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Fig. 1. Orko’s user interface being used to explore a network of European soccer players. Cristiano Ronaldo, Gareth Bale, and
their connections are highlighted. Connected nodes with lower opacity do not meet all the filtering criteria. Interface components:
(A) Natural language input and action feedback row (B) Network canvas (C) Quick access icons (D) Details container (E) Summary
container (F) Filters and visual encodings row.

Abstract—Data visualization systems have predominantly been developed for WIMP-based direct manipulation interfaces. Only re-
cently have other forms of interaction begun to appear, such as natural language or touch-based interaction, though usually operating
only independently. Prior evaluations of natural language interfaces for visualization have indicated potential value in combining di-
rect manipulation and natural language as complementary interaction techniques. We hypothesize that truly multimodal interfaces
for visualization, those providing users with freedom of expression via both natural language and touch-based direct manipulation
input, may provide an effective and engaging user experience. Unfortunately, however, little work has been done in exploring such
multimodal visualization interfaces. To address this gap, we have created an architecture and a prototype visualization system called
Orko that facilitates both natural language and direct manipulation input. Specifically, Orko focuses on the domain of network visual-
ization, one that has largely relied on WIMP-based interfaces and direct manipulation interaction, and has little or no prior research
exploring natural language interaction. We report results from an initial evaluation study of Orko, and use our observations to discuss
opportunities and challenges for future work in multimodal network visualization interfaces.

Index Terms—Multimodal interaction, network visualization, natural language input, direct manipulation, multitouch input

1 INTRODUCTION

Data visualization systems have predominantly been developed for
WIMP-based direct manipulation interfaces. More recently, there has
been increased interest within the visualization community to explore
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visualization on devices and settings where conventional input modali-
ties such as keyboard and mouse are not available (commonly referred
to as post-WIMP systems [32]).

One line of research has explored how data visualization can be
conducted on large (wall or tabletop) and small (tablets) displays fa-
cilitating touch input via a finger or pen [44,45,54]. These efforts have
shown that developing visualization systems on new devices requires
significant changes in the interaction style of a visualization system’s
interface [8, 20, 56].

Another line of research has explored natural language as an input
modality for visualization systems [21, 60, 64]. Natural language in-
terfaces (NLIs) take a person’s utterance as input, and then create or
modify visualizations in response to the utterance. Natural language
is a promising interaction modality for visualization systems because
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people often can express their questions and commands more easily
using natural language than by translating their intentions to interface
actions [6, 24].

While recent research has explored touch and natural language in-
put, each modality largely has been explored on its own. Prior work
within the HCI community has shown, however, that multimodal inter-
action can significantly enhance user experience and system usability.
For instance, in a study comparing the use of speech and pen-based in-
put individually to a combination of both input modalities in the con-
text of an interactive mapping system, evaluations showed that mul-
timodal interaction significantly improved error handling and reliabil-
ity: people made 36% fewer errors with a multimodal interface [46].
A recent evaluation of an NLI for visualization also indicated poten-
tial value in combining direct manipulation and natural language as
complementary interaction techniques [60].

In our work we explore multimodal interaction with visualization,
with a particular focus on network-based data. Network visualizations
are useful for describing and exploring data relationships in many do-
mains such as transportation planning [39], biology [41], and the social
sciences [43]. Interaction plays an important role in network visual-
ization systems because users need to engage with elements of interest
(e.g., nodes, links) and interact with interface widgets (e.g., sliders,
dropdown menus) in order to better understand the data.

Until now, little work has been done in exploring natural language
and multimodal interfaces for network visualizations. We hypothesize
that the freedom of expression provided by natural language can be a
powerful addition to direct manipulation-based network visualization
tools. Natural language combined with direct manipulation may fa-
cilitate a better analytical flow by allowing people to more naturally
communicate operations such as finding nodes and paths, even while
interacting with different parts of the visualization system.

While multimodal interfaces for network visualization appear to be
a promising idea, clearly further research and evaluation is needed to
determine whether the conjectures above are true. Will such inter-
faces facilitate common network exploration and analysis tasks? Will
they lead to an improved user experience? To answer such questions,
we developed a system, Orko, that facilitates direct manipulation and
natural language based multimodal interaction with network visualiza-
tions. The primary contributions of our work are as follows:

• Building upon existing visualization task taxonomies, we high-
light the types of queries and interaction patterns that a multi-
modal network visualization tool needs to support.

• Through the design and implementation of Orko, we exemplify
how multimodal input can be processed to generate context that
can be used to complement the individual modalities. We discuss
how coupling this context with time lags between inputs helps
facilitate unimodal (touch or speech only), and simultaneous or
sequential multimodal interaction with a given visualization.

• We report observations from an evaluation of Orko that show
people naturally use multimodal input when performing network
visualization tasks. Further, we discuss varying preferences for
modalities and interaction patterns highlighting the need for fu-
ture visualization tools to further explore multimodal interaction.

2 RELATED WORK

Networks have been studied extensively by the visualization commu-
nity. Many existing systems (e.g., [5, 19, 66]) allow people to inter-
actively explore networks by visualizing them using different layouts
and representations. Various researchers have proposed different task
taxonomies for network visualizations. Lee et al. [33] present a list
of tasks commonly encountered while analyzing network data. They
define network specific objects and demonstrate how complex tasks
could be seen as a series of low-level tasks [2] performed on those
objects. Pretorius et al. [53] give an overview of the entities and prop-
erties of multivariate networks and present a taxonomy for general vi-
sualization tasks. They describe how multivariate network tasks can
be composed of lower-level tasks of the general taxonomy. Saket et
al. [57] present a group-level task taxonomy for network visualizations

and characterize a subset of the proposed tasks using a multi-level ty-
pology of abstract visualization tasks [11]. As part of our work, we uti-
lized these taxonomies to understand the tasks that our system would
need to support and the types of questions people may ask.

A large part of our motivation to explore input modalities (e.g., nat-
ural language and touch) that are afforded by post-WIMP interfaces is
based on opportunities and challenges highlighted by Lee et al. [32].
The authors specifically identify “going beyond the mouse and key-
board” and “providing a high freedom of expression” as two of the
five key opportunities for research within the visualization commu-
nity. Given the widespread adoption of direct manipulation as an in-
teraction technique, visualization systems on post-WIMP interfaces
have largely been explored using touch-based input [8, 18, 45, 54–56].
Along similar lines, there has been work exploring network visual-
izations, particularly node-link diagrams, on post-WIMP interfaces.
Schmidt et al. [59] proposed a set of multi-touch gestures for selec-
tions in network visualizations. Frisch et al. [20] explored how people
interact with network visualizations on interactive tabletop surfaces
using multimodal interaction in the form of touch and pen-based in-
put. More recently, Cordeil [15] et al. investigated the relative advan-
tages of immersive technologies like CAVE-style environments and
low-cost head-mounted displays (HMDs) for collaborative analysis of
network connectivity.

Another input modality that has recently gained renewed interest for
data analysis and visualization is natural language. There are several
NLIs that allow users to ask questions of their data in the context of
databases (NLIDBs) [1,4,30,62]. More recently, Li and Jagadish [35]
showed how even novice users were able to specify complex SQL
queries using natural language. NLIs for visualization, have been ex-
plored both in the research community and as commercial software
(e.g., IBM Watson Analytics). Cox et al. [16] presented some of the
earliest work in the space of NLIs for visualization. They combined
natural language and direct manipulation in a data visualization envi-
ronment and showed that multimodal input provides more expressibil-
ity than a single modality [49]. The Articulate system [64] presents
a natural language interface for visualization. It maps user queries to
tasks and uses these tasks in combination with data attributes to gen-
erate required visualizations. DataTone [21] is another system that al-
lows users to generate visualizations using natural language queries. It
specifically focuses on detecting ambiguity in natural language queries
and uses a mixed-initiative approach to resolve this ambiguity and help
users iteratively construct visualizations. Kumar et al. [31] present Ar-
ticulate2 an initial prototype of a conversational interface for visualiza-
tion which aims to explore the dialogue between a user and a system
to generate visualizations. The Eviza system [60] presents a visual-
ization and allows users to ask questions in the context of the given
visualization. In doing so, Eviza enables users to have an interactive
conversation with the system. By emphasizing the ability for a user to
continually revise and update their queries, Eviza seeks to provide a
rich dialog with the visualization.

We also use the context of a given network visualization as a starting
point for a conversation between our system and its users. Our work
builds upon techniques presented by prior work and extends them to
support tasks required to interact with network visualizations. We
use a combination of grammar-based and lexicon-based parsing tech-
niques to interpret natural language queries. Further, while existing
NLIs for visualization facilitate some level of multimodal input (e.g.,
Eviza lets users ask a query and then select points on a map), these sys-
tems focus more on responding to user queries rather than exploring
how people may use multiple modalities. Additionally, most existing
NLIs focus on WIMP-based settings and largely let users interact via
a mouse and keyboard.

The broader HCI community, on the other hand, has explored mul-
timodal interfaces facilitating natural language in post-WIMP set-
tings [65]. Possibly the first, and one of the best known multimodal
systems was presented in Bolt’s article “Put-that-there” [9] in 1980.
Following this, there were many systems that explored multimodal in-
teraction using a combination of of touch or pointing devices and natu-
ral language for a variety of applications including graphics manipula-
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Explicit

Find Ronaldo. — Show Pepe’s connections. — Show connections between Pogba and Bale. — Show the shortest path 
from Evra to Kroos. — Color by position. — Size nodes by betweenness centrality. — What is the clustering coefficient 
of this network. — Only show German forwards. — Clear all filters. — Resize graph to fit the screen. — Add a filter 
widget for country. — Change value of the age slider to show players over the age of 30. — Change red nodes to blue.

Follow-up 
& 
Contextual

Are any of these players right footed. — Filter by this player’s club. — Show connections of these players. — Do any of 
these players play for the same club and national team. — Show the different countries players come from. — Ronaldo 
and Rooney. — Color nodes by country > Now club > How about position?

High-level

How are France and Italy connected. — Players from which countries tend to play more with clubs in the same country. 
— Which clubs have more left footed players. — Which countries have highest number of common players. — Modify 
the network layout to focus on England players. — Which three nodes have highest betweenness centralities. — Modify 
layout to show least edge crossings. — Find clusters.

(a) Possible query types (b) Different ways of asking the same query

Show nodes connected to Ronaldo.

Show Ronaldo's connections.
Find players linked to Ronaldo.
Highlight players who play with Ronaldo.
Which players play in the same team as Ronaldo.
Show nodes directly connected to Ronaldo.
Find nodes adjacent to Ronaldo.
Show Ronaldo's teammates.
Who all is Ronaldo directly connected to.
Find players with a direct link to Ronaldo.
Find direct connections of Ronaldo.

Fig. 2. An illustration of the variety of potential natural language utterances.

tion [28,52,68], writing and painting [23,67], exploring maps [14,46],
among many others. As part of our work, we investigate how the two
emerging input modalities of touch and natural language can be com-
bined to facilitate multimodal interaction with network visualizations.
While we focus on touch and speech based input, we designed our
prototype such that it also works on WIMP-based systems to enable
future comparisons between the two settings.

3 CHALLENGES IN INTERPRETING NATURAL LANGUAGE IN-
PUT FOR NETWORK VISUALIZATION

While the designers of network visualization systems generally under-
stand the challenges and issues of implementing direct manipulation
interfaces, natural language interfaces provide an altogether different
set of challenges. For instance, consider the different types of queries
that people may pose to such a system. (We use the term “query”
throughout the remainder of the article to refer to any type of utter-
ance such as a command, comment, or question from a person.)

To help understand the possibilities, we collected a set of sam-
ple queries by referring to existing network visualization task tax-
onomies [33, 53, 57] and through pilot studies with students and re-
search colleagues. We then used an affinity diagramming approach,
grouping similar queries and iteratively refining the groups according
to how precise queries were in terms of conveying user intent. We
made the assumption that user intent is conveyed by tasks and the val-
ues they map to. We then combined groups under broader categories.
This process resulted in three higher-order categories of queries: ex-
plicit, contextual and follow-up, and high-level (Figure 2a).

For the remainder of the article, we will use a specific example,
a network of European football (soccer) players, to help ground our
discussions and make concepts more explicit. The network contains
552 players (nodes) and 6772 connections (links) between those play-
ers. A link is created between two players if they play for the same
club team (league team) or the same national team. In addition to the
name, club, and country information, other attributes associated with
players include number of goals scored, market value (in USD), age,
club, country, preferred foot, and field position.

Of the three categories of queries introduced above, explicit queries
typically provide sufficient information in terms of both tasks and
values for a system to parse the query and generate a response.
Command-like queries can be considered as a subset of explicit
queries. Examples of these types of queries include “Find Ronaldo”
or “Show the shortest path from Evra to Kroos”.

Given the conversational nature of NLIs, users may frequently pose
queries that are follow-ups to their previous queries. Such queries
typically lack references to tasks or values associated with a task. For
example, consider the query “Color nodes by country” followed by
“Now club”, followed by “How about position?”. While the queries
following the first one appear incomplete individually, they refer to the
coloring task implied by the first query. In a multimodal setting, users
may even present queries that are follow-ups to their actions on the
direct manipulation interface. We refer to such questions or queries as
“contextual” queries. For example, if the user selects a subset of nodes
and utters the query “Show connections of these players”, the system
needs to detect that the user is referring to the selected players and
automatically map the task of finding connections to those players.

Finally, high-level queries are generally open-ended user questions.

These questions typically do not specify explicit tasks and can be in-
terpreted and answered in multiple ways depending on the interpre-
tation. Examples include questions like “How are France and Italy
connected?” or “Players from which countries tend to play more for
clubs in the same country?” To generate a response for such queries, a
system typically needs to break the question into smaller tasks, solve
those tasks and combine the results into a final response.

The sheer variety of ways of saying something poses another chal-
lenge. Given the freedom of expression associated with natural lan-
guage, a person’s particular intent can be stated in multiple ways. For
example, Figure 2b shows some of the many ways that a person could
state a query to find the connections of a node. Additionally, other
challenges of natural language such as ambiguity exist as well. Am-
biguity may exist not only at a syntactic level (e.g., misspelled words)
but also at a semantic level in the context of words (e.g., synonyms and
hypernyms) and the data (e.g., “high goal scorers” can refer to players
with over 10 goals, 20 goals, and so on).

The presented examples and classifications in Figure 2 are not ex-
haustive, nor is our goal to provide a definitive taxonomy of query
types. Instead, the intent of this section is to present a general overview
of the input space of natural language queries for network visualiza-
tions in the targeted multimodal setting, and highlight the associated
complexities. We will reference these different query types later when
describing Orko’s functionality.

4 ORKO

4.1 Design Goals
Although we sought to achieve a variety of objectives while building
Orko, two primary high-level goals drove the design of the system.

DG1. Facilitate a variety of network visualization tasks. A core
goal for Orko was to support exploratory analysis similar to that done
in existing desktop-based network visualization systems (e.g., [7,37]),
but in a multimodal setting. More specifically, we wanted to focus
on supporting a variety of tasks including topology-based, attribute-
based, and browsing tasks in context of the taxonomy by Lee et
al. [33], a subset of structure-based and attribute-based tasks at a node
(entity) level per the taxonomy by Pretorius et al. [53], and finally, a
small subset of group-only, and group-node tasks as specified in the
taxonomy by Saket et al. [57].

DG2. Facilitate a variety of input integration patterns for mul-
timodal interaction. Multimodal interfaces provide more freedom
of expression allowing users to interact with the system in multiple
ways. For such systems, input patterns are typically categorized based
on the number of modalities used and temporal synchronization be-
tween modalities [48, 50, 51]. Given the system’s primary usage set-
ting (touch and speech input), our goal was to support a variety of these
input patterns, including unimodal input (touch-only, speech-only), se-
quential multimodal input (e.g., selecting nodes via touch followed by
a pause followed by a find connections query), and simultaneous input
(e.g., issuing a Color nodes query while highlighting a node’s con-
nections). More specifically, in addition to incorporating both input
modalities individually, this goal required us to consider synergies be-
tween the two modalities while designing the interface, and support
not just explicit and follow-up but also contextual queries (Figure 2a).
We chose not to focus on high-level questions (Figure 2a) as we be-
lieve they are more specific to NLIs. Further, these queries pose a
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challenge of overcoming the variability in responses that is beyond the
scope of our current work focusing on multimodal interaction.

4.2 System Overview and User Interface
Implemented as a web-based tool, Orko runs on both conventional
desktops/laptops and other devices supporting touch and speech inter-
action. Figure 1 shows the system’s user interface, and we provide an
overview of its capabilities and operations below.

At the top of the window (Figure 1A), is an input box that shows the
typed or spoken natural language query. Users can input natural lan-
guage queries in two ways: pressing the microphone button (Á) next
to the input box and speaking the query, or by saying “System” and
then speaking the actual query (similar to the interaction with Ama-
zon.com’s Alexa [3] or Google’s Assistant [22]). Below the input text
box is an action feedback row that conveys the changes made to the
interface as part of the response to a query. Orko also provides op-
tional audio feedback where the system narrates the content of the
feedback row. Some examples of feedback messages include “High-
lighting nodes directly connected to Gareth Bale”, “Changed coloring
attribute to country”, or “Sorry I’m unable to process that query. Can
you try asking the question differently?”. In some cases, the feedback
row is interactive, allowing users to modify the input query (discussed
further in section 4.4.3).

The network canvas (Figure 1B) presents the network visualization
with entities represented as circles and connections between entities
represented as lines connecting the circles. Node positions are deter-
mined by D3’s force-directed layout [10]. By default, labels are hid-
den to avoid clutter. Labels are only shown when nodes are selected
or highlighted. A click or tap on the canvas background clears selec-
tions. Quick access icons (Figure 1C) are provided at the bottom right
of the canvas to reset the view by clearing all selections and filters (è),
unpin all pinned nodes and reset the force-layout (�), and re-center the
network (�).

As mentioned earlier, we designed Orko primarily for touchscreen
devices. Consequently, we implemented the interactions within the
visualization such that they do not rely on hover (unavailable on com-
monly found touchscreens [29]) and can work on both touch and point-
ing devices (e.g., mouse, stylus). Users can single-tap on nodes to
get details, double-tap to highlight a node’s connections, drag a node
to modify the layout by pinning a node, long press (individually) on
two nodes to highlight the shortest path between them, zoom using a
pinch-gesture, and pan using a single finger drag on the background
of the canvas. When a node’s connections are highlighted, details of
individual links can be seen using a single-tap on the link. Keeping in
mind issues like the fat-finger problem [61], we sized nodes such that
it is easy to tap them and add buffer space while detecting interactions
with links to handle offset touches. The details container (Figure 1D)
shows attributes of selected nodes and link descriptions.

The summary container (Figure 1E) shows bar charts that comple-
ment the selections on the network visualization. The charts present
attribute-level summaries for active (highlighted) nodes. The bar
charts are coordinated with the network visualization and facilitate
brushing and linking. The bars within charts are sorted in descending
order of width from top to bottom to facilitate ordered comparisons.
The charts dynamically reorder based on the sequence of user interac-
tions with attributes—the most recently used attribute is always shown
on top of the container. We made this design decision of reordering
charts based on two hypotheses. First, users would find it beneficial to
see the summary statistics for attributes they most recently used on top
to answer possible questions they have in mind for the attribute (e.g.,
if a user filters nodes by goals scored, the summary chart for goals
would show up on top presenting a ranked list of the highlighted play-
ers and the number of goals they scored). Second, since the container
shows all attributes available in the dataset, it could help facilitate an
analytical conversation by triggering questions in users’ minds about
potential attributes they may not have considered.

The filters and encodings row (Figure 1F) presents the various filter-
ing and encoding options. Filtering widgets include range sliders for
numerical values and dropdown menus for categorical values. Visual

Operation Applicable to Sample queries

Find nodes Label attribute “Find Wayne Rooney”, “Show Bale and Ronaldo”, “Highlight Iniesta”

Find connections Label attribute
“Show Griezmann's teammates”, “Highlight players connected to David 
de Gea”, “Find players who play with Sergio Ramos”, “Show players 
connected to these players”

Find path Label attribute
“How are James McCarthy and Toni Kroos connected”, “Show 
connection between Giroud and Neuer”, “Highlight a path from Sergio 
Busquets to Patrice Evra”, “Show a path between these nodes”

Filter nodes
Categorical & 
numerical 
attributes

“Show left footed Madrid players”, “Find players with more than 15 
goals”, “Highlight German players over the age of 28”, “Remove age and 
market value filters”

Color nodes Categorial 
attributes

“Color by country”, “Highlight player positions”, “Color players by their 
field positions”, “Can you add coloring based on foot”

Size nodes Numerical 
attributes

“Size by market value”, “Resize nodes to highlight age”, “Size nodes by 
betweenness centrality”

Interface actions - “Refresh view”, “Clear all filters and selections”, “Deselect all nodes”, 
“Re-center graph”

Fig. 3. Currently supported operations with sample queries. The label
attributes refer to the attributes defining the nodes.

encoding widgets include dropdowns for assigning node coloring and
sizing attributes. Users can choose to keep the widgets on or remove
them at any point using the ê icon next to each widget.

To support the targeted categories of network analysis tasks (DG1),
Orko currently provides a set of seven more specific low-level oper-
ations listed in Figure 3. In the context of a recent categorization of
potential tasks people try to perform in visualization related NLIs [63],
Orko currently focuses on supporting visualization-specific interac-
tions, and provides basic support for low-level analytical operations
and system control-related tasks.

4.3 Usage Scenario: European Soccer Players

To provide a better sense of how the system works, we describe a hy-
pothetical usage scenario below. Imagine Joe, a visitor at the FIFA
World Football Museum, interacting with the European soccer player
network using Orko on a touch and speech-enabled display (The sce-
nario is illustrated more explicitly in a storyboard sequence and a video
as part of the supplementary material for this paper.)
Orko: Shows the network using a force-directed layout.
Joe: To focus on high scoring players, says “Show top goal scorers”.
Orko: Identifies ambiguity in the question due to the word ‘top’. Con-
sequently, adds a slider for the goals attribute (Figure 4a).
Joe: Adjusts the slider and observes the summary charts to highlight
the top five goal scorers in the network (Robbie Keane, Zlatan Ibrahi-
movic, Cristiano Ronaldo, Wayne Rooney, Lucas Podolski). To see
connections of the highlighted players, says “Show players connected
to these players”.
Orko: Detects that by “these” Joe is referring to the filtered set of five
players, thus highlights their connections. Preserving the goals filter,
shows the connections as faded nodes (similar to faded nodes in Fig-
ure 1B).
Joe: To highlight all connections of top five goal scorers, removes the
goals filter.
Orko: Highlights top five goal scorers and their connections. Also
highlights common connections between two or more of the top five
goal scorers using a yellow stroke around the node (Figure 4b).
Joe: Modifies the layout by pinning the top five players in different
locations. Using the modified layout and highlighted common con-
nections, observes that Cristiano Ronaldo and Lucas Podolski have a
common connection (Toni Kroos). Wayne Rooney and Lucas Podol-
ski also have a common connection (Bastian Schweinsteiger). Robbie
Keane and Zlatan Ibrahimovic have no common connections with the
other top goal scorers. Wondering about the market value of players,
says “Size players by their salaries”
Orko: Maps the word “salaries” to the attribute market value and re-
sizes nodes by the market values of players.
Joe: Observes that Podolski, even though among the top five goal
scorers, is paid much less in comparison to his teammates. Observes
that Toni Kroos, who is the common connection between Podolski and
Ronaldo is paid notably more than Podolski. Intrigued by this, says
“Highlight this connection between Ronaldo and Podolski”.
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Top 5 goal scorers are highlighted as the goals slider is adjusted.(a) Connections of top 5 goal scorers (indicated using a red stroke) are highlighted. 
Common connections are emphasized using a yellow stroke.(b)

Path between Ronaldo to Podolski is highlighted. Connection between Podolski 
and Kroos is displayed.

(c) Player nodes are re-sized by age. Summary panel is re-organized to facilitate 
expedited exploration.

(d)

Fig. 4. Scenes from the Orko usage scenario. Sub-figure captions summarize system states.

Orko: Highlights the path from Ronaldo to Podolski via Kroos (Fig-
ure 4c).
Joe: By tapping on the highlighted links, understands that both Kroos
and Ronaldo play for the same club (Real Madrid) and Kroos and
Podolski play for the same country (Germany). Curious to learn more
about the differences in salaries between Podolski and his club and na-
tional teammates, double-taps on Podolski.
Orko: Highlights Podolski and his connections.
Joe: Notices that Podolski is a striker with a high number of goals and
still is not even in the top ten players among his teammates (shown by
the summary charts) in terms of market value. Wondering if field po-
sition has any correlation with salaries, says “Highlight field positions
of these players”.
Orko: Colors nodes by the positions the players play in.
Joe: Scanning the highlighted players, notices three German strikers
(Muller, Gomez, Podolski). Muller is paid most, followed by Gomez
and Podolski. Using the summary charts, notices that in terms of goals,
Podolski has most goals (48) followed by Muller (31) and Gomez (27).
Intrigued by this fact, wonders about other attributes that may account
for the differences in salaries between German strikers. To focus on
the specific players, says “Just highlight the German strikers”.
Orko: Highlights the three German strikers and updates the summary
container.
Joe: To compare the three players across different attributes, toggles
through the list of attributes available for node-sizing.
Orko: Re-sizes nodes and re-orders the summary charts so that re-
cently used attributes are shown on top (Figure 4d).
Joe: Stops at age attribute upon noticing that nodes representing
Podolski and Gomez are much larger than the node representing
Muller. Confirming the values using the age bar chart at the top of
the summary container, hypothesizes that the age may be the factor
leading to salary differences (since younger players are typically paid
more).

4.4 System Architecture and Design

To facilitate multimodal interaction and support the different combina-
tions of input patterns (DG2), Orko employs a client-server architec-
ture shown in Figure 5. Below we describe the individual components
highlighting their specific functions and how they communicate with
each other to facilitate multimodal interaction.

4.4.1 Processing direct manipulation or natural language input
All direct manipulation (e.g., mouse, pen, touch) events triggered on
Orko’s interface (e.g., tapping a node, changing a dropdown value,
adjusting a slider) are collected and handled by the interface man-
ager. We use the HTML5 webkit speech recognition API for detecting
voice-input and performing speech-to-text translation. Once a query
string is available (either via speech-to-text or user-typed), the inter-
face manager sends it to the server for interpretation. On the server,
the query processor parses natural language queries and generates a
list of actions that need to be taken in response to a query.

Grammar
parser

AIML 
documents

Task and 
attribute lexicon

Database

ServerClient

Interface Manager

Response Processor
Query Processor

Response 
Generator

Lexicon-based
parser

Query Parser

Fig. 5. Orko system architecture.

To parse natural language queries, in comparison to existing NLIs
for visualization that tend to use either a grammar-based approach
(e.g., [16, 64]) or a lexicon-based approach (e.g., [21]), we implement
a two-step approach combining both grammar and lexicon based pars-
ing techniques. This approach lets the system parse queries that match
a grammar pattern instantaneously while at the same time, also hav-
ing a more general back-up parsing strategy based on a combination
of keyword-matching and heuristics for query patterns not covered by
the grammar.

Patterns for the grammar parser are specified using Artificial Intel-
ligence Markup Language (AIML) [13]. The patterns were generated
based on question types and examples presented in existing task tax-
onomies [33, 53, 57] and pilot studies with students and research col-
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leagues. We use a python based AIML interpreter (PyAIML) trained
with the AIML files to parse incoming query strings. The interpreter
builds a directed pattern tree and employs a backtracking depth-first
search algorithm for pattern matching. For a given query, the grammar
parser seeks to identify operations (Figure 3) specified and substrings
containing references to attributes or values the operations apply to
(analogous to a set of non-terminal symbols in a context-free gram-
mar [17]). If there is no matching pattern found, the entire query is for-
warded to the second parser, else, only the target referencing substring
is sent to the lexicon-based parser. For instance, given a query like
“Show connections of Ronaldo”, the grammar parser identifies that
the operation is find connections and the target is ‘Ronaldo’ (which is
sent to the second parser). Alternatively, a query like “Show only if
Barcelona and left foot” may not match an existing pattern and will be
forwarded as-is to the lexicon-based parser. The lexicon used consists
of attributes derived from the dataset (e.g. goals, country, names) and
manually specified keywords (e.g., teammates, adjacent, striker) that
help identify attributes, values, and operations in a given query. Some
of these keywords are generic and apply to multiple datasets (e.g.,
adjacent) while others are dataset specific (e.g., striker, teammate).
While we leverage existing lexical databases like WordNet [42] to sup-
port using synonyms (discussed further below), there always will be
dataset-specific cases that are not supported by such general databases
(e.g., using “striker” instead of “forward” for position). For such cases,
in our current implementation, both, domain-specific grammar pat-
terns and dataset-specific keywords should be manually added the first
time a dataset is loaded.

Given a portion of the query or the entire query string, the lexicon-
based parser first performs stemming and removes stop words (with
the exception of conjunction/disjunction phrases). It then extracts n-
grams (with n ranging from 1 to the number of words in the input
string). For each n-gram, it identifies POS tags (e.g., noun, verb) and
entity types (e.g., person, location, organization) using NLTK [36] and
Stanford CoreNLP [40]. n-grams not containing entity types relevant
to the dataset or values that may apply to filters (e.g., numbers) are
discarded. This filtering helps improve performance by ignoring n-
grams that do not contain relevant information. Next, the relevant n-
grams are compared to logically similar lexical entries (those that have
related POS tags or entity types). This similarity-based comparison
again helps improve performance by avoiding matches against poten-
tially irrelevant values (e.g., comparing people to locations). Build-
ing upon existing work [21, 60], we use the cosine similarity and the
Wu-Palmer similarity score [70] when comparing n-grams to lexi-
cal entries. These scores help in detecting both syntactic (e.g., mis-
spelled words) and semantic (e.g., synonyms, hypernyms) ambigui-
ties. If there are no operations identified by the grammar parser, sim-
ilar to Gao et al. [21], we use keyword-matching and a combination
of POS-tags and dependency parsing techniques [40] to identify op-
erations specified in a query. In summary, for the query “Show only
if Barcelona and left foot”, the lexicon-based parser identifies a filter
operation, a club (“Barcelona FC”), and a value for foot (“left”).

4.4.2 Managing multimodal input

In addition to its focus on network visualizations, Orko’s primary dif-
ference compared to related systems (e.g., [16, 60]) is its support for
various multimodal interaction patterns listed in DG2. As an example
of the input patterns the current framework supports, consider the case
of finding connections of a set of top goal scoring players for England.
A user could accomplish this via only touch by applying multiple fil-
ters (for country and goals) and double tapping nodes to highlight con-
nections. Instead, one could also use speech alone to perform the same
task (using a single query like “Show connections of English players
with more than 20 goals” or multiple smaller queries). Alternatively,
a user could use a combination of the two modalities and: (1) apply
filters (via touch) and follow it with a spoken query (e.g.,“show adja-
cent nodes”), or (2) apply filters via speech and then double-tap nodes,
or (3) do both filtering and uttering a query simultaneously (starting
with either of the two modalities). In cases (1) and (3), the context
generated by one input is used to complement the second and high-

light connections of the filtered nodes. For (2), the system processes
the two inputs individually as described in the subsection above, pre-
serving filters from the spoken query.

To support the patterns described above, the system needs to first
classify input patterns and then share relevant information collected
across input modes to appropriately respond to the user input. To ac-
complish this, Orko first classifies an input pattern as unimodal, se-
quential, or simultaneous. To classify an input pattern, we use a com-
bination of interface context and time lag between user inputs. The in-
terface context is tracked using an object that stores information about
active/highlighted nodes, filters applied, encodings used, previous in-
teraction modality used, and operations and target values in the last
specified query. Both the interface manager and the query processor
continually update this context object based on user inputs and actions.

When a user input (touch or speech) event occurs, we check in par-
alell if there is a change in the modality used between inputs. If so,
we further check if there is any missing information in the input (e.g.,
missing target value in a query) and a corresponding interface context
that can be applied to the current input. For example, if a user selects
two nodes (via touch) and then issues a query “Find connections”,
Orko can leverage the context of the selected nodes and apply it to the
user query. We use a heuristic approach and mappings between opera-
tions and attribute types (Figure 3) to decide if a context applies to an
input. However, an applicable interface context could be generated in
both sequential and simultaneous input.

To differentiate between the two, when there is an applicable in-
terface context, we also check the time lag between the previous and
recent input. Based on prior work on multimodal input patterns [51]
and our pilot studies, we differentiate between sequential and simul-
taneous input based on a time lag of two seconds between modalities.
We make this differentiation to decide when context from the previous
input should not be applied to the current one. For example, consider
a case where there are no selected nodes and a user issues a query
“Show nodes connected to” and follows it by a long pause. Now, the
user adds a filter (via touch) to highlight the Spanish players. If the
context from the query is applied by default, connections of the fil-
tered nodes will automatically be shown. However, after such a pause,
it is likely that the user was trying to perform a new filter action and
wanted to ignore the previous query. In such cases, since we know that
the pattern in this case was sequential, we can choose to not apply the
system context and ignore the previous query instead.

4.4.3 Supporting follow-up queries and query refinement

To handle follow-up queries (discussed in Section 3), we implement a
conversational centering [26, 27] (or immediate focusing [25]) based
approach. The centers are maintained by the query processor and in-
clude operations, attributes, and values. We retain, shift, or continue
centers across utterances [27] depending on the information shared or
added between queries. Consider the query “Show only Real Madrid
players” followed by “Show strikers”. In this case, the club filter “Real
Madrid” is retained across queries, and a position filter (“striker”) is
added after the second query (a continue operation). Now, when an-
other query “Show defenders for Barcelona” is presented, the center is
shifted to “defender” and “Barcelona FC” respectively.

Since we wanted to test Orko in a speech+touch setting where typ-
ing to modify specific parts of a query or repeatedly uttering similar
queries can become tedious, while designing Orko, we also considered
interface elements that may assist users in modifying their queries.
We considered ways in which we could assist users to ask follow-
up queries that refer to the same operation but different target(s) (e.g.
“Show Real Madrid players” followed by “Show Barcelona players”).
Such queries can be very common during network exploration, partic-
ularly while users try to scan through different node groups. To assist
in constructing such follow-up queries, Orko adds query manipulation
widgets (dropdowns and sliders) to the action feedback row highlight-
ing the domain of input values for an attribute alongside the operation
being performed (e.g., Figure 6a). Hence, for the club example dis-
cussed above, the user can specify a filter by club query once and then
keep updating the club names for consecutive queries using the drop-
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down. Users can still ask follow-up queries or modify existing queries
by typing if they prefer to do so. To allow users to instantly revert back
to the original query, it is preserved in the text box (Figure 1A).

(a) (b)

(c)

Fig. 6. Query manipulation and ambiguity widgets. (a) Dropdown menu
to change player name in a query. (b) Tooltip showing values matched
to an ambiguous word “Wayne”. (c) Tooltip suggesting tasks guessed
by the system for an underspecified query.

4.4.4 Highlighting ambiguity in queries
Similar to prior work [21, 60], we also provide ambiguity widgets to
highlight and help users resolve ambiguity via Orko’s interface. Cur-
rently supported ambiguity widgets include range sliders (for numer-
ical attributes) and interactive tooltips (for label and categorical at-
tributes). The interactive tooltips work as follows: vertical ellipsis
icons (P) are added next to query manipulation dropdowns to notify
users that the system detected ambiguous matches. When pressed,
these icons display a tooltip showing the list of matched values (Fig-
ures 1F and 6b). Selecting an item in the tooltip updates the value of
the adjacent dropdown. By default, the query manipulation dropdown
is populated with the value most similar to the ambiguous string.

We also explored how the system can suggest operations in cases
where a presented query lacks references to operations (or there is am-
biguity in operations) and there is no preceding query or an applicable
interface context to leverage. Such queries can be common with is-
sues in speech detection that lead to partial detection of queries (e.g.,
“Rooney and Ronaldo” instead of “Find connections of Rooney and
Ronaldo”). When the response generator detects attributes or values
in a query but is unable to map them to a specific operation, it makes
a “guess” at the operation that a user could perform based on a re-
verse mapping from attribute types to the list of available operations
(Figure 3). An example of this is shown in Figure 6c where three op-
erations, find nodes, find connections, and find path are suggested in
response to an underspecified query using an interactive tooltip.

5 EVALUATION

We conducted a user study to evaluate Orko’s design and multimodal
approach for interacting with network visualisations. We had three
main goals: (1) assess basic usability of the system, (2) collect qual-
itative feedback on Orko’s features and design, and (3) collect obser-
vational data on how people interact with network visualizations when
they have the option of using multimodal input.

We initially considered performing a comparative study to mea-
sure usability and performance but struggled to find the right com-
parison since we could not find any publicly available network visual-
ization tool that supported multimodal interaction. We also considered
comparisons to unimodal interfaces (touch-only, NL-only) but decided
against doing so because that evaluation would focus more on an ex-
amination of unimodal versus multimodal interaction, which was not
our goal in this study. We finally decided on a study where all par-
ticipants would interact with Orko and perform the same set of tasks
using the European soccer player network described earlier.

Selecting and phrasing the study tasks themselves was another chal-
lenge. Due to the availability of speech as an input modality, posing
tasks as direct questions was not an option since participants could

simply repeat (say) the questions. Thus, we adopted the Jeopardy-style
evaluation approach proposed by Gao et al. [21]. We gave participants
a set of facts and asked them to modify the visualization to show each
fact. For example, one such fact was “Robbie Keane only plays with
Irish players.” To “answer” this, participants would need to show that
all of Robbie Keane’s connections belong to Ireland. (So, participants
would need to find connections + color nodes by country, or find con-
nections + scan summary charts, or find connections + scan individual
nodes). We also added some entity naming tasks that required partic-
ipants to explore the network to identify specific entities. The tasks
again were framed so that participants could not simply parrot them to
get an answer. For example, one of the questions was “Name an FC
Barcelona midfielder. Identify at least two non-Barcelona midfielders
the player is connected to.” To respond to the first part of this question,
participants would have to name (using filter or find) and highlight a
Barcelona midfielder. For the second part, they would have to high-
light the player’s connections with two other non-Barcelona players
and show that those two are also midfielders.

To assess the prototype’s usability, we used the standard 10 ques-
tion SUS questionnaire [12]. We used SUS since it has been shown
to provide a global measure of system satisfaction and sub-scales of
usability and learnability [34]. Further, the correlation between SUS
scores and task performance is similar to most other post-test ques-
tionnaires [58].

To collect qualitative feedback on Orko’s design and features, we
encouraged participants to think aloud and interact with the experi-
menter while performing the given tasks. We also conducted informal
interviews at the end of the session asking participants about their ex-
perience and feedback on the system features.

5.1 Participants and Experimental Setup
We recruited six participants, ages 22 to 42, five male and one female.
All participants had prior experience with visualization tools such as
Tableau. All participants had some prior experience with network vi-
sualization tools (e.g., Gephi [7]). Two participants stated they had
some prior experience working with touch-based visualization sys-
tems and only one participant (P2) had never used a voice-based sys-
tem (e.g., Siri). In terms of domain knowledge, two participants were
well acquainted with the sport of soccer and the data, and remaining
four stated they were aware of it but did not follow the game or know
much about the data. All participants interacted with Orko running on
Google’s Chrome browser on a 55” Microsoft Perceptive Pixels (PPI)
device. The PPI was set to a resolution of 1920 x 1080 pixels.

5.2 Procedure
Participants were given a brief introduction (approximately 5-7 min-
utes) to the system’s UI and the European soccer player dataset. For
the UI, we highlighted the different components (Figure 1), possible
touch-interactions (tap, double-tap, drag etc.), and told participants
that they could use typed (using a virtual keyboard) or speech-based
input for natural language interaction. We did not show any trials or
videos of how participants could perform any specific task since we
wanted to observe their natural behavior and reactions. Participants
were then asked to try the touch and speech input using any interac-
tions and commands they wanted to test, until they felt comfortable
(approximately 1-3 minutes).

Next, we gave participants a list of 10 tasks printed on a sheet of pa-
per and 30 minutes to interact with the system. The order of the tasks
was randomized for each participant. The tasks contained a mix of
Jeopardy-style [21] facts and entity identification questions. The ques-
tions were constructed using previously defined network visualization
task taxonomies [33, 57] and included topology-level tasks, attribute-
level tasks, browsing-tasks, and some group-level tasks. Details of the
tasks are provided as part of the supplementary materials.

We told the participants that we would not be measuring how
quickly they perform the tasks, so they should feel free and interact as
naturally as possible. We recorded both video and audio of participants
interacting with the system during these 30 minutes. Participants who
finished the tasks before 30 minutes could continue exploring the data
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using the system if desired. Participants were then given a post-session
questionnaire that consisted of SUS questions and questions asking
them about their experience with Orko. We also conducted informal
interviews asking the participants about what they liked/disliked most
about the system and recorded their their responses as audio files. Ses-
sions lasted between 40-60 minutes and participants were given a $20
Amazon gift card.

5.3 Results and Observations
5.3.1 System Usability Scale responses
All participants attempted each of the 10 tasks and on average, pro-
vided correct responses for 8.67 tasks. Figure 7 (right) summarizes
overall SUS scores. Participants gave Orko an average SUS score of
75.42. SUS scores have a range of 0 to 100 and a score of around
60 and above is generally considered as an indicator of good usabil-
ity [38]. The SUS scores indicate that even though the prototype is
in its initial stages, participants in general found the interface and the
interactions facilitated by Orko usable.

5.3.2 Interaction Patterns and preferences
Figure 7 (left) summarizes interactions for the six participants for each
study task (descriptions provided as supplementary material). The cell
values indicate the number of times an input modality was used to
accomplish operations in Figure 3. For example, for a find connections
operation, P1 used a combination of speech and touch (find query +
double-tap) once and two speech queries (find + find connections) the
second time (first and second row of the table respectively).

Of 181 total constructions, 92 (50.8%) instances of just spoken
queries arose, unimodal touch accounted for 55 (30.9%), and mul-
timodal interaction where both speech and touch were used sequen-
tially made up the remaining 33 (18.3%) constructions. No instances
existed where modalities were used simultaneously (a myth of multi-
modal interaction [47]). However, all participants used more than one
input modality at least once while performing the study tasks. Interac-
tion patterns varied for the same task across participants (e.g., P1 per-
formed task T1 using a multimodal pattern of speech+touch whereas
P2 performed the same task using a single speech query). Similarly,
individual participants’ patterns varied as they performed similar tasks
multiple times too. For instance, P6 performed task T5 using a series
of spoken, touch, and multimodal interactions but when performing a
similar task T6, used only speech.

In general, speech was typically used for search, filtering, and
topology-based tasks involving multiple nodes (e.g., finding path and
common connections). Touch, on the other hand was typically used
for tasks like highlighting connections of individual nodes and chang-
ing values of existing graphical encodings. However, preferences for
modalities also varied across task types (Figure 3). For instance, for a
find connections task, four participants (P1, P3, P4, P5) generally used
a combination of speech (for find) and touch (for finding connections)
whereas the remaining two participants used only spoken queries to
see connections (P2, P6). For filtering, all participants used speech at
least once (typically at the beginning). For the spoken queries, two par-
ticipants (P1, P4) used longer queries with multiple filters (e.g., “Show
Barcelona midfielders”) whereas three participants (P2, P5, P6) used
multiple single filter queries. One participant (P3) typically followed a
spoken query with touch interactions for modifying filters. Preferences
even varied for less-visualization specific tasks such as coloring and
sizing. Four participants mostly used spoken queries to change node
color/size whereas two (P3, P6) often used a combination of speech
and touch for the same.

The use of multiple modalities (individually and together) to ac-
complish tasks and the variable nature of interaction patterns across
participants highlights the need and potential value of multimodal in-
terfaces that accommodate such varying user preferences.

Natural language interaction and interpretation. Participants
commended Orko’s natural language capabilities and felt it interpreted
queries fairly well (Figure 7-right). Multiple participants were initially
skeptical about natural language input based on their previous experi-
ences but were pleasantly surprised by the system’s capabilities and

the usefulness of speech input. For instance, P6, who reported that
she frequently used applications like Siri and Notes stated “I was sur-
prised by the speech feature. I did not expect it to work as well as
it did”. She also mentioned that speech not only worked well but
actually improved her experience with visualization tools. She said
“having worked with many visualization programs before, having to
go through and manually clicking is really annoying epecially when
you have a ton of dropdowns. So I really like the speech feature, I
know it’s still in a rudimentary stage but it does a really good job”.

In terms of query interpretation, there were only seven instances
where Orko either did not respond or responded incorrectly to a query.
Some of these were queries included operations that were not yet sup-
ported (e.g., layout change) while others queries had multiple values
that were not separated by conjunctions. For example, for the query
“Show connections of Rooney McCarthy and Stones” P5 expected the
system to find connections of three players. The system, however, only
showed connections of two players (Rooney and Stones), but still list-
ing McCarthy within the ambiguity tooltip widget (Figure 6b). In such
cases, participants typically thought of an alternative way to perform
operations via touch or broke the query further into more explicit ones.

Although speech recognition was viewed favorably by participants
in general, it was not perfect. On average, 16% of queries were
missed or incorrectly translated from speech-to-text. The percentage
was higher for some participants (e.g., 30% for P3) due to variations
in accent and speaking tone. Speech detection issues did cause some
frustration among participants. For example, P3 stated “It was a little
frustrating when the system did not understand my voice or did not
react at all to voice”. Ambiguity widgets did help for incorrectly de-
tected player names, but only twice. Participants typically used the
virtual keyboard to fix their utterances since it happened only occa-
sionally. The more common case was the system failing to detect
queries. In such cases, participants either repeated queries by tapping
the Á icon (Figure 1A) or used touch input to proceed with the task.
For example, when the system did not detect a participant’s (P4) find
connections query, the participant simply double-tapped the node to
see its connections.

These observations further motivate the need to study multimodal
interaction for visualization systems. With a growing number of NLIs,
such examples show how users can leverage alternative modalities to
counterbalance issues such as speech detection in NLIs.

Contextual and follow-up queries Based on prior work that has
shown a high preference for queries where touch (or pen) is followed
by speech input [51,69], we hypothesized that such contextual queries
(Figure 2a) would be a common pattern. However, this was not the
case. Only two participants (P2, P6) uttered such contextual queries
that referred to nodes highlighted via touch interaction. Both P2 and
P6 used a contextual query when highlighting connections within a
group of nodes. They applied a country filter through the dropdown
and then said “Show the connections of these nodes” (P2) and “High-
light connections” (P6). However, we suspect the nature of the study
tasks and prior experience of participants with visualization tools may
have had an effect on the reduced usage of this pattern. Observing
users (including novice users) perform more open-ended tasks and ex-
ploring the use of contextual queries in the context of other visual-
izations is certainly a direction for future work. Additionally, Orko
currently only supports a limited number of touch gestures. Three par-
ticipants (P1, P4, P5) also expressed a desire in having more expressive
multitouch gestures to select and move groups of nodes. Exploring if
the availability of additional multitouch gestures [59] increases the use
of contextual queries is another open question.

For follow-up utterances, queries involving continue opera-
tions [27] were most common (e.g., adding new filters). Follow-
up queries with references to new values (e.g., “Filter to show Real
Madrid” > “now Barcelona” > “now strikers”) were only used five
times (thrice by P2 and twice by P5), all during a filtering operation.
Instead, participants preferred to repeat entire queries (e.g., “Filter to
show Real Madrid” > “Filter to show Barcelona” > “Filter by strik-
ers”) and often also repeated existing filters (e.g., “Filter to show strik-
ers” > “Show only strikers for England”). Given this behavior, the
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P1 P2 P3 P4 P5 P6
S T ST S T TS S T ST S T ST S T ST S T ST TS

T1 1 2 1 1 1 1
T2 2 1 1 1 1 1
T3 2 2 1 3 1 1 1 3 1 3 1 2
T4 2 1 3 4 3 6 3
T5 2 2 1 1 1 2 4 4 1 1
T6 1 1 1 2 1 1 1 3 4
T7 1 1 2 3 1 1 1 1 1 3 1 2 2
T8 1 1 1 1 1 1 1 2 1 1
T9 2 2 2 2 2 1 1 2

T10 2 2 2 8 1 2 6 2 2 5 2 5 2 3 1

P1 P2 P3 P4 P5 P6 Average

Overall SUS scores
(out of 100) 80 70 82.5 80 52.5 87.5 75.42

Would want to use the system 
frequently
(out of 5)

4 5 5 5 3 5 4.5

Found various functions well 
integrated
(out of 5)

5 5 4 3 5 4 4.33

Natural language query 
interpretation

(out of 5)
4 4 3 4 4 5 4

Fig. 7. (Left) Summary of interactions per study task for each participant. S: Speech, T : Touch, ST : Sequential speech+touch, TS: Sequential
touch+speech. (Right) Participant respones for specific SUS questions and Orko’s query interpretation

query manipulation widgets were not frequently used. Based on these
observations, we believe future work could focus more on exploring
elements like ambiguity widgets [21] and ways to help users correct
their queries and potentially less on how systems could help users ask
follow-up questions.

5.3.3 Reaction to system feedback and proactive behavior

A recent analysis of NLI utterances to visualization systems [63] high-
lights instruction and feedback as well as proactive system behavior as
two areas for data visualization NLIs to explore. Along these lines, in
Orko, we present both audio and textual feedback when responding to
natural language queries. However, even after multiple modes of feed-
back, one participant (P2) repeated his query twice before he realized
the query had already been executed. P2 also expressed that he would
like the system to show the possible space of input queries and said
“If the system used the keyboard, an auto-complete function would be
very helpful”. Such observations and feedback indicate that we need
to explore more ways to surface feedback and potentially expose the
input query space on post-WIMP interfaces.

Orko exhibits proactive behavior with its suggestion of tasks for un-
derspecified queries and by rearranging the summary charts based on
user interactions and queries. The task suggestion feature was only
triggered thrice (twice for P5 and once for P3). In both cases, the par-
ticipants did not detect it and went on to change their query indicating
that the feature needs improvement and more importantly, needs to be
surfaced in a more detectable way. All participants used the summary
charts at least once. Three participants did not realize the charts were
changing order but the ones who did (P1, P2, P4) stated they liked the
system behavior. P2 stated “I enjoyed how quickly the system filtered
and changed the settings like color and size of the nodes and provided
summary statistics like goals, age, market value”. The reordered sum-
mary charts also helped trigger new questions in participants’ minds.
For instance, after applying a club filter, one participant (P1) scanned
the summary charts to realize that there was an attribute for position
and said “Oh yeah! There’s position too” and asked the system to filter
based on one of the position values. Based on the feedback and our ob-
servations, we feel that adding such proactive behavior to complement
interactions within the main visualization was a useful design choice.
As future work, similar system behavior should be explored to help fa-
cilitate an analytical conversation between users and multimodal (and
NLIs) visualization systems.

5.3.4 Participants’ feedback on multimodal interaction

Participants overall felt that the various features of the system were
well integrated (Figure 7-right). They generally found the multimodal
interaction to be intuitive and stated they would want to use such a sys-
tem frequently (Figure 7-right). One participant (P3) wrote “It was fun
to use and a very intuitive way to explore a network.”. Other partici-
pants even stated that they felt direct manipulation and speech-based
multimodal input should become a part of network visualization tools
in general. For example, one participant (P4) who works with network
visualizations almost on a daily basis wrote, “The ability to perform
simple actions like “find node” and “find path between two nodes”
was really fun to use, and I see this being highly used in general net-
work visualization tools, especially for novice users”. He further stated

that he felt that the speech input worked particularly well for naviga-
tion and topology-based tasks. He suggested that the natural language
modality for such tasks would be a great addition to keyboard and
mouse based network visualization systems and it can speed up per-
formance. He did state, however, that he still wanted to use direct
manipulation for tasks like selecting specific values for graphical en-
codings or tuning parameters for analytical operations, emphasizing
that he wanted both modalities.

6 FUTURE WORK

Facilitating network presentation tasks. One particularly interesting
category of tasks that emerged from our experiment were network pre-
sentation tasks. Three of the participants mentioned that they found the
ability of being able to spatially drag and pin nodes useful. As stated
earlier, some of these participants even wanted to drag and pin entire
groups. During the session, one participant (P5) even asked “Can I ask
it to modify the layout to something other than force-directed?”. Such
observations indicate potential value in exploring ways in which we
can help people accomplish network presentation related tasks such
as layout modification, bundling or untangling edges, and minimizing
edge crossings. Particularly with natural language, one can even envi-
sion layouts being set automatically by the system in response to user
queries. Another possible extension of this idea is the system suggest-
ing alternative representations (e.g., a matrix instead of a node-link
diagram) that can be most effective in answering a given question.

Exploring additional classes of networks. As part of our current
work, we have primarily used Orko to explore multivariate, undirected
networks. While interactions supported by Orko are rather generic
and can be used in other network types such as directed and multipar-
tite networks, we need to explore other types of networks further to
identify and support network-specific tasks that people may want to
perform. For instance, for a temporal network, in addition to consid-
ering what questions people want to answer and how they ask those
questions, considering how multimodal interaction can be leveraged
for tasks such as navigating through temporal variations in the net-
work structure is another direction for future research.

7 CONCLUSION

We introduced Orko, a network visualization tool facilitating multi-
modal interaction via natural language and direct manipulation (e.g.,
touch) input. To explain the difficulty of providing such an inter-
face, we highlighted challenges associated with interpreting natural
language in such a multimodal setting. We presented Orko’s architec-
ture describing how it processes multiple input modalities and facili-
tates multimodal interaction. Through an example scenario of use and
descriptions of Orko’s capabilities, we sought to illustrate its innova-
tive approach and potential for a new style of network exploration and
data analysis. We reported results from an evaluation study of Orko
and used our observations to discuss opportunities and challenges for
future work in multimodal network visualization interfaces.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for the detailed and helpful feed-
back on the article. This work was supported in part by the National
Science Foundation.



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745219, IEEE
Transactions on Visualization and Computer Graphics

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for
keyword-based search over relational databases. In Proceedings of the
18th International Conference on Data Engineering, pages 5–16. IEEE,
2002.

[2] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic ac-
tivity in information visualization. In Proceedings of the 2005 IEEE Sym-
posium on Information Visualization, pages 111–117. IEEE, Oct. 2005.

[3] Amazon Alexa. https://en.wikipedia.org/wiki/Amazon_
Alexa.

[4] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language
interfaces to databases–an introduction. Natural language engineering,
1(01):29–81, 1995.

[5] D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel
Graph Layout by Topological Features. IEEE Transactions on Visualiza-
tion and Computer Graphics, 13(2):305–317, 2007.

[6] J. Aurisano, A. Kumar, A. Gonzales, K. Reda, J. Leigh, B. Di Eugenio,
and A. Johnson. “Show me data”: Observational study of a conversational
interface in visual data exploration (poster paper). In IEEE VIS ’15, 2015.

[7] M. Bastian, S. Heymann, M. Jacomy, et al. Gephi: an open source soft-
ware for exploring and manipulating networks. In Proceedings of the
Third International Conference on Weblogs and Social Media, ICWSM,
pages 361–362, May 2009.

[8] D. Baur, B. Lee, and S. Carpendale. TouchWave: kinetic multi-touch ma-
nipulation for hierarchical stacked graphs. In Proceedings of the 2012
ACM International Conference on Interactive Tabletops and Surfaces
(ITS), pages 255–264. ACM, Nov. 2012.

[9] R. A. Bolt. ‘put-that-there’: Voice and gesture at the graphics interface.
In Proceedings of the 7th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’80, pages 262–270, 1980.

[10] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–
2309, 2011.

[11] M. Brehmer and T. Munzner. A multi-level typology of abstract visualiza-
tion tasks. IEEE Transactions on Visualization and Computer Graphics,
19(12):2376–2385, 2013.

[12] J. Brooke et al. SUS-A quick and dirty usability scale. Usability evalua-
tion in industry, 189(194):4–7, 1996.

[13] N. Bush, R. Wallace, T. Ringate, A. Taylor, and J. Baer. Artificial Intel-
ligence Markup Language (AIML) Version 1.0. 1. ALICE AI Foundation
Working Draft, 2001.

[14] P. R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith,
L. Chen, and J. Clow. Quickset: Multimodal interaction for simulation
set-up and control. In Proceedings of the fifth conference on Applied nat-
ural language processing, pages 20–24. Association for Computational
Linguistics, 1997.

[15] M. Cordeil, T. Dwyer, K. Klein, B. Laha, K. Marriot, and B. H. Thomas.
Immersive Collaborative Analysis of Network Connectivity: CAVE-style
or Head-Mounted Display? IEEE Transactions on Visualization and
Computer Graphics, 23(1):441–450, 2017.

[16] K. Cox, R. E. Grinter, S. L. Hibino, L. J. Jagadeesan, and D. Mantilla.
A multi-modal natural language interface to an information visualization
environment. International Journal of Speech Technology, 4(3-4):297–
314, 2001.

[17] A. Cremers and S. Ginsburg. Context-free grammar forms. Journal of
Computer and System Sciences, 11(1):86–117, 1975.

[18] S. M. Drucker, D. Fisher, R. Sadana, J. Herron, et al. TouchViz: a case
study comparing two interfaces for data analytics on tablets. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 2301–2310. ACM, May 2013.

[19] T. Dwyer. Network visualization as a higher-order visual analysis tool.
IEEE Computer Graphics and Applications, 36(6):78–85, 2016.

[20] M. Frisch, J. Heydekorn, and R. Dachselt. Investigating multi-touch and
pen gestures for diagram editing on interactive surfaces. In Proceedings
of the ACM International Conference on Interactive Tabletops and Sur-
faces, pages 149–156. ACM, Nov. 2009.

[21] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. DataTone:
Managing Ambiguity in Natural Language Interfaces for Data Visual-
ization. In Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, pages 489–500. ACM, Oct. 2015.

[22] Google Assistant. https://en.wikipedia.org/wiki/
Google_Assistant.

[23] A. P. Gourdol, L. Nigay, D. Salber, J. Coutaz, et al. Two case studies of
software architecture for multimodal interactive systems: Voicepaint and
a voice-enabled graphical notebook. Engineering for Human-Computer
Interaction, 92:271–84, 1992.

[24] L. Grammel, M. Tory, and M.-A. Storey. How information visualization
novices construct visualizations. IEEE Transactions on Visualization and
Computer Graphics, 16(6):943–952, 2010.

[25] B. J. Grosz. Focusing and description in natural language dialogues.
Technical report, DTIC Document, 1979.

[26] B. J. Grosz and C. L. Sidner. Attention, intentions, and the structure of
discourse. Computational linguistics, 12(3):175–204, 1986.

[27] B. J. Grosz, S. Weinstein, and A. K. Joshi. Centering: A framework for
modeling the local coherence of discourse. Computational linguistics,
21(2):203–225, 1995.

[28] A. G. Hauptmann. Speech and gestures for graphic image manipulation.
In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’89), pages 241–245. ACM, Mar. 1989.

[29] K. Hinckley and D. Wigdor. Input technologies and techniques. In The
Human-Computer Interaction Handbook: Fundamentals, Evolving Tech-
nologies and Emerging Applications, pages 151–168. ACM, 2002.

[30] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in rela-
tional databases. In Proceedings of the 28th international conference on
Very Large Data Bases, pages 670–681. VLDB Endowment, 2002.

[31] A. Kumar, J. Aurisano, B. Di Eugenio, A. Johnson, A. Gonzalez, and
J. Leigh. Towards a dialogue system that supports rich visualizations of
data. In 17th Annual Meeting of the Special Interest Group on Discourse
and Dialogue, page 304, 2016.

[32] B. Lee, P. Isenberg, N. H. Riche, and S. Carpendale. Beyond mouse and
keyboard: Expanding design considerations for information visualization
interactions. IEEE Transactions on Visualization and Computer Graph-
ics, 18(12):2689–2698, 2012.

[33] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy
for graph visualization. In Proceedings of the ’06 BELIV Workshop, pages
1–5. ACM, May 2006.

[34] J. R. Lewis and J. Sauro. The factor structure of the system usability
scale. In International Conference on Human Centered Design, pages
94–103. Springer, 2009.

[35] F. Li and H. Jagadish. Constructing an interactive natural language in-
terface for relational databases. Proceedings of the VLDB Endowment,
8(1):73–84, 2014.

[36] E. Loper and S. Bird. Nltk: The natural language toolkit. In Proceedings
of the ACL-02 Workshop on Effective tools and methodologies for teach-
ing natural language processing and computational linguistics-Volume 1,
pages 63–70. Association for Computational Linguistics, 2002.

[37] C. T. Lopes, M. Franz, F. Kazi, S. L. Donaldson, Q. Morris, and G. D.
Bader. Cytoscape web: an interactive web-based network browser. Bioin-
formatics, 26(18):2347–2348, 2010.

[38] V. Lopez, M. Fernández, E. Motta, and N. Stieler. PowerAqua: Support-
ing users in querying and exploring the semantic web. Semantic Web,
3(3):249–265, 2012.

[39] T. L. Magnanti and R. T. Wong. Network design and transportation plan-
ning: Models and algorithms. Transportation Science, 18(1):1–55, 1984.

[40] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky. The Stanford CoreNLP Natural Language Processing
Toolkit. In ACL (System Demonstrations), pages 55–60, 2014.

[41] O. Mason and M. Verwoerd. Graph theory and networks in biology. IET
Systems Biology, 1(2):89–119, 2007.

[42] G. A. Miller. WordNet: a lexical database for English. Communications
of the ACM, 38(11):39–41, 1995.

[43] J. Moody. The structure of a social science collaboration network: Dis-
ciplinary cohesion from 1963 to 1999. American Sociological Review,
69(2):213–238, 2004.

[44] T. Nagel, L. Pschetz, M. Stefaner, M. Halkia, and B. Müller. mæve–an
interactive tabletop installation for exploring background information in
exhibitions. In International Conference on Human-Computer Interac-
tion, pages 483–491. Springer, 2009.

[45] C. North, T. Dwyer, B. Lee, D. Fisher, P. Isenberg, G. Robertson, and
K. Inkpen. Understanding multi-touch manipulation for surface comput-
ing. In IFIP Conference on Human-Computer Interaction, pages 236–
249. Springer, 2009.

[46] S. Oviatt. Multimodal interactive maps: Designing for human perfor-
mance. Human-Computer Interaction, 12(1):93–129, 1997.

[47] S. Oviatt. Ten myths of multimodal interaction. Communications of the

https://en.wikipedia.org/wiki/Amazon_Alexa
https://en.wikipedia.org/wiki/Amazon_Alexa
https://en.wikipedia.org/wiki/Google_Assistant
https://en.wikipedia.org/wiki/Google_Assistant


1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745219, IEEE
Transactions on Visualization and Computer Graphics

ACM, 42(11):74–81, 1999.
[48] S. Oviatt. Multimodal interfaces. The human-computer interaction hand-

book: Fundamentals, evolving technologies and emerging applications,
14:286–304, 2003.

[49] S. Oviatt and P. Cohen. Perceptual user interfaces: multimodal inter-
faces that process what comes naturally. Communications of the ACM,
43(3):45–53, 2000.

[50] S. Oviatt, R. Coulston, S. Tomko, B. Xiao, R. Lunsford, M. Wesson,
and L. Carmichael. Toward a theory of organized multimodal integration
patterns during human-computer interaction. In Proceedings of the 5th
international conference on Multimodal interfaces, pages 44–51. ACM,
2003.

[51] S. Oviatt, A. DeAngeli, and K. Kuhn. Integration and synchronization of
input modes during multimodal human-computer interaction. In Refer-
ring Phenomena in a Multimedia Context and their Computational Treat-
ment, pages 1–13. Association for Computational Linguistics, 1997.

[52] R. Pausch and J. H. Leatherby. An empirical study: Adding voice input to
a graphical editor. In Journal of the American Voice Input/Output Society.
Citeseer, 1991.

[53] A. J. Pretorius, H. C. Purchase, and J. T. Stasko. Tasks for multivariate
network analysis. In Multivariate Network Visualization, pages 77–95.
Springer, 2014.

[54] J. M. Rzeszotarski and A. Kittur. Kinetica: naturalistic multi-touch data
visualization. In Proceedings of the 32nd annual ACM Conference on
Human Factors in Computing Systems, pages 897–906. ACM, 2014.

[55] R. Sadana and J. Stasko. Designing and implementing an interactive scat-
terplot visualization for a tablet computer. In Proceedings of the 2014
International Working Conference on Advanced Visual Interfaces, pages
265–272. ACM, 2014.

[56] R. Sadana and J. Stasko. Designing multiple coordinated visualizations
for tablets. Computer Graphics Forum, 35(3):261–270, 2016.

[57] B. Saket, P. Simonetto, and S. Kobourov. Group-level graph visualization
taxonomy. arXiv preprint arXiv:1403.7421, 2014.

[58] J. Sauro and J. R. Lewis. Correlations among prototypical usability met-
rics: evidence for the construct of usability. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1609–1618.
ACM, 2009.

[59] S. Schmidt, M. A. Nacenta, R. Dachselt, and S. Carpendale. A set of
multi-touch graph interaction techniques. In ACM International Confer-
ence on Interactive Tabletops and Surfaces, pages 113–116. ACM, 2010.

[60] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang.
Eviza: A natural language interface for visual analysis. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology,
pages 365–377. ACM, 2016.

[61] K. A. Siek, Y. Rogers, and K. H. Connelly. Fat finger worries: how older
and younger users physically interact with pdas. In IFIP Conference on
Human-Computer Interaction, pages 267–280. Springer, 2005.

[62] A. Simitsis, G. Koutrika, and Y. Ioannidis. Précis: from unstructured
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