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Figure 1: Eviza’s interface showing a map of earthquake data in the United States. The interface supports natural language analytical
questions in the context of a visualization. Here, the map shows marks selected in response to the user’s query “find large earthquakes
near California.” The system semantically associates the sized descriptor ‘large’ to an attribute in the dataset called ‘magnitude’ that
can be associated with size. Eviza finds two ambiguities in the query: ‘large’ and ‘near,’ which are fuzzy terms for size and distance.
The system sets ‘large’ to be of magnitude 5 and greater, while ‘near’ is a 100 mile radius around the border of California. Two
ambiguity widgets are added to the interface to allow the user to modify these settings.

ABSTRACT
Natural language interfaces for visualizations have emerged as a
promising new way of interacting with data and performing ana-
lytics. Many of these systems have fundamental limitations. Most
return minimally interactive visualizations in response to queries
and often require experts to perform modeling for a set of predicted
user queries before the systems are effective. Eviza provides a
natural language interface for an interactive query dialog with an
existing visualization rather than starting from a blank sheet and ask-
ing closed-ended questions that return a single text answer or static
visualization. The system employs a probabilistic grammar based
approach with predefined rules that are dynamically updated based
on the data from the visualization, as opposed to computationally
intensive deep learning or knowledge based approaches.

The result of an interaction is a change to the view (e.g., filtering,
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navigation, selection) providing graphical answers and ambiguity
widgets to handle ambiguous queries and system defaults. There is
also rich domain awareness of time, space, and quantitative reason-
ing built in, and linking into existing knowledge bases for additional
semantics. Eviza also supports pragmatics and exploring multi-
modal interactions to help enhance the expressiveness of how users
can ask questions about their data during the flow of visual analysis.

Categories and Subject Descriptors
H.5.m. [Information Interfaces and Presentation (e.g., HCI)]:
Miscellaneous

Keywords
Natural Language; Visualization; Visual Data Analysis; Parser;
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1. INTRODUCTION
There has been a steady growth in systems and interfaces to help

users perform data analysis with the aid of visualizations. These
systems support a cycle of visual analysis in which a user can
fluidly interact with data representations to pose, answer, and refine
their questions. Yet, interacting with these analytic tools can be
challenging and often requires substantial user practice to become
proficient. It has long been known that inexperienced users have
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difficulty using native database query languages such as SQL to
express their data needs [23]. But, even with visual drag-and-drop
interfaces, users can still struggle to express their data-oriented
questions in terms of tool operations. This is particularly true for
novice users [22].

Natural language interfaces have recently received renewed in-
terest for querying and discovering data [35]. Essentially, natural
language interfaces take, as input, a question formulated in natural
language and return an answer to this question. This approach is
promising, as users may be able to express their questions more
easily in natural language rather than translating those questions to
appropriate system commands (exposed through a query language
or interface widgets).

However, it is well-known that robust natural language interfaces
are difficult to realize, as they have to handle difficult problems
inherent in the task of automatically interpreting natural language.
In addition, natural language expressions are often diverse and im-
precise, requiring extensive knowledge and sophisticated reasoning
for computers to interpret them.

Existing natural language interfaces to data analysis typically
return minimally interactive visualizations in response to queries;
i.e., the answer needs to be exactly right rather than approximate
[4]. In these cases, the user has little to no opportunity to explore
the result, gain insight into how their query was interpreted, or
revise their query. Most importantly, none of the interfaces are fully
integrated with a self-service analysis tool in a manner that allows
natural language interactions to become part of a richer visual cycle
of analysis.

A rich cycle of visual analysis depends on a user being able to
both create new visualizations and interact with those visualizations
(e.g., to search, filter, and navigate). While some attention has
been devoted to using natural language for the creation aspect (e.g.,
[35], [21]), much less research has investigated natural language
interaction with existing visualizations.

We introduce Eviza, a natural language interface for visual data
analysis. Eviza enables a user to have an interactive conversation
with their data by emphasizing the ability for a user to continually
revise and update their queries in an iterative way to create a ‘dialog’
with the visualization.

Focusing on interaction with an already existing visualization
enables us to explore some new challenges. We examine the types
of queries people use to interact with different types of visualizations,
how to deal with various types of ambiguity in those queries, and
how to ensure natural conversational flow from one query to the
next. In addition, by focusing on an existing visualization, we reduce
the scope of the natural language interpretation problem, making a
useful answer more likely.

2. RELATED WORK
This work builds on a long history in natural language and multi-

modal input, plus more recent and directly relevant work in natural
language interfaces for visualization.

SHRDLU was one of the earliest systems to interface with a
spatial environment by combining semantic and syntactic analysis
with a body of world knowledge [37]. Another early application for
natural language input was to express database queries [11]. These
systems depended on hand-crafted semantic grammars tailored to
each individual database, which became hard to generalize to other
databases [30].

More recently, natural language interfaces for data analysis have
emerged as a promising new way of interacting with data and per-
forming analytics. One reason these systems are exploring natural
language is to improve usability: while users often know the ques-

tions that they want to ask of their data, they can have difficulty
understanding how to make a visual analytics system produce the
right charts to answer those questions [22]. Yet these individuals
can often express their interests and questions quite easily in plain
English, as noted in two wizard-of-oz studies ([12], [22]). These
studies also revealed that people often specify what they want im-
precisely, leaving out details such as dimension names or how to
map those dimensions to visual encodings within a chart.

Cox et al. [16] demonstrated that multi-modal input is richer
than any one modality [27]. Their system dealt with ambiguity by
asking a series of questions until the query was fully specified in an
unambiguous way. This approach breaks down the flow of analysis
since it can take several back and forth interactions before the user
can see any view of their data.

A better way to deal with ambiguity is to make a ‘best guess’ at
the user’s intent so that a chart can be shown right away. With the
Articulate system, Sun et al. [35] accomplished this by extracting
syntactic and semantic information from a user’s query, applying a
supervised learning algorithm to translate that into an understanding
of their intention, and then generating an appropriate visualization.
However, Articulate focused primarily on generating a visualization;
it enabled very little interaction with the visualization and therefore
fell short of supporting cycles of conversation with one’s data.

IBM’s Watson Analytics features a natural language interface for
starting an analysis [3]. Q&A in Microsoft’s Power BI allows users
to type natural language queries of their data such as “sales per sq
ft by store in NC” [4]. ThoughtSpot provides a ‘natural language
search engine’ for data [7]. Narrative Science developed a product
to generate natural language summaries of a visualization [5]. Each
of these systems is interesting but has fundamental limitations. Most
return a minimally interactive visualization in response to queries,
meaning the question must be of the type where there is a single
exact answer, rather than one where there are a range of relevant
and useful ways to answer. Many also require experts to perform
modeling before the systems are effective [18, 14].

Most similar to our work is DataTone [21]. Like previous tools,
the emphasis in DataTone was on producing a visualization based on
a user’s typed or spoken query. However, the system improved the
analysis flow by making a best guess at the user’s intent, producing
a chart according to that best guess, and then providing ambiguity
widgets through which the user could change their chart if the
system’s guess was incorrect.

Our work extends DataTone in several substantial ways. First and
foremost, our research focuses on techniques for enhancing express-
ibility of the natural language queries. Further, we emphasize the
analytic flow of a user exploring a visualization: instead of focusing
on generating a new visualization, our research primarily explores
interaction with an existing visualization. With this more focused
context, we can augment the interface with semantics specific to
the visualization in play, allowing for new forms of query expres-
siveness. We also extend ambiguity widgets to handle ambiguity in
quantitative magnitudes as well as time and space (e.g., the query
“near Paris” generates a slider for ‘number of miles from Paris’).

3. CONTRIBUTIONS
The main research goal of this paper is to design and implement

a natural language interface that has rich semantics and express-
ibility and can support the analytical flow of exploring an existing
information visualization. In particular, our work has the following
technical contributions:



• A probabilistic grammar based approach that has predefined
syntactic rules that are dynamically updated based on the se-
mantics of the data from the visualization. We believe that
this is a more effective approach than deep learning or knowl-
edge based approaches for supporting a range of analytical
questions in the given context.
• A template-based autocomplete to offer interpretable sugges-

tions matching the visualization and dataset.
• Extension of ambiguity widgets [21] to quantitative and spa-

tiotemporal ambiguity.
• Built-in rich domain awareness of time, geographic, and quan-

titative reasoning as well as linking into existing knowledge
bases like WolframAlpha [9] for greater query expressibility.
• Supported language pragmatics through a finite state machine

that enables a user to have more of a conversation with their
data rather than a command-like experience. Users can simply
say “How about Texas?” as a follow up to the question “What
large customers do I have near California?”
• Multi-modal interactions (e.g., radial selection in a map; ask-

ing “what’s the distribution of earthquakes here”) and user
context (“show the average house price near me”).
• Supported queries that are grounded in empirical data gath-

ered in a user study and validated in an evaluation study.

4. INITIAL STUDY

Type Examples

Search Where is Texas?

Filter Show Africa only

Extremum

& Top N

Show me the country with the largest outbreaks

Top 3 countries

Navigate Zoom in to Italy

Sort Sort by average unemployment

Formatting Show y-axis label

Change chart type Can I see this on a map

Grouping Combine Sat and Sun

Compare Patterns of New York versus California

Calcs
& Stats

What’s the nationwide total?

Are there any outliers?

Reference lines What is the best trend line for this plot?

Analytics and trends Is there a seasonal trend for bike usage?

Table 1: Most common query types observed in the initial study

To guide development of the Eviza prototype, we ran an initial
web-based study to understand how people would interact with var-
ious types of visualizations using natural language. Our aim was
to gather a repository of queries that people would naturally ask,
given different types of visualizations. We used this repository to
inform the design of our prototype, including the types of function-
ality it should offer, the keywords to look for, and the grammatical
structures we should anticipate.

4.1 Method
Each participant examined five visualizations (randomly selected

from a set of 20). For each visualization, they were asked to provide
three to five statements or questions that they would use to interact

with the view or ask questions of the data. Our study was deliberately
open-ended in order to gather a wide variety of query types and
mitigate bias against specific types of queries. The visualizations
were also deliberately varied; they included maps, bar charts, scatter
plots, time series line plots, bubble charts, treemaps, heatmaps, and
dashboards.

Our study was run in two parts: text and verbal. Participants were
volunteers recruited across all departments of a software company.
Seventy five people participated in the text version and 14 in the
verbal version. Text participants were sent a web link and completed
the study on their own; the system recorded the queries that they
typed in. Verbal participants met an experimenter in person and
their sessions were audio-taped. In both cases, the session took
approximately 10-15 minutes.

4.2 Results
We collected 1235 text queries and 317 verbal queries. Verbal

queries were longer on average (12.0 words versus 8.1 words for
text queries) but there were no noticeable differences in the types
of queries across modality. We categorized the queries through a
manual open coding process. The most common types we observed
are described in Table 1.

Queries identified in the study directly informed the design and
conception of Eviza. They helped us to identify the functionality
we needed to support, the keywords and phrasing to expect, and the
types of ambiguity that we had to manage.

5. ARCHITECTURE
Figure 2 illustrates Eviza’s system architecture. The Eviza system

employs a traditional web-based, client-server model. This architec-
ture allows us to support multiple contexts and device types (e.g.,
mobile, desktop). We deployed a custom node.js® server [6] with an
express module to process the request types. The client is a standard
web client (HTML5, CSS3, JavaScript) that uses an HTML5 API
for voice input.

The user’s natural language query input is processed by the auto-
completion module, informed by the grammar module containing
both predefined rules for processing the query as well as rules dy-
namically added based on the data attributes in the visualization.
The pragmatics module takes all possible parse tree paths from the
grammar module, and computes the highest probable path in the
finite state machine. The ambiguity module computes both syntac-
tic and semantic ambiguity of the individual tokens in the parsed
query. The analytics module then invokes the appropriate analytic
functions.

Each analytical function requests an update to the visualization
through the data manager. The data manager reads in the requested
data from the data files and the corresponding data classes of the
visualization. The event manager handles consistency across the
various presentation elements in the visualization when there is a
change in state of the visualization upon execution of the query.
These updates are then rendered by the D3.js library [13].

5.1 Interface
Figure 1 shows the Eviza interface. An input query box accepts

both keyboard and voice input and a check box enables or disables
autocompletion. Drop-down menus enable a user to choose a vi-
sualization type (map, line chart, bar chart or scatter plot) and a
data source. An information pane containing ‘who’, ‘what’, ‘when’,
and ‘where’ attributes is populated with corresponding attributes
from the visualization. Here, the user has entered a query “find
large earthquakes in California.” Upon execution of the query, two
interactive ambiguity widgets appear below the visualization, to
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Figure 2: System architecture

indicate the ambiguity for what ‘large’ means and for ‘near’, a fuzzy
distance term.

6. GRAMMAR
The natural language interface to Eviza is specified by a prob-

abilistic grammar that can be applied algorithmically to provide
a structural description of the input query. In particular, we use
an ANTLR parser that employs a top-down parsing strategy called
LL(∗) [28]. Such a parser parses the input from left to right, perform-
ing the leftmost derivation of the input query. It can also perform
lookahead while parsing for a certain grammar without having to
backtrack, allowing for greater flexibility in specifying the grammar
rules.

The input to the parser is an extended Backus Normal Form
(EBNF) context-free grammar with production rules augmented
with both syntactic and semantic predicates based on the current
visualization [1]. These rules are associated with embedded actions
that trigger an appropriate update in the visualization. Syntactic
predicates are statically included in the grammar based on general
commands that Eviza supports. The semantic predicates are dy-
namically added to the production rules based on the context of the
visualization, and semantics obtained from third-party corpora.

The syntactic grammar G is a set of recursive rewriting rules (or
productions) used to generate patterns of strings defined as a 4-tuple
G = (Vn,Vt ,φ ,S) where:

• Vt is the set of terminal symbols or constants that appear in
the string (e.g., ‘June’ or a numerical value such as $53.87).
• Vn is the set of non-terminal symbols which are placeholders

for patterns of terminal symbols that can be generated by the
nonterminal symbols (e.g., ‘month’ or ‘price’).
• φ is the set of production rules used to generate patterns of

strings, consisting of elements from Vt and Vn.
• S is the starting symbol, a special nonterminal symbol that

appears in the initial string generated by the grammar.

Semantic predicates can be represented as a series of EBNF
grammars Gi = (V i

n,Vt ,φ ,S), i = 0..n and are dynamically added
to the original grammar G as they share the same terminal (Vt ) and
start (S) symbols. Vn and φ evolve by including new elements, and

we describe the extension of the grammar as Gk+1 = Gk +∆Gk,
where ∆G = (∆Vn,∆φ).

Consider a sample production rule in the grammar G0 for the
time-series visualization of stock prices over time:

G0 −→ ‘highest <value> in <month>’

Eviza detects that the visualization contains a numerical data at-
tribute called ‘price’ through its data manager. ‘Price’ is mapped to
the non-terminal symbol ‘value’ in the grammar since ‘value’ only
accepts numerical terminal symbols. The system then identifies a
semantic attribute ‘currency’ for ‘price’, and generates a correspond-
ing semantic predicate ‘highest price in <currency> in <month>.’
Note that there could be multiple numeric attributes for ‘value’, and
semantic predicates are computed only if corresponding semantic
attributes exist.

∆G0 −→ ‘in <currency>’

Here <value>, <month>, and <currency> are non-terminal sym-
bols. The updated grammar G1 is:

G1 −→ ‘highest <value> in <currency> in <month>’

V 1
n −→ value = <price>

The next section describes how these semantic values are obtained
to extend the grammar.

7. SEMANTICS
A comprehensive representation of natural language semantics

requires access to vast amounts of common sense and domain-
specific world knowledge. The process of building such a knowledge
base often requires large numbers of corpora and ontologies [26].
We rely on the fact that Eviza has a more focused context of the
given visualization, and retrieves specific semantic links such as
concepts and synonyms for the data attributes that constitute the
visualization.

As a user analyzes real-life data, the enrichment of the data’s
meaning with additional semantics and units helps with the ex-
pressiveness of natural language interaction. We augment various
semantic types in the underlying grammar such as time, space and
entities with existing knowledge bases including WolframAlpha’s



Figure 3: Eviza leverages existing knowledge bases for richer
semantics including units. Top: An example query containing
seasons and temperature units. Bottom: An example query in-
volving currency.

unit taxonomy [9] and Wordnet’s synsets [29]. Semantic enrichment
includes basic unit types such as temperature (e.g., Celsius, Fahren-
heit), currencies, and quantitative units (e.g., pound, foot, meter,
quart). Figure 3 shows example queries involving units. These units
are prefetched and added to the semantic predicates of the grammar.

Additional domain-specific semantic enrichment occurs when the
visualization is loaded. For example, mapping ‘magnitude’ in the
map of earthquakes (Figure 1) to the Richter scale unit in Wolfram’s
taxonomy supports richer queries such as “find large earthquakes
in California.” Wolfram considers 5 on the Richter scale to be
‘moderate.’ Eviza considers an ambiguous ‘large’ to be ‘moderate’
in terms of severity. We have ambiguity widgets that come into play
if the system over-estimates or under-estimates the severity attached
to ‘large.’

8. AUTOCOMPLETION
A main challenge of NLP interfaces is in communicating to the

user what inputs are supported by the system. Open-ended text boxes
provide no information on the types of queries that are supported.
This is an important issue to address as any practical system will
only support a finite set of operations from the set of all expressible
statements.

Autocompletion is a widely used mechanism to get to a desired
piece of information quickly and with as little knowledge and effort
as possible. As the user types, a list of appropriate completions
is returned to the interface. This feature is prevalent in program
editors such as Visual Studio, command shells such as the Unix

Shell, search engines and desktop search. Autocompletion is also
gaining popularity in mobile devices, particularly around exposing
the underlying semantic and linguistic model [25].

Similarly, to help users become familiar with the terminology
and grammar of Eviza, we introduce an autocomplete component.
This component provides immediate feedback as the user types,
indicating what expressions and values are possible. (Note that
we currently do not support autocompletion for voice.) Unlike
DataTone, which waits until the user is finished, disambiguation and
choices are presented in real time.

Autocomplete was designed to expose the grammar to users in
an interpretable manner. The main design choices revolve around
selecting which attributes and values to expose from the underly-
ing data. There is substantial prior work in leveraging user his-
tory and input statistics to drive suggestions. However, we employ
a grammar-based approach to bootstrap when no user history is
available. This choice enables organic discovery of features and
operations for novice users.

We use templates along with the ANTLR error mechanism to
generate candidate options and expose the grammar. The parsing
grammar is designed to parse a broad variety of input expressions,
including potentially syntactically invalid phrases. To present the
user with a clean set of interpretable choices we create a separate
set of templates, corresponding to grammar rules, with phrases we
want to show. Each template provides easy to interpret patterns
for the user to match against, and consists of slots that can be ex-
panded into other templates or lexical choices (see Figure 4 template
completions).

Given partial input by the user, we parse it and align to the avail-
able set of templates. Valid templates and rules are updated based on
the current visualization and dataset. The parser and autocomplete
suggestions share a common lexicon that is dynamically updated
during this process. As the user types, potential values are suggested
by the system as drop-down options. The user can select a displayed
option to complete the input text. For template options, only the
first part of the template is filled in, and the user can decide to stick
with the template or switch to a different one.

A key design choice is that autocomplete only shows up if there is
a parsing error (i.e., the query is incomplete). Therefore, suggestions
do not intrusively appear when the user has already formulated a
valid query. Suggestions are elaborated in real-time as the user types
(see Figure 4). At any time the user can request suggestions by
pressing the down arrow.

Suggestions are filtered by prefix matching, with the number of
options limited to 10. Then they are sorted by weight, length, and
finally alphabetically. Attribute values are read directly from the
data to generate candidate suggestions (e.g., countries/regions from
a list). For number ranges, the min and max values as computed
from the data are provided so that users can get a sense of the range
of plausible values.

9. AMBIGUITY
Natural language queries can be ambiguous due to syntactic and

semantic variations between the user’s mental model and the sys-
tem’s model. We observed many ambiguous queries in our initial
study and designed the ambiguity module based on these exam-
ples. We employ entropy, a concept commonly used in information
retrieval, to measure the uncertainty of a given query [15].

Eviza handles two forms of ambiguity - syntactic and semantic.
Inspired by the DataTone system [21], we expose the ambiguity
and enable the user to correct default choices through simple GUI
widgets in the interface.
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Figure 4: Autocomplete functionality. User presses the down arrow to get a list of suggestions (1). After the user starts typing, the
selection set is reduced and adjusted (2). In steps (3) and (4) dataset-specific values are suggested for template slots. The desired
visualization is generated on the right.

9.1 Syntactic Ambiguity
Syntactic ambiguity concerns the uncertainty in the syntactic

alignment between input query tokens and data attributes of the
visualization due to spelling and plurality variations. Syntactic
entropy provides an estimate of the matching complexity based on
the set of potential syntactic alignments.

Syntactic entropy, the complement of a cosine similarity metric
sim between query token q and data attribute a [34] is defined as:
1− sim(~q,~a).

In practice, we have found that an entropy ≤ 0.3 works well. The
top data attribute matches are shown as an ambiguity widget to the
user in decreasing order of relevancy. In Figure 5, the top figure
shows an ambiguity widget added to resolve the syntactic ambiguity
between the input query term ‘happy’ and the top matched data
attribute terms ‘HappyLifeYears’ and ‘HappyPlanetIndex.’

9.2 Semantic Ambiguity
Semantic ambiguity concerns differences in semantic alignment

between the input query and data attributes in the visualization.
Semantic entropy quantifies an estimate on the amount of synonomy
and hyponymy (vagueness) [29].

Semantic entropy is defined as a complement of a semantic dis-
tance between the corresponding word senses of q and a defined as
1−wup(s1,s2)], where, s1 and s2 are synsets of q and a respectively.
wup(s1,s2) is the Wu-Palmer similarity function [38] that returns a
score denoting how similar two word senses are, based on the depth
of the two senses in the Wordnet taxonomy and that of their most
specific ancestor node called Least Common Subsumer (LCS), with
scores returned in the range ∈ [0,1].

While several similarity functions exist in the natural language
literature, we chose the Wu-Palmer function as it is simple and has
good performance. We select the related terms with the top-scoring
relatedness to the categorical terms. In practice, we have determined
that a threshold score of 0.85 and above tends to lead to an optimal
set of semantically related terms.

For instance, consider the query “large earthquakes”. We need to
identify the field that would tell us whether or not the earthquake is
‘large,’ and what constitutes a ‘large’ earthquake. Given the semantic
enrichment of units as described in a previous section, the semantic
entropy indicates that ‘large’ and ‘magnitude’ (an attribute name
in the dataset) are close word senses. This ambiguity is expressed
as a slider widget set to a minimum magnitude of 5 (a ‘moderate’
earthquake on the Richter scale in Wolfram’s taxonomy) as shown
in Figure 1.

We also handle semantic ambiguity in both temporal and spatial
domains. For example, the bottom image in Figure 5 shows an
ambiguity widget to resolve the semantic ambiguity between the
input query term ‘near’ and the underlying analytical function for
computing temporal distance. The widget shows an initial setting
of one month before and after ‘August’ that can be modified by the
user if she desires.

Expressing spatial queries in natural language introduces numer-
ous location- and distance-based ambiguities that must be trans-
lated into an unambiguous form that can be processed. Geographic
locations may be referred to using colloquial or local names, by
context-specific reference (e.g., ‘in the city’ versus the surrounding
suburbs), or typed in using abbreviations (e.g., ‘NYC’ for New York
City) which do not match the formal names.

Once locations are disambiguated, there is still the issue that
people often think in terms of vague spatial concepts rather than
absolute distance [24]. It is more natural to use fuzzy spatial terms
such as near, far, and around; e.g., “restaurants near me” as op-
posed to “restaurants within 1.5 miles” [2]. While fuzzy spatial
prepositions are common, spatial queries require metric input. The
ambiguity module translates the query to something more concrete,
while still allowing the user to adjust to match their model for the
term used. Figure 1 shows the query token ‘near’ mapped to a
spatial distance function set to a 100 mile radius around the border
of California.

10. PRAGMATICS
One Eviza’s goals is to support analytical flow by enabling the

user to have a conversation with the visualization. Conversation
frequently consists of a series of related utterances, often referring
to past references and context [10]. We observed this in our initial
query study, where many queries were direct follow-ons to pre-
vious ones. As part of this conversational flow, the semantics of
a particular query can be influenced by each other via transition
probabilities. This approach, where ambiguity in a particular query
is disambiguated with respect to context, is called pragmatics and
helps with understanding the user’s intent in a flow of queries [32].

The pragmatics algorithm implements a finite state machine
(FSM) [33]. The FSM W = (∑,Q,E, i,F,λ ,ρ) is defined by a set
of query tokens ∑, a finite set of states Q, a finite set of transitions
E, an initial state i ∈ Q, a set of final states F ⊆ Q, an initial weight
λ and a final weight function ρ .

A transition t ∈ E can be represented as an arc from the source or
previous state to the destination or next state n(t), informed by the



Figure 5: Ambiguity widgets

probable parse paths from the grammar. The transition weight w(t)
represents its probability p. A path in W is a sequence of consecutive
transitions t1...tn with n(ti) = p(ti+1), where i = 1..(n−1).

The algorithm chooses a vector path π with the highest final
tensor product weight. The weight associated with π from the initial
state i to a final state f ∈ F , is the otimes-product of the initial
weight, the weight of its consecutive transitions and the final weight
ρ(n(tn)) reached by the path, given by:

w(π) = λ ⊗w(t1)⊗ ...w(tn)⊗ρ(n(tn)) (1)

Figure 6 shows how the FSM can be applied to queries in Eviza.
Given a previous query state “Large earthquakes in California”,
and a following query state “how about Texas?”, there are multiple
options for the most probable path. Attributes in the previous query
state such as ‘large’ and ‘earthquakes’ , as well as user settings
where large is set to 4 and above, are all augmented to the following
query given the higher product of their corresponding transition
probabilities.

Eviza has built-in queries such as “reset”, “show me all the data”
to revert back to the original state in the FSM. However, the current
system has no mechanism in place for the user to go back to any
arbitrary state in the flow.

(a) Previous query: “Large earthquakes near California”

(b) Subsequent query: “how about near Texas?”

S q1 q2 q3

q4 q5

q6
how (1.0) about (1.0) near (0.3)

large (0.7)

earthquakes (1.0)

near (1.0)

Texas (1.0)

(c) Weighted finite-state flow

Figure 6: Pragmatics support in Eviza. (a) An initial result for
the query “Large earthquakes in California”, showing earth-
quakes within a 100 mile radius of California of magnitude 5
and greater. The user moves the magnitude slider down to 4.
(b) A subsequent query “how about Texas?” resolves to finding
earthquakes around Texas with ‘large earthquakes’ associated
with this state. (c) A finite-state transducer showing the proba-
bilistic likelihoods of alternative states for the query. Here, the
path “how about large earthquakes near Texas” has a higher
probability than “how about near Texas?”

11. ANALYTICS
Table 2 shows some examples of the analytical functions sup-

ported in Eviza. These include descriptive statistics (min, max,
average), highlighting and coloring based on data attribute values,
aggregation, reference lines, and correlation. In addition to these
basic functions, we devoted additional attention to the special cases
of spatial and temporal analytics. Based on our preliminary study,
spatial and temporal queries were extremely common, involved
specialized terminology, and introduced some unique types of am-
biguity. We further explore the analytics of space and time in the
subsections below.

11.0.1 Spatial Analytics
The potential for use of natural language in GIS has long been

recognized as an important aspect in making spatial analysis more
accessible [19]. A key part of success in natural language GIS is
understanding how people conceptualize spatial topological rela-



tionships [36, 20] and in formalizing a spatial query language to
support querying these relationships [17].

While spatial questions are common and desired for data explo-
ration and analysis, Geographic Information Systems (GIS) are
often not readily accessible or understandable to the average user.
Eviza facilitates spatial analysis without the user needing to know
specialized GIS operations. Our work currently supports several
types of common spatial operations:

• Point-based distance measures: This includes operations to
identify nearest neighbor(s) to any specified point.
• Point-in-polygon relationships: We enable identification of

spatial overlap for point-in-polygon selection, as well as for
disjoint selection of points outside a specified polygon (e.g.,
“largest earthquakes outside California”).
• Spatial aggregation: We support aggregation using regular

spatial bins (e.g., hexbins); we use equal area bins to minimize
issues with distortion due to map projection.
• Attribute-based filtering: Spatial queries can be combined

with numeric and categorical attribute-based filtering or ex-
trema (e.g., top or bottom N features).

Spatial analytic capabilities are managed using the Turf library [8]
in conjunction with a geocoding library that we created to provide
a framework for spatial queries (e.g., polygonal state and county
boundaries, point locations for cities).

We incorporate various capabilities for user interaction with spa-
tial data:

• Fuzzy spatial prepositions such as ‘near’ or ‘around’: We
create buffers of varying size to return selections relevant to
the user’s query. Adjustments to buffer size can be made
through the distance ambiguity widget.
• Multi-modal input for richer interaction: Interaction is not

restricted to language-based queries. As it is often easier
to point or draw to identify geographic areas of interest, we
allow for direct manipulation with the map to create polygonal
selections (e.g., radial, rectangular, or lasso select).

11.0.2 Temporal Analytics
Temporal queries are a common task during data analysis. The

temporal analytics module supports the analytical reasoning of tem-
poral expressions in the input queries.

We developed temporal functions based on the temporal entities
and expressions defined by TimeML[31]. The module incorpo-
rates the following temporal token types to support the parsing of
temporal expressions (Figure 3 and Table 2):

• Temporal Units: This includes temporal units that com-
monly occur in temporal expressions, including months, days
of the week, hours and minutes, and their abbreviations. Nor-
malized mappings of these temporal patterns are also consid-
ered. For example, ‘July’ is normalized to ‘07.’ We enrich the
basic temporal units with additional ones from WolframAl-
pha [9] such as quarters, semesters, half-years, seasons and
various time zone formats.
• Temporal Prepositions: We support temporal prepositions

such as ‘in’, ‘during’, ‘near’ and ‘around.’
• Temporal Connectives: We support connectives such as ‘be-

fore’ and ‘after’ that connect a temporal anchor. For example,
“before summer” starts with ‘summer’ as the temporal anchor,
from which the temporal function for ‘before’ is computed.

Another aspect of handling natural language queries is the fact
that these temporal expressions could be relative or underspecified

(e.g. ’next year’, ‘June’, ‘this year.’ Eviza considers both the tem-
poral context of the visualization and temporal ordering based on
pragmatics collected from previous queries to resolve these ambigu-
ities.

12. EVALUATION
We conducted a preliminary user study to assess Eviza’s natural

language approach for interacting with visualizations. We had two
main goals: (1) collect qualitative feedback on Eviza’s design fea-
tures and (2) gain insight into the situations in which people would
prefer to use natural language interaction versus direct manipula-
tion (DM); this information should help us integrate the interaction
ideas into a more comprehensive analytics interface. To achieve
our second goal, we wanted participants to experience comparable
tasks using both natural language input and DM, so that we could
discuss the advantages of each. We therefore compared Eviza to
a typical DM visual analytics tool, specifically Tableau Desktop.
Comparing to Tableau did not allow us to directly measure the value
of specific features, but did support a qualitative discussion around
the strengths and limitations of natural language interaction. In
future user studies we will evaluate specific features by comparing
Eviza to a feature-removed version of itself.

Because the main goal of our comparison was to gain qualitative
insight into the advantages of each type of input, we encouraged
participants to think aloud and have a conversation with the exper-
imenter. To assess overall efficiency, we also measured time to
complete each task set.

12.1 Method
Twelve volunteers completed a series of five tasks on an existing

visualization using both Eviza and Tableau Desktop 10.0. Partici-
pants were recruited from all departments of a software company.
To mitigate the influence of Tableau’s learning curve, we aimed to
recruit people who had experience with Tableau Desktop: two used
Tableau Desktop on a regular basis and the rest used it occasionally
and considered themselves beginners. Approximately half of the
participants were native English speakers and the others were fluent.

Tasks involved searching, filtering, or manipulating a visualiza-
tion to reveal specified target information (e.g., countries with life
expectancy < 50 in 1998). See the supplementary material for task
details. Target information was presented in a table so that partic-
ipants would not directly copy the instruction text as their query.
Each participant interacted with one randomly chosen visualization
(map, scatterplot, line chart, or bar chart) with both tools, in coun-
terbalanced order. Charts in the two tools used the same data and
same visual encoding. For consistency, all participants interacted
with Eviza using text input rather than speech. Each session took
30 minutes and concluded with a semi-structured interview. We
recorded screen capture video plus audio.

12.2 Results
We first present results of the time comparison between the two

interfaces, followed by our qualitative results.

12.2.1 Task Time
Task time was measured from the screen capture video. We

marked the start of a task as soon as the participant began reading
the task instructions and the end once the target view had been
created. Any discussion with the experimenter was excluded from
the time measure.

Figure 7 shows that overall Eviza (mean 167s) was about twice
as fast as Tableau (mean 381s). After log transforming the data to
improve the fit to a normal curve, we compared the means using



Figure 7: Boxplots of total task time (seconds).

a paired-samples t-test. The result showed a significant difference
(t=6.35, df =11, p <0.001).

12.2.2 Natural Language vs. Direct Manipulation
Participants were very positive about natural language, e.g., (P7)

“Nice! That is so smart” and “pretty impressive. You can just type
in a question and get the answer.” All users expressed that Eviza
was more natural but Tableau was more powerful. Even P15, who
was a Gold certified Tableau user, stated, “Almost nothing to me
seemed more natural to me in Tableau. The only reason it seemed
expedient, if it was expedient, was because I have a lot of experience
with Tableau.” P9 commented that natural language enabled her to
focus more on the data whereas with the DM interface she focused
more on how to use the tool. Two participants commented that
certain queries were easier to express as text phrases than in the
mathematical thinking that underlies a DM interface. P2 expressed
that NL might be most useful for complex actions like calculations
& filters, when you are unsure how to do the action yourself (e.g.,
calculating year over year growth).

We observed that tasks were easier with Eviza when any of the
following were true: the DM interface required many clicks to
complete the task (e.g., having to precisely adjust a slider to get
an exact value, or completing a long series of actions three times
to create reference lines for min, max, and average), the user did
not know how to do the task in the DM interface (e.g., complex
filter settings), the user did not know where to find the control
for the function (e.g., finding the regression line function), or the
user did not know the name of the dimension to which a target item
belonged (e.g., it is not obvious that ‘South America’ is found within
‘SubRegion’).

Participants struggled to some degree with both interfaces. With
the DM interface, participants struggled with finding the right func-
tion and configuring its options, due to the large volume of options
and settings. In contrast, with natural language, people were unsure
what commands the system would understand and did not always
receive sufficient feedback to know whether their question had been
understood.

Participants reported that natural language and DM were comple-
mentary. Natural language was easier to learn and good for focused
queries. But Tableau’s DM interface was more powerful and expres-
sive, making it potentially more suitable for complex or exploratory
tasks. One participant felt that natural language was easier for him
as a novice user, but that power users would more likely prefer using
DM. He suggested incorporating both forms of interaction into one
interface.

12.2.3 Feedback on Eviza Features
Pragmatics: Reactions to system memory of previous queries

was mixed, with some participants finding this behavior very helpful
and others finding it unexpected. There were very few examples of
true follow-up queries because they were not necessary for our study
tasks, but two participants took advantage of this functionality to

break a task into steps. P14 particularly appreciated this feature and
used it in three out of five tasks. For example, to find the extreme
temperatures in May 2014, he entered two queries in sequence:
“Display temperatures in May 2014” followed by “What are the high
and low temperatures." During the interview, he stated, “I was able
to break down tasks into pieces. It was nice that the graphs and
interface didn’t revert back to some previous state.” Similarly, P7
attempted to use a long, complex query that Eviza could not fully
recognize (“show highest average GDPPerCapita of all countries
between 1950 to 1960”); when that failed, she broke the task into
parts. Clearly in this case it would have been better to support
the original query, but the pragmatics provided a useful fallback
approach.

In contrast, P13 and P15 got unexpected results because of prag-
matics. P15 asked for a trend line and was surprised that Eviza kept
countries highlighted from the previous query. Similarly, P13 was
surprised to see min and max values still highlighted from a previ-
ous query after she asked for the average: “Oh! Now you still have
min and max...I didn’t expect it to be there. I prefer it to go away.”
These experiences suggest that we need to establish better criteria
for deciding when to remember information from prior queries, and
support flexibility for users to correct poor system choices.

Handling ambiguity: As expected from the initial study, han-
dling ambiguous queries was essential. Eight out of twelve par-
ticipants expressed queries that required some ambiguity handling.
Some examples include: “show recent earthquakes”, “earthquakes
near Rhode Island”, and “show high, low, avg, C in spring”. Par-
ticipants appreciated not having to precisely specify their queries.
For example, P5 stated, “eviza is very straightforward, you don’t
need to know the dimension names.” Nonetheless, Eviza’s handling
of ambiguity was limited and participants sometimes needed to try
two or three different phrases. For instance, Eviza could not relate
“country with most people” to the population dimension and could
not relate “C” and “F” to temperature units Celsius and Fahrenheit.

Participants also appreciated and used the ambiguity widgets to
increase precision and to explore. For instance, after entering a
query for “large” earthquakes, P12 expressed, “Oh, look, there’s a
slider that showed up! Nice!”; she then used the slider to adjust the
magnitude threshold. However, at least two participants failed to
notice the widgets at first due to their position below the visualiza-
tion. In addition, occasionally the ambiguity widgets expressed a
result different from how the user had conceptualized their query.
After P12 typed, “find recent earthquakes”, the system responded
with an ambiguity widget for the “N most recent earthquakes” (N is
variable). However, in this instance the user expected to be able to
specify a date range.

Autocomplete: Autocomplete was a heavily used feature. Nine
out of twelve participants actively used this feature, often repeatedly.
The remaining three participants may have used it but we could
not be certain: when the feature appeared, they often typed words
that matched it, but they never directly selected items from the list.
Several participants stated during the interview that this feature
was helpful. For example, P10 said, “I did find myself trying to
think about how to phrase things...the hints really helped to get that
language right,” and P11 stated, “I ended up coming with something
I didn’t plan but I was kind of guided. It helped me to phrase this
search.”

Autocomplete served three distinct functions. First, it helped
with difficult-to-spell attribute names or words (e.g., “Fahrenheit”
or “GDPPerCapita”). Second, it reduced the need to type long
words and phrases (e.g., type “rhod” then pick “Rhode Island” from
a list of states). Third, it helped users learn what language the
system understood. P12 formulated one query almost word for



word via autocomplete. First he typed “find”, then he saw the word
“earthquake” and selected it, then he saw the word “in” and selected
it, and finally he typed “C” and then selected “California” from the
list. As another example, P13 was attempting to change units in a
line chart. After two failed attempts to create a query that Eviza
would understand, she started using autocomplete. She first typed
“show” and then looked at the suggestions, eventually typing “unit
in” to match one of the suggested phrases. She then typed “F” and
completed the word “Fahrenheit” by selecting it from the list.

Although autocomplete was heavily used, it led at least one par-
ticipant to think that only those example queries were supported.
Repeatedly typing similar queries was also annoying, leading two
users to suggest a history list of past queries in addition to autocom-
plete.

12.2.4 Empowerment
Interviews also revealed some interesting issues around empow-

erment, ownership, transparency, and trust when using natural lan-
guage. Although all of the users found the tasks easier to complete
with Eviza, two of them expressed that the ease of the task led to
a loss in empowerment and ownership. One stated that “it takes
away the pleasure of doing it yourself”, and the other used the anal-
ogy, “it’s like buying things from the store versus making the pasta
yourself." A related concept was the level of control. P13 was par-
ticularly concerned about the lack of control, stating, “To be honest
I don’t mind being more explicit. I’m actually more irritated by the
assumptions the machine makes...when I say max I mean max, not
max & average...It’s almost like amazon adding stuff into your cart
that other people bought."

Several participants were also concerned about what the system
was doing to their data in the back end. The ‘black box’ nature
of the analytical functions led to concerns about transparency and
trust. One user successfully completed a task that required her to
average the data across a ten year period, but it was not obvious
to her whether Eviza had aggregated the data correctly. Another
participant felt that Tableau filters, while not easy, at least made the
filter settings transparent, and a third participant complained that
it was not clear what was in the data or how Eviza was calculating
things like currency conversion. This feedback indicates that natural
language interfaces need to expose some details about the data
provenance so that users can understand what has happened to their
data.

13. DISCUSSION AND FUTURE WORK
Results of the evaluation confirmed our intuition that people

would find it natural and intuitive to interact with visualizations
using natural language. The keywords and grammars supported by
Eviza were discoverable and natural, and the ability to express a
command in the way you think about it made the approach both fast
and easy to learn.

Natural language was also complementary to DM, so integrating
both into an analytics interface is a promising design direction.
Natural language interaction might even help people learn a DM
interface, if recognized natural language commands were translated
to highlighted actions in the interface.

At the same time, natural language interpretation would need to
work very well for a broad range of queries for it to be effective in a
non-prototype implementation. Interestingly, since Eviza could un-
derstand natural language, participants also expected it to be smart.
For example, they expected it to have access to commonly available
data (e.g., dates of World War II), and to understand references like
‘biggest brown circle’, vague geographic areas like ‘Eastern states’,
and domain-specific words such as ‘coldest.’ While people will

adapt and rephrase their questions if they are not immediately un-
derstood, having to do so very many times can make the interactive
experience frustrating and slow.

By constraining the context, Eviza has made several significant
steps towards greater natural language expressibility through richer
semantics, pragmatics and expressibility. However, there are several
interesting directions for future work.

While the study participants liked the overall idea and utility of
the system, there were some issues. Eviza had trouble recognizing
all parts of long and complex queries and could not recognize all
grammatical constructs (e.g., “highlight those whose magnitude is
greater than 4” and “in the eastern part of the US”). An extension to
our work is to explore more robust semantic parsers. We would like
to explore how longer, complicated queries could be broken down
into simpler components through mixed initiative approaches such
as clarification dialogs presented to the user.

Participants appreciated the simplicity of accessing analytic fea-
tures with natural language, but understood that Tableau was much
more powerful. Apart from use of words and grammar that Eviza did
not understand, most of the other natural language “failure” cases
related to analytics functionality that had not been built in. Eviza’s
temporal analytics were very limited, making it unable to deal with
requests for seasonal trends or queries such as “what country has
changed the most between 1900 to 2000.” Eviza’s geographic ca-
pabilities could also be extended (e.g., to understand which regions
are ‘islands’). Most of these failures occurred when users explored
Eviza after completing the study tasks.

One place where natural language interaction may shine is for
complex analytics. Eviza enables some analytical functions (e.g.,
complex filters, correlation, aggregation), but this could be taken
much further to make complex analytics accessible to people with
limited knowledge of statistics or calculations. People may be able
to easily express natural language questions such as “is there a
seasonal trend?” without knowing how to calculate the answer.
Extending the semantics of the system with additional corpora and
grammar mappings to the visualization, including user-defined ones,
could further help improve the user experience.

While our current system focuses on a single visualization, extend-
ing the behavior to support queries across multiple visualizations,
such as a dashboard or a set of co-ordinated views, could lead to
interesting research problems in query parsing and ambiguity. Also,
extending the system to generate new views (complementing the
current visualization) could better support analytical flow questions
such as “compare average earthquake magnitudes in California and
Oregon", perhaps by complementing a map view with a histogram
of magnitudes.

Lastly, we believe that for natural language to be effective in
visual analytical tasks, it needs to work well with other modalities
such as drag-and-drop, touch, voice and user context. While we
have explored some initial ideas around using voice and context
(e.g., location), future research could further explore pragmatics and
ambiguity challenges related to different input modalities.

14. CONCLUSION
Eviza is a prototype system that enables a user to have a conver-

sation with their data using natural language. Whereas previous
work has focused on generating a new visualization based on a
user’s typed or spoken query, Eviza tackles a different problem:
enabling an interactive conversation with an existing visualization.
In building Eviza, we have made several novel contributions to nat-
ural language interaction with visualizations: use of a probabilistic
grammar-based approach that dynamically refines the parsing rules
based on the data in the context, the use of template-based autocom-



plete to help users gain an understanding of available commands,
richer language pragmatics, extension of ambiguity widgets to deal
with quantitative and spatiotemporal ambiguity, and integration of
multimodal interactions and spatial, temporal, and quantitative ana-
lytics. Our preliminary evaluation validated the intuition that natural
language interfaces are a promising approach to interacting with
data and making analytics accessible to a broad audience. By en-
abling users to ask questions in the same way they think, natural
language has strong potential to support the flow of visual analysis.
In future work, we plan to continue developing Eviza to further
explore the potential of natural language and its integration with
other input modalities.

15. ACKNOWLEDGMENTS
The authors wish to thank Heidi Lam, Terry Roberts and the

anonymous reviewers for their helpful feedback.

16. REFERENCES
[1] Extended Backus-Naur Form. https://en.wikipedia.org/
wiki/Extended_Backus%E2%80%93Naur_Form.

[2] I-want-to-go moments: From search to store.
https://www.thinkwithgoogle.com/articles/
i-want-to-go-micro-moments.html.

[3] IBM Watson Analytics.
http://www.ibm.com/analytics/watson-analytics/.

[4] Microsoft Q & A. https://powerbi.microsoft.com/en-us/
documentation/powerbi-service-q-and-a/.

[5] NarrativeScience.
https://www.narrativescience.com/quill.

[6] Node.js®. https://nodejs.org/.
[7] ThoughtSpot. http://www.thoughtspot.com/.
[8] Turf: Advanced geospatial analysis for browsers and node.
http://turfjs.org.

[9] WolframAlpha. https://www.wolframalpha.com/.
[10] Allen, J. Recognizing Intentions from Natural Language

Utterances. In Computational Models of Discourse, M. Brady,
Ed. M.I.T. Press, Cambridge, Massachusetts, 1982.

[11] Androutsopoulos, I., Ritchie, G. D., and Thanisch, P. Natural
language interfaces to databases—an introduction. Natural
Language Engineering 1, 1 (1995), 29–81.

[12] Aurisano, J., Kumar, A., Gonzales, A., Reda, K., Leigh, J.,
Di Eugenio, B., and Johnson, A. Show me data? observational
study of a conversational interface in visual data exploration.
IEEE VIS (2015).

[13] Bostock, M., Ogievetsky, V., and Heer, J. D3: Data-driven
documents. IEEE Transactions on Visualization & Computer
Graphics (Proc. InfoVis) (2011).

[14] Carbonell, J. G., Boggs, W. M., Mauldin, M. L., and Anick,
P. G. The xcalibur project, a natural language interface to
expert systems and data bases. Proceedings of the Eighth
International Joint Conference on Artificial Intelligence
(1985).

[15] Cover, T. M., and Thomas, J. A. Elements of Information
Theory. Wiley-Interscience, New York, NY, USA, 1991.

[16] Cox, K., Grinter, R. E., Hibino, S. L., Jagadeesan, L. J., and
Mantilla, D. A multi-modal natural language interface to an
information visualization environment. International Journal
of Speech Technology 4, 3 (2001), 297–314.

[17] Egenhofer, M. Spatial sql: A query and presentation language.
IEEE Transactions on Knowledge and Data Engineering 6, 1
(1994), 86–95.

[18] Finin, T., Joshi, A. K., and Webber, B. Natural language
interactions with artificial experts. Proceedings of the IEEE
74, 7 (June 1986), 921–938.

[19] Frank, A. U., and Mark, D. M. Language issues for
geographical information systems. In Geographical
Information Systems: Principles and Applications, vol 1,
D. Maguire, M. Goodchild, and D. Rhind, Eds. Longman,
London, 1991, 147–153.

[20] Freeman, J. The modelling of spatial relations. Computer
Graphics and Image Processing 4, 2 (1975), 156–171.

[21] Gao, T., Dontcheva, M., Adar, E., Liu, Z., and Karahalios,
K. G. Datatone: Managing ambiguity in natural language
interfaces for data visualization. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software
Technology, UIST ’15, ACM (New York, NY, USA, 2015),
489–500.

[22] Grammel, L., Tory, M., and Storey, M. A. How information
visualization novices construct visualizations. IEEE
Transactions on Visualization and Computer Graphics 16, 6
(Nov 2010), 943–952.

[23] Li, F., and Jagadish, H. V. Constructing an interactive natural
language interface for relational databases. Proc. VLDB
Endow. 8, 1 (Sept. 2014), 73–84.

[24] Montello, D., Goodchild, M., Gottsegen, J., and Fohl, P.
Where’s downtown? behavioral methods for determining
referents for vague spatial queries. Spatial Cognition and
Computation 3, 2&3 (2003), 185–204.

[25] Myers, K. L., and Yorke-Smith, N. A cognitive framework for
delegation to an assistive user agent (2005).

[26] Ng, H. T., and Zelle, J. Corpus-based approaches to semantic
interpretation in natural language processing. AI Magazine
Winter 1997, 45–64 (1997).

[27] Oviatt, S., and Cohen, P. Perceptual user interfaces:
Multimodal interfaces that process what comes naturally.
Commun. ACM 43, 3 (Mar. 2000), 45–53.

[28] Parr, T. The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic
Bookshelf, 2013.

[29] Pedersen, T., Patwardhan, S., and Michelizzi, J.
Wordnet::similarity: Measuring the relatedness of concepts. In
Demonstration Papers at HLT-NAACL 2004,
HLT-NAACL–Demonstrations ’04, Association for
Computational Linguistics (Stroudsburg, PA, USA, 2004),
38–41.

[30] Popescu, A.-M., Etzioni, O., and Kautz, H. Towards a theory
of natural language interfaces to databases. In Proceedings of
the 8th International Conference on Intelligent User
Interfaces, IUI ’03, ACM (New York, NY, USA, 2003),
327–327.

[31] Pustejovsky, J., Castaño, J., Ingria, R., Saurí, R., Gaizauskas,
R., Setzer, A., and Katz, G. Timeml: Robust specification of
event and temporal expressions in text. In in Fifth
International Workshop on Computational Semantics
(IWCS-5 (2003).

[32] Reinhart, T. Pragmatics and Linguistics: An Analysis of
Sentence Topics. IU Linguistics Club publications.
Reproduced by the Indiana University Linguistics Club, 1982.

[33] Roche, E., and Shabes, Y., Eds. Finite-State Language
Processing. MIT Press, Cambridge, MA, USA, 1997.

[34] Salton, G., and McGill, M. J. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc., New York, NY,
USA, 1986.

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
https://www.thinkwithgoogle.com/articles/i-want-to-go-micro-moments.html
https://www.thinkwithgoogle.com/articles/i-want-to-go-micro-moments.html
http://www.ibm.com/analytics/watson-analytics/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-q-and-a/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-q-and-a/
https://www.narrativescience.com/quill
https://nodejs.org/
http://www.thoughtspot.com/
http://turfjs.org
https://www.wolframalpha.com/


[35] Sun, Y., Leigh, J., Johnson, A., and Lee, S. Articulate: A
Semi-automated Model for Translating Natural Language
Queries into Meaningful Visualizations. Springer Berlin
Heidelberg, 2010, 184–195.

[36] Talmy, L. How language structures space. In Spatial
Orientation: Theory, Research, and Application, H. Pick and
L. Acredolo, Eds. Plenum, New York, 1983.

[37] Winograd, T. Procedures as a Representation for Data in a
Computer Program for Understanding Natural Language.
PhD thesis, 1971.

[38] Wu, Z., and Palmer, M. Verbs semantics and lexical selection.
In Proceedings of the 32nd Annual Meeting on Association for
Computational Linguistics, ACL ’94, Association for
Computational Linguistics (Stroudsburg, PA, USA, 1994),
133–138.



Analytic functions Examples

highlight

“highlight India and China” “find North America”

quantitative comparisons

“show life expectancy greater than 83” “high low and average in July”

color encoding

“color by region” “color by population in descending”

temporal

“prices in the 1st quarter with high and low” “what about around November?”

spatial

“large magnitudes outside NY” “earthquakes with magnitudes between 4 and 6 here”

aggregation

“aggregate all these earthquakes” “find correlation between 1980 and 2010”

Table 2: Types of analytical functions supported in Eviza along with some examples.
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