g., 9 → 10, 0.9 → 1.0, etc.).

Shift bins such that 0 does not occur within a bin. Again drawing
inspiration from VegaLite [27]’s “anchor” operator, we believe there
is a semantic distinction between positive and negative numbers for
a wide variety of quantitative fields. By shifting bin boundaries, we
can ensure that 0 falls between bins.

(a) Too many bins (b) Inappropriate bin precision

(c) Bins not beginning from nice powers
of 5 or 10.

(d) A final binning scheme, with a strip
plot of raw values for comparison.

Figure 3: Default binning (Fig. 3d) heuristics applied on a dataset
of 100 integers drawn from a normal distribution. The bins are
1) limited in number (especially for use in color ramps, where the
ability to distinguish colors is limited, compared to Fig. 3a), 2)
consistent with the data grain (e.g., if the data are integers, then the
bins should not be decimal numbers as in Fig. 3b), and 3) rounded
to “nice” values (say, powers of 5 or 10, rather than widths of 4 in
Fig. 3c).

4 EVALUATION

In this study, we explored the high-level research question: What
are participants’ preferences when viewing charts with and without
semantic binning? We hypothesized the following:

• H1: Participants will prefer semantic bins over default bins to
better reflect the categories for the corresponding data attribute.

• H2: Participants will not prefer coarse semantic bins as it may
be harder to discern distribution patterns.

• H3: Participants will not prefer non-integer bin starts in the
default bins as these bins are harder to interpret.

4.1 Participants
We conducted a power analysis to determine the number of partici-
pants required to find an overall difference in preference rankings.



With a medium effect size of ∼0.49, our analysis suggests that a
target sample of 112 would yield 95% power to detect an overall
difference between preference rankings at an alpha level of 0.05.

We recruited 125 participants from Amazon Mechanical Turk.
To qualify for the study, participants were required to be located in
the USA and have a 95% acceptance rate on previous tasks. We
compensated participants at a rate of $2.00 for a six-minute study.
After excluding participants who failed attention checks (e.g., failing
to select a specific answer in a multiple-choice question) or entered
nonsensical responses, we ended up with 120 participants, with 64
that identified as women (Mage = 34.05, SDage = 10.52), 52 as men
(Mage = 36.65, SDage = 11.88), and four chose to not disclose.

The participants completed a subjective graph literacy report [12]
and reported an average value of 3.85 out 6 (SD = 0.82, 1 = low
self-reported literacy, 6 = high self-reported literacy), suggesting that
most participants were comfortable with visualizations but did not
identify as visualization experts. Only 7 people reported that they
create visualizations often for work or as a hobby, and 21 people
reported rarely interacting with visualizations in their daily lives.

4.2 Stimulus and Design
We created two sets of ranking stimuli - one set using OSCAR, each
differing in the number of bins (5−14 bin categories) and the other
based on Tableau binning functionality [1]. For generating these
bins, we used five datasets: CDC obesity health data [2], World
Indicators [11], US Census commute data [37], country Gini coef-
ficient [3], and Titanic passenger data [16]. Six sets of histograms
and four sets of maps were generated, resulting in a total of ten
preference tasks. We denote the OSCAR binned histograms and
maps as Histooscar1, Histooscar2, Maposcar1, and Maposcar2, with
oscar1 having less number of bins than oscar2; the default binned
histogram and map as Histode f ault and Mapde f ault respectively.

4.3 Procedure
Participants were provided a link and a brief introduction to our sur-
vey. Participants viewed all the ten preference tasks in random order.
For each task, participants were shown the default and semantic
binning variants of chart images and were asked, “Which chart is
more useful for showing the distribution of the data.” They were pro-
vided a free-text response field to add feedback about their ranking
choices. At the end of the survey, participants reported demographic
information and completed the self-report visual literacy test.

4.4 Analysis
We conducted a Friedman Rank Sum test using the PMCMRplus
R package [24] to compare preference rankings for the visualiza-
tions, with post-hoc pair-wise comparisons via Conover’s test with
Bonferroni’s correction to determine the ranking differences.

4.5 Results
There is a significant difference in user preferences semantically
binned charts overall, supporting H1. For the histogram charts,
we observed Histooscar1 over Histode f ault (Friedman χ2 = 34.62,
p < 0.001), Histooscar2 over Histode f ault (Friedman χ2 = 20.59,
p < 0.001), and Histooscar2 over Histooscar1 (Friedman χ2 = 19.36,
p < 0.001). For maps we observed Maposcar1 over Mapde f ault
(Friedman χ2 = 54.25, p < 0.001), Maposcar2 over Mapde f ault
(Friedman χ2 = 68.32, p < 0.001), and Maposcar2 over Maposcar1
(Friedman χ2 = 69.33, p < 0.001).

Observations confirm that users prefer finer-grained semantic bins
over coarser-grained ones (H2). Also, low preference rankings for
default binned charts containing non-integer bin starts support H3.

Feedback from the participants also reflected these observations.
P27 stated, “The obesity numbers seemed to be a bit arbitrary (re-
ferring to the default bins) and wanted the images that showed

something I’m familiar with.” Other comments on bin granularity
included, “I don’t like the histogram clumping up everything. Pre-
fer to see it all spread out [P76]” and “I don’t see that much color
variation with the smaller categories. Liked seeing more differences
[P07].” There was also feedback against non-integer bin breaks -
“What do those decimals even mean? I can’t wrap my head around
them [P71]” and “It’s easy on the eyes to see the whole numbers;
they are less scary compared to all those floating numbers [P100].”

5 DISCUSSION AND FUTURE WORK

By relying on prior bins constructed by users of Tableau Public
that are likely to have semantic importance, as well as by affording
defaults that are oriented around the human legibility and inter-
pretability of bins, OSCAR was able to produce binning schemes
that were often preferred over binning schemes that are only sensi-
tive to the distribution. We view these initial successes as evidence
that the automatic integration of semantic information from usage
data can improve visualization design and that the careful setting of
defaults can influence the success or failure of a visualization design.
However, we see several areas for further improvement and study,
both in terms of the design and evaluation OSCAR as well as for
human-centered visualization design, especially for mass audiences.

Provide user affordances for bin refinement and repair. Our se-
mantic binning schemes could result in poor outcomes for a variety
of reasons, such as poorly chosen defaults or concept drift as data
semantics change over time (e.g., an early map of COVID case data
would need to be re-binned as the scale of the pandemic changed). To
counteract these potential failures or shifts, We envision OSCAR to
take more of a mixed-initiative role in dealing with underspecifica-
tion, allowing users to “repair” [32] instances of under-specification,
or directly compare different binning schemes (as in Figure 1), or
to tailor their binning schema to particular contexts (for instance,
putting different constraints on bins to be used for generating color
ramps, as opposed to bins used to generate histograms).

Evaluate quality of semantic bins for various analytical tasks.
The semantic bin lookup method employs a corpus-driven approach
that identifies bin breaks prevalent for various commonly occurring
concepts such as salary, population, and age. While the LDA model
provides an effective approach for identifying probable semantic
categories with corresponding bins, further investigation needs to
explore the quality of these bins based on user intent and the analyti-
cal task at hand. Our evaluation is preliminary and focused on user
preference. It remains future work to investigate if there could be
a preference-performance gap for certain tasks (such as identifying
missing data or modes) [8], or determine if there are quantifiable
benefits to semantic bins beyond their legibility.

6 CONCLUSION

This paper presents a technique, OSCAR that automatically selects
bins based on the inferred semantic type of the data attribute. Using
a combination of data-driven semantic lookup information obtained
from public survey corpora and Tableau dashboards containing
binned fields, OSCAR provides semantic bins and smart defaults
to generate human-legible bins. We conducted a crowdsourced user
preference study with 120 participants to better understand user
preferences for bins generated by OSCAR vs. default binning pro-
vided in Tableau. We find that maps and histograms using binned
values generated by OSCAR are preferred by users as compared to
binning schemes based purely on the statistical properties of the data.
These preliminary results indicate that OSCAR provides useful bin
semantics that could be incorporated into visual analysis workflows
to create more semantically meaningful charts.
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