
Nicky: Toward A Virtual Assistant for Test and
Measurement Instrument Recommendations

Robert Kincaid
Keysight Laboratories
Keysight Technologies

Santa Clara, USA
robert.kincaid@keysight.com

Graham Pollock
Keysight Laboratories
Keysight Technologies

Roseville, USA
graham_pollock@keysight.com

Abstract—Natural language question answering has been an area
of active computer science research for decades. Recent advances
have led to a new generation of virtual assistants or chatbots,
frequently based on semantic modeling of some broadly general
domain knowledge. However, answering questions about detailed,
highly technical, domain-specific capabilities and attributes
remains a difficult and complex problem. In this paper we discuss
a prototype conversational virtual assistant designed for choosing
test and measurement equipment based on the detailed
measurement requirements of the test engineer. Our system allows
for multi-stage queries which retain sufficient short-term context
to support query refinement as well as compound questions. In
addition to the software architecture, we explore an approach to
ontology development that leverages inference from reasoners and
minimizes the complexity of entering the specifications for a large
collection of instruments. Finally, we provide insights into the
issues of building this system and provide recommendations for
future designs.

Question answering; intelligent assistant; chatbot; ontology;
semantic query; reasoning

I. INTRODUCTION
Question answering systems have been an active area of

research for many years beginning with early systems such as
BASEBALL [1], LUNAR [2] and ELIZA [3]. In the past such
efforts were developed largely in the field of artificial
intelligence and have focused on expert systems in relatively
limited domains. More recently, the advent of scalable cloud
computing and improvements in natural language processing,
voice recognition, and voice synthesis as well as ontology-based
reasoning systems has led to ubiquitous access to such systems
as Siri [4], Cortana [5], Alexa [6] and Google Now [7]. These
newer technologies enable conversational access to so-called
virtual assistants for answering simple day-to-day questions or
performing various actions. While these systems are engaging,
their usefulness to-date has been primarily limited to answering
direct questions for information retrieval (the weather, stock
quotes, etc.) or invoking specific commands (phone dialing,
reminders, appointments, alarm setting, music playback, etc.).

In the electronics industry, when new electronic parts or
devices are designed, they need to be tested to validate that the
design functions properly and to the intended specifications.
This is true for single integrated circuits, circuit boards as well
as complex devices such as mobile phones, televisions and other
consumer electronics. Typically, one or more test engineers will

have to design a test plan for the device under test that includes
specifying the measurements and ranges required. These
measurement requirements dictate the specific test equipment
necessary. Creating this test setup can be a somewhat complex
task. A typical test scenario will require many different
measurements to be made over varying combinations of
conditions and will usually involve multiple instruments and
devices. Test and measurement companies such as Keysight
have product lines consisting of hundreds of different
instruments (both current and legacy models still in use) with a
variety of potentially overlapping capabilities. Each device has
its own characteristic measurement functions, measurement
ranges, accuracy, software compatibility and more.

To begin to address this instrument selection task, we
explored constructing a conversational recommendation agent
we call Nicky (after Nikola Tesla), focused on recommending
test and measurement instruments based on a variety of required
attributes and functions typically specified by the test engineer.
This effort included investigating the feasibility of using an
ontology to represent the relationship between test and
measurement equipment and their capabilities. In particular, we
hope to apply reasoning over this semantic network to aid in
choosing appropriate instruments based on test criteria provided
by the user.

Our primary goal in this work was to explore the design
space and feasibility of building an intelligent virtual assistant
for a highly technically-focused task related to test and
measurement. To this end we have built a proof-of-concept
system and in the process have observed some interesting issues.
Thus, the main contributions of this paper are:

• A high-level description of system architecture

• An efficient approach to ontology development that
leverages reasoners to do much of the work

• Observations about issues implementing a virtual
assistant in a very technical domain

• Lessons learned and recommendations with respect to
handling complex specifications and how this informs
design; particularly with respect to speech vs. text
input/output.

2017 IEEE 11th International Conference on Semantic Computing

978-1-5090-4284-5/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSC.2017.11

196

II. RESEARCH QUESTIONS
In considering how to design and use a question answering

system in our domain we focused on several research questions:

Q1: Can an ontology represent the complexity of test and
measurement instruments and capabilities?

A central issue in our work was determining if it was possible
to efficiently represent the inherent complexity of instrument
characteristics using an ontology. This representation needed to
allow the characteristics of instruments to be modeled in
sufficient detail to allow easily extensible complex queries. We
were also interested in the level of difficulty in authoring such
an ontology and whether suitable SPARQL [8] queries could be
successfully formed at this level of detail and complexity. While
descriptive logic systems should in principle be capable of such
tasks, a key concern was how practical authoring and using such
a domain-specific ontology might be.

Q2: For our targeted use case, can reasoners provide useful
benefit beyond a traditional relational database?

One of the main benefits of an ontology-based system is the
ability to compute over the relations and attributes within the
ontology. In particular, reasoners can be applied and potentially
provide matching results that might not be easily obtainable in a
traditional table-based model using specific, targeted queries
that match only attributes.

Q3: Can a conversational interface efficiently support
answering detailed, technical instrument queries and provide
query refinement?

Implementing a dialog-based system for a highly technical
use case presents a number of challenges, which we will discuss

in more detail later in this paper. Therefore, another key question
for our research was to what extent is a conversational approach
useful, what strategies are necessary and what limits might there
be on such approaches.

Q4: Can a domain-specific virtual assistant be built with
modest resources and open source software?

While a number of well-known, robust virtual assistants are
already deployed as scalable, high-performance cloud-based
services, we were interested in exploring the feasibility of more
modest systems with a narrow task focus and based on client-
side hardware. Could we build a standalone application that
replicated many of the features of these more extensive systems
if the targeted task was sufficiently narrow?

III. RELATED WORK
Question answering systems have a long history in user

interface research and artificial intelligence, dating back to such
very early systems as BASEBALL [1], LUNAR [2] and ELIZA
[3]. Frequently these types of systems are built as a dialog
system or a conversational agent [9]. Conversational agents can
also be utilized for imperative commands used for device control
such as voice activated phone dialing, music selection or
controlling televisions. Brennan [10] even makes a case for
considering conversation as a form of direct manipulation [11].
Interfacing to such agents has been accomplished via voice
recognition and synthesis [4-7] as well as through purely text-
based dialog systems [3, 12].

Advances in speech processing, natural language processing
and artificial intelligence have led to the advent of modern
virtual assistants which employ increasingly humanlike
discourse. Siri [4] is a well-known pioneering example that was

Figure 1. Basic class structure of the instrument ontology. Arrows indicate “is a” relationships.

197

largely based on the CALO project [13] from SRI and there are
several other similar well-known systems [5-7]. However, these
systems typically require extensive infrastructure to support a
massive body of web-derived knowledge as well as a high
volume of user queries. Additionally, query refinement through
user context and discourse have begun to appear in such
systems as Hound [14] and Viv [15].

Semantic networks, frequently in the form of ontologies,
provide many affordances [16] that are often central to the
reasoning systems of virtual assistants and conversational agents
[17]. Such networks provide a rich infrastructure with which to
express some knowledge domain and provide a computable
representation for inference and query. Many of these systems
are fact-based and provide means for querying a knowledge base
for related facts or relationships. A rarer case is an ontology
constructed around a highly technical and complex domain. A
recent prominent example is IBM’s work with the Watson
platform to provide a knowledge base of oncology aimed at
providing recommendations about cancer treatment options
[18]. Wolfram Alpha [12] incorporates a large body of largely
fact-based technical knowledge covering various mathematical
and scientific domains as well as the ability to perform symbolic
math. There has even been early work by Freiling [19] which
endeavored to describe test and measurement instruments and
their operation which is particularly relevant and motivational to
the domain of our inquiry.

Finally, our targeted use case of device selection has similar
intentions to previous work on virtual shopping assistants [20]
and virtual sales clerks [21, 22]. These systems involve
searching for relevant items for purchase based on attributes
important to the user, such as style, price, etc. However, these
attributes are generally well structured and easily searched by
more traditional database technologies, although semantic
approachs have begun to appear.

Despite all these recent advances, crafting an efficient,
accurate and useful virtual assistant is still challenging [23-25],
particularly for a complex, technical use case.

IV. ONTOLOGY DEVELOPMENT
The instrument ontology was developed in OWL [26] using

Protégé 5.0.0 for both editing as well as SPARQL [8] query
prototyping. The Pellet reasoner [27] was used for inferring
otherwise unspecified relationships and properties. We have
implemented a collection of relevant instruments models as part
of our “proof-of-concept”. This included a selection of AC and
DC power supplies, function generators, multimeters, power
meters and oscilloscopes. We intended this collection to display
a level of representative complexity as well as give reasonable
coverage over a variety of typical instruments with different
input and output channels, each with a variety of functions,
properties and ranges.

To aid in the construction of the ontology we compiled a list
of competency questions which were generally of the form:

What instruments measure voltage?

Which devices can produce current?

What can measure 0 to 10 volts DC?

What can produce 200 milliamps?

What instruments work with MATLAB?

Etc.

Broadly, the questions fell into several classes based on the
following:

• What devices can measure some property (voltage, current,
resistance, temperature, etc.), potentially over some range.

• What devices can produce such properties (usually a signal
of some kind).

• Additionally, we included software as a category in the
ontology so queries can also be constructed to select
compatible software/hardware combinations.

One of the main objectives of our ontology design was to
simplify the entry of instrument specifications into the ontology.
To this end we created a relatively simple hierarchy of hardware
and software classes (Figure 1) with axioms sufficient to infer
subclass assignments directly from instrument properties. Note
that for our use case, there is only one instance of an instrument
model and so we chose to limit the class hierarchy to generic
instrument types rather than include specific models as part of
the class hierarchy directly.

Individual instrument models are primarily represented by a
collection of signal configurations corresponding to the input
and/or output modes the instrument supports. These signal
configurations define the capabilities of the instrument via object
and data property assertions but do not directly classify the
instrument type. For a simple example, the U1273AX Handheld
Digital Multimeter is defined as being composed of five
individual input signal configurations as seen below in compact
Turtle syntax:
:U1273AX rdf:type owl:NamedIndividual , owl:Thing ;
 rdfs:label "U1273AX Handheld Digital Multimeter,
 4.5 digit"^^xsd:string ;
 :modelNumber "U1273AX"^^xsd:string ;
 :hasInputSignalConfiguration
 :U1273AX_AC_Current ,
 :U1273AX_AC_Voltage ,
 :U1273AX_DC_Current ,
 :U1273AX_DC_Resistance ,
 :U1273AX_DC_Voltage .

All five of these signal configurations actually belong to a
single physical channel. Channels, i.e. the physical connections
capable of measuring or providing signals, can often be capable
of more than one signal type. Further, an instrument can and
often does contain multiple channels. Our example multimeter
has a single DC Voltage mode on channel 1 defined by the
following signal configuration definition:
:U1273AX_DC_Voltage rdf:type owl:NamedIndividual ,
 owl:Thing ;
 :minDcVoltage "0.0"^^xsd:float ;
 :channelNumber "1"^^xsd:nonNegativeInteger ;
 :maxDcVoltage "1000.0"^^xsd:float ;
 :signalConfigurationName "DC Voltage"^^xsd:string ;
 :canMeasure :DcVoltage .

Each signal configuration is also unique to the instrument
model. There is no hierarchy of signal channels or configurations

198

since they are unique properties of the instrument model and not
shared with other similar instruments. Further, it is useful to split
this composition between instrument and channels so that we
can enumerate and search by signal configuration properties.

Class axioms are used to infer subclass associations directly
from these signal configurations. For example, an instrument
that has a signal channel that produces voltage would map to a
power supply, whereas a signal channel that measures voltage
would map to a voltmeter as shown below:
:Voltmeter rdf:type owl:Class ;
 owl:equivalentClass
 [
 rdf:type owl:Restriction ;
 owl:onProperty :hasInputSignalConfiguration ;
 owl:someValuesFrom [
 rdf:type owl:Restriction ;
 owl:onProperty :canMeasure ;
 owl:hasValue :Voltage
]
] ;
 rdfs:subClassOf :Hardware ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :typeOfHardware ;
 owl:hasValue :Voltmeter
] .

In this way, the editor of the ontology does not have to manually
determine with which instrument classes to associate a new
entry, and our class hierarchy alone can now establish high-level
relationships. All the multimeter instances will have several
signal configurations that map through axioms to voltmeter,
ammeter and ohmmeter and the following class definition will
automatically assign such instruments to the class multimeter:

:Multimeter rdf:type owl:Class ;
 owl:equivalentClass [rdf:type owl:Class ;
 owl:intersectionOf (:Ammeter
 :Ohmmeter
 :Voltmeter)

] ;
rdfs:subClassOf [
 rdf:type owl:Restriction ;
 owl:onProperty :typeOfHardware ;
 owl:hasValue :Multimeter
] .

Using this strategy, a modest amount of class definitions and
axioms greatly simplifies the effort needed to specify and
classify the numerous instruments we are interested in defining.

V. DESIGN AND IMPLEMENTATION
Nicky was developed as a stand-alone application written in

Java (JDK 1.8) and has been verified to operate on Microsoft
Windows, MacOS and Linux. Figure 2 depicts a block diagram
of the main components of the architecture. In the following
sections we describe these components in greater detail.

A. Query Input
Two modes of interaction are provided for conversing with

the system:

Speech input is obtained via the computer’s microphone
input. The captured audio is sent to a third-party cloud-based
speech-to-text service for conversion to text. A virtual button on
the display (Figure 3) is used for a “push-to-talk” function
(PTT). When the PTT button is released, the captured audio is
remotely processed and returned as text in less than 1-2 seconds.
While an always-listening mode might be more natural for the
user, the use of a PTT function disambiguates “turn taking” often
problematic in conversational agents. For our prototype, we are
relatively immune to extended pauses in utterances that might
otherwise be taken as a turn marker.

For comparison to speech input, we also implemented a
keyboard-based interface in the same display. The user can,
therefore, optionally type directly into the display to enter
questions without using the PTT function. Such keyboard input
eliminates the need for external calls to cloud-based speech
processing and allows execution to take place entirely on the
user’s computer.

B. Domain-Specific Language Processor
Once a question is entered and the text acquired, it is

submitted for further processing to the “Domain-Specific
Language Processor”. Since our use case has a reasonably
limited vocabulary, we chose to not employ a full natural
language processing system and instead relied on developing a
compact domain-specific language processor with ANTLR 4
[28, 29].

We started with the basic competency questions used for
ontology development and constructed ANTLR expressions to
match most of the reasonable variations for formulating these
questions. In this way we could handle syntax variations such as:

“What measures voltage?”

“Which instruments measure DC voltage?”

“What can measure 0 to 10 VDC?

etc.

In addition, we could process some normalizations at the
lexical level. In particular, recognizing VDC or VAC as “volts
DC” and “volts AC” respectively. Unit conversions were also
handled within the ANTLR-constructed parser. For example,
“mv” is interpreted as “millivolts” and properly converted to
0.001 volts when used in a query against the ontology. For our
use case, one of the critical aspects of handling flexible text input

Figure 2. A high level overview of the Nicky architecture

199

is this ability to understand and convert various methods of
specifying the same value in different units and/or abbreviations.

Once the user’s sentence is fully parsed and normalized,
entity extraction is performed to identify the key verb and object
pairs such as “measure voltage” or “produce current” as well as
any range restrictions such as “0 to 10 volts DC”. This extracted,
normalized query data is stored in an extensible context cache.
If the parser detects specific continuation phrases such as “from
those” or “which of these” etc. the extracted information is
appended to the context cache. In the absence of a continuation
phrase the cache is cleared before storing the current information
and a new query sequence is begun.

C. SPARQL Query Generation and Execution
A SPARQL query is assembled and prepared for execution

by enumerating the context cache containing one or more user
supplied criteria. As our examples illustrate, signal requirements
result in a hasSignalConfiguration statement, a canMeasure or
canProduce statement and a corresponding filter restriction.
Software requirements add a similar compatibleWithSoftware
statement and matching filter. Additional instrument related
attributes are added for retrieval. Our narrow use case permits
all queries to take the same extensible form and can be
assembled in a consistent, straightforward manner. We used
Apache Jena [30, 31] as our run-time ontology processor.

D. Results Extractor
After a SPARQL query is executed, Jena returns a list of

strings containing the query results. These results must be parsed

to extract the relevant data, typically an instrument model
number and type.

E. Response Composer
The extracted response elements are assembled into a

reasonable English sentence as the answer to the user’s question.
When there is a large list of compatible instruments, summary
statistics are computed to list the type and number of instruments
found. If the list is small, a concatenated list of instruments is
generated. To invoke a bit of personality into the system and
avoid monotonous replies, a randomly selected prefix is
prepended to the response such as “I know of” or “The” as well
as a randomly selected preamble. See Figure 3 for example
sentence constructions.

F. Response Output
If the PTT function is invoked and we are operating in voice

mode, the text response is sent to a third-party cloud-based text-
to-speech service for conversion to high quality audio output.
This output is then streamed to the computers speakers for an
audible response. The net effect is a conversational refinement
of searching for an instrument.

In contrast, if the text interface is being used by simply
typing, then the result is immediately output and no speech-to-
text is applied.

VI. EXAMPLES
In this section we provide several illustrative examples of

how the system functions.

Example 1: Query refinement through dialog

Figure 3 shows the display and a discourse to find an
instrument that can measure voltage, temperature and is
compatible with the software platform MATLAB. In this simple
example, we first begin by looking for instruments with
interfaces that are compatible with MATLAB. Since there are a
number of them, rather than enumerate them all with voice
synthesis, the system provides a brief summary. We then narrow
the list first by asking a follow-up question for an instrument that
measures voltage. We finally refine our query to arrive at a
device that can also measure temperature. The corresponding
final SPARQL query combining all questions is:
SELECT DISTINCT ?instrumentLabel ?typeLabel
WHERE {

?instrument :hasSignalConfiguration ?sig1 .
?instrument :hasSignalConfiguration ?sig2 .
?instrument rdfs:label ?instrumentLabel .
?instrument :compatibleWithSoftware ?software1 .
?software1 rdfs:label ?swtitle1 .
?sig1:canMeasure ?measure1.
?sig2:canMeasure ?measure2.
?instrument :productWebPage ?link .
?instrument :typeOfHardware ?type .
?type rdfs:label ?typeLabel .
FILTER
(
 (regex(str(?swtitle1),"matlab","i"))
 &&
 (regex(str(?measure1),"voltage","i"))
 &&
 (regex(str(?measure2),"temperature","i"))
)

} ORDER BY ?instrument

Figure 3. A typical session illustrating the layout of the prototype’s user

interface. Note the “push-to-talk” button at the bottom of the display.

200

Note that the keywords “Of these” and “Among those” are the
key phrases used to indicate to the query generator that these
secondary queries should be combined with the previous query.
In this way, while the SPARQL query retains the same basic
form, it accumulates additional signals, software requirements
and filter statements.

The basic structure of the query is to collect the relevant
attributes such as signal configurations and software
compatibility. These attributes are then used to filter the results
based on query criteria. In this instance, it is necessary to obtain
duplicate signals so we can use two different criteria (voltage
and temperature). This construction allows compiling SPARQL
queries to obtain any arbitrary combination of requirements
retained in the context cache. Selecting items based on filters is
potentially inefficient. However, since our instrument collection
is never likely to evolve past a few thousand individual
instruments, the flexibility afforded by this query construction
for building extensible, complex queries is a useful trade-off.

Example 2: Compound queries

Nicky supports direct compound queries with Boolean
conjunctions. An example equivalent to Figure 3 is:

What works with MATLAB and can measure voltage and can
measure temperature?

This generates exactly the same SPARQL query shown in
Example 1, and thus retrieves the same result, the 34405a digital
multimeter.

Example 3: Query over ranges

When we introduce value ranges on instrument attributes, both
the human and machine queries become slightly more
complicated. An example is the question and answer:

What can generate 2 amps AC and 1 to 5 volts AC?

How about this? The ac6801a basic AC power source.

The corresponding SPARQL query is generated as:
SELECT DISTINCT ?instrumentLabel ?typeLabel
WHERE {

?instrument :hasSignalConfiguration ?sig1 .
?instrument :hasSignalConfiguration ?sig2 .
?instrument rdfs:label ?instrumentLabel .
?sig1:canProduce ?generate1.
?sig2:canProduce ?generate2.
?instrument :productWebPage ?link .
?instrument :typeOfHardware ?type .
?type rdfs:label ?typeLabel .
?sig1 :minAcCurrent ?minAcA1 .
?sig1 :maxAcCurrent ?maxAcA1 .
?sig2 :minAcVoltage ?minAcV2 .
?sig2 :maxAcVoltage ?maxAcV2 .
FILTER
(
(regex(str(?generate1),"ac.*current","i") &&
 ((?minAcA1 <= 2.0) && (?maxAcA1 >= 2.0)))
&&
(regex(str(?generate2),"ac.*voltage","i") &&
 ((?minAcV2 <= 1.0) && (?maxAcV2 >= 5.0)))
)
}GROUP BY ?instrumentLabel ?typeLabel
 ORDER BY ?instrument

The basic structure of the query is similar to the earlier examples
where we depend on filter selection. However, in this case we
filter not only on object properties, but also on the ranges of
relevant data properties.

Example 4: Queries that take advantage of inference

Each of the previous examples leverage inference. Our
queries did not take the more traditional form of “what
instruments are voltmeters”. Instead, we approached the
questions from higher level abstractions such as “what can
measure voltage” and “what can generate current”.

However, even direct queries about instrument classes rely
on inference. The following question and answer is an example:

What instruments are multimeters?
Here are some possibilities. The 34401a digital
multimeter, the 34405a digital multimeter and the
u1273ax handheld digital multimeter.

Remember that these instruments were never explicitly
defined as multimeters, but the class axioms defined for
ammeter, ohmmeter and voltmeter as well as multimeter allows
the ontology to assign them the class and function of multimeter
purely from the signal channel definitions.

VII. DISCUSSION
From our experience developing and testing the Nicky

prototype, we can begin to answer the research questions posed
in Section II. It is important to note that while we considered
usability in our design, our interest to date is primarily focused
on the more basic issue of feasibility. We were successful in
producing a working and accurate system that returns true
statements about instrument queries, and this is the context for
most of our observations.

Q1: Can an ontology represent the complexity of test and
measurement instruments and capabilities?

Given the subset of instruments we examined, we manually
verified that query matches were accurate and complete. Given
our ability to generate these accurate queries we conclude that it
is possible to create an ontological structure that captures the
complexity of measurement types and ranges necessary to
sufficiently describe the instruments in question and satisfy our
initial use case. This structure includes distinguishing between
input and output channels, signal measurement vs. signal
production, the ranges of electrical and radio frequency
properties supported as well as what software is compatible with
each instrument.

Despite leveraging the reasoner to make class assignments,
we still found that creating and populating a test and
measurement ontology was somewhat tedious and complicated
in practice due to the numerous attributes and varying properties
required to completely define an instrument. The basic concept
of an ontology is foreign to most test and measurement experts
and the difference relative to a traditional database is a difficult
concept to grasp. For constructing a more complete ontology of
instruments we feel custom authoring tools would be helpful.
Such tools are critical since few sufficiently knowledgeable

201

domain experts are likely to have the desire or skills for direct
ontology editing in a system like Protégé. Further, our technique
of isolating the individual instance data from the class hierarchy
removes the burden of both the tools and the editors from
needing complete understanding of the ontology. However, this
approach will only work with sufficient and accurate class and
axiom definitions to accomplish the appropriate instance to class
mappings. Such axiom mappings can be useful for cases where
a moderate amount of work on the ontology contributes to a
substantial simplification of later specification entry.

An added issue is that in most cases, entering the
measurement ranges and characteristics of an instrument
requires manually extracting detailed information from an
instrument data sheet. These values are generally expressed in a
table and these tables do not always conform to a consistent
layout. Extracting data from such tables requires a fairly
complex reading and comprehension task on the part of the
ontology author to interpret the table and extract the appropriate
information.

Q2: For our scenario, can reasoners provide useful benefit
beyond a traditional relational database?

Employing reasoners was found to be useful in two different
scenarios:

 During ontology construction, we were able to describe
instances of instrument classes by simply describing the
capabilities of the instruments via signal configurations and
allowed the reasoner to infer the class based on signal-related
axioms. This inference relieves the ontology author from having
to think deeply about what the correct class assignment should
be. This cognitive task is particularly problematic for multi-
function instruments that may be definable by several different
classes (e.g. a multimeter that is simultaneously an ammeter,
voltmeter and ohmmeter).

The reasoner can also discover non-traditional classes or
functionality. Many measurement devices are multi-function
and semantic reasoning has the potential to remind the test
engineer of obscure or novel uses of such instruments. For
example, a waveform generator which can produce sinusoidal
waveforms can be used in some limited cases as an AC power
supply. And we have already seen an example of a multimeter
which can function as a thermometer.

Q3: Can a conversational interface efficiently support
answering technical instrument queries and query refinement?

Due to the potential complexity of query refinement, care
should be taken in how voice and even text input is used in this
type of query task. We were driven, early in our prototyping
process, to develop the ability to have ongoing multi-step
refinement using a series of questions. Segmenting the dialog in
this manner is necessary for two reasons:

First, speaking a complete specification question into the
system might take multiple sentences and numerous parameter
specifications. A lengthy monologue places an increased burden
on the accuracy of the speech-to-text processing as well as the
human trying to formulate a complex but interpretable question.
User satisfaction would also be severely impacted if after
dictating a several-minutes-long question, the system failed to

parse the speech input correctly and the user had to repeat the
entire, lengthy dictation. Thus, we submit what we consider a
reasonable proposition: that it is better to ask simpler, shorter
questions and maintain some form of multi-question query
refinement process. In addition to a simpler conversational
dialog, it may allow the questioner to observe an unexpected
intermediate result that could lead to a different endpoint. This
tactic is consistent with Brennen [10] which cited many relevant
aspects of dialogue as an interaction technique. She specifically
calls out building a complex query that takes more than one
exchange.

Second, the results of some queries may include a fairly large
number of potential instruments. This fact led us to implement
the form of “summary” responses where a count of matches is
provided with the assumption that the user would ask further
refinement questions to reduce the response to a reasonable
number of devices. Particularly for speech output, this is critical
as a typical user would not be inclined to listen to a lengthy
monologue of various model numbers and instrument types.

As a general observation we note that for simple questions
and responses voice works well and is an engaging mode of
interaction. As the dialog becomes more complex, text input and
output seems more efficient. For very complex queries requiring
multiple signal definitions and potentially requiring multiple
instruments, a more traditional form-based query-by-example is
probably required. Further user study is required to fully validate
these findings, but we offer our initial experience and
observations in the spirit that they may prove useful for future
research.

Similarly, for our very focused and limited vocabulary, we
found that a domain-specific language (DSL) parser was
relatively easy and quick to implement. For many similarly
focused cases, a DSL is probably sufficient and preferable to the
overhead of a full NLP system. However, if our system were
developed to handle increasingly complex compound queries
over a broader range of domain questions, implementing a true
NLP is likely necessary.

Q4: Can a domain-specific virtual assistant be built with
modest resources and open source software?

We found that it was possible to construct an efficient system
that executed primarily on the user’s local machine. The only
non-local processes were the speech-to-text and text-to-speech
which may not be required or even desired for some cases such
as noisy environments or where privacy might be of concern.
This opens intriguing possibilities for similar semantic reasoning
to be included in features of client-side applications typical of
test and measurement software. Further, since many modern
instruments are actually driven by embedded computer systems,
such ontology-based capabilities could be practically integrated
into the instrument itself, particularly if speech processing is not
required. Ontology-driven test and measurement has been
considered for some time [19] and our results appear to indicate
that the computing power and software support has finally begun
to catch up to this long established vision.

VIII. CONCLUSION AND FUTURE WORK
We have presented Nicky, a proof-of-concept question-

answering virtual assistant for selecting test and measurement

202

instruments based on user-supplied criteria. We have been able
to explore a number of aspects of building a virtual assistant for
a complex technical domain. This has provided useful insight
into ontology construction, issues with user dialog management
and user interface development. We also have a high degree of
confidence that with sufficient effort, a workable ontology can
be created to fully describe the capabilities and functional
relationships of a large inventory of instrument types. While we
have verified feasibility, formal user studies are needed to verify
and refine the usability of such conversational systems for
technical tasks such as instrument selection and at what point the
complexity of the exercise requires a different mode of
interaction.

Future work should include an expanded ontology that
includes a wider array of instruments and devices to further
explore issues of complexity and scalability. To enable this, we
believe work toward domain-specific authoring tools is
necessary to simplify data entry for domain experts. Such tools
are particularly needed in an industrial context where ontology
experts with sufficient domain expertise will typically be in short
supply. This more complete ontology could leverage content and
design principles from the Linked Open Data community [32] as
well as potentially contribute to the growing body of publicly
available ontologies.

While we have focused on a narrow use case of instrument
selection, a semantic inventory of instruments offers a number
of intriguing possibilities for future work ranging from on-line
store search, instrument asset management to intelligent
instrument control and automation. In addition, other technical
domains with similarly structured relationships and selection
criteria might also be amenable to a similar treatment. For
example, selecting electronic components from a parts inventory
could have similarities with respect to range criteria and
complex multi-function and/or multi-application properties.

ACKNOWLEDGMENTS
This work was conducted using the Protégé resource, which

is supported by grant GM10331601 from the National Institute
of General Medical Sciences of the United States National
Institutes of Health.

REFERENCES
[1] Green Jr, B.F., Wolf, A.K., Chomsky, C., and Laughery, K., "Baseball:

an automatic question-answerer". Proc. Western Joint IRE-AIEE-ACM
Computer Conference, May 9-11 1961 pp. 219-224

[2] Woods, W.A., and Kaplan, R., "Lunar rocks in natural English:
Explorations in natural language question answering", Linguistic
structures processing, 1977, 5, pp. 521-569

[3] Weizenbaum, J., "ELIZA-a computer program for the study of natural
language communication between man and machine", Commun. ACM,
1966, 9, (1), pp. 36-45

[4] Siri, http://www.apple.com/ios/siri/ (accessed August 24, 2016)
[5] Cortana, http://microsoft.com/cortana (accessed August 24, 2016)
[6] Alexa, https://developer.amazon.com/alexa (accessed August 24, 2016)
[7] Google Now, http://www.google.com/landing/now/ (accessed August

24, 2016)
[8] Pérez, J., Arenas, M., and Gutierrez, C., "Semantics and Complexity of

SPARQL". Proc. International Semantic Web Conference (ISWC 2006)
2006 pp. 30-43

[9] Lester, J., Branting, K., and Mott, B., "Conversational agents", The
Practical Handbook of Internet Computing, 2004, pp. 220-240

[10] Brennan, S.E., "Conversation as direct manipulation: An iconoclastic
view", in "The Art of Human-Computer Interface Design" (Addison-
Wesley, 1990), pp. 393-404

[11] Shneiderman, B., "The future of interactive systems and the emergence
of direct manipulation", Behaviour & Information Technology, 1982, 1,
(3), pp. 237-256

[12] WolframAlpha, http://www.wolframalpha.com/about.html (accessed
August 24, 2016)

[13] Ambite, J.L., Chaudhri, V.K., Fikes, R., Jenkins, J., Mishra, S., Muslea,
M., Uribe, T., and Yang, G., "Design and implementation of the CALO
query manager". Proc. Proceedings of the National Conference on
Artificial Intelligence 2006 pp. 1751

[14] Hound, http://www.soundhound.com/hound (accessed August 24, 2016)
[15] Viv, http://viv.ai/ (accessed August 24, 2016)
[16] Dou, D., Wang, H., and Liu, H., "Semantic data mining: A survey of

ontology-based approaches". Proc. Semantic Computing (ICSC), 2015
IEEE International Conference on, 7-9 Feb. 2015 2015 pp. 244-251

[17] Purver, M., Niekrasz, J., and Peters, S., "Ontology-based multi-party
meeting understanding". Proc. Proceedings of CHI 2005 Workshop: CHI
Virtuality 2005

[18] Keim, B., "Dr. watson will see you... someday", IEEE Spectrum, 2015,
52, (6), pp. 76-77

[19] Freiling, M., "Designing an inference engine: from ontology to control".
Proc. Artificial Intelligence for Industrial Applications, 1988. IEEE AI
'88., Proceedings of the International Workshop on, 25-27 May 1988
1988 pp. 20-26

[20] Semeraro, G., Andersen, H.H.K., Andersen, V., Lops, P., and Abbattista,
F., "Evaluation and Validation of a Conversational Agent Embodied in a
Bookstore", in "Universal Access Theoretical Perspectives, Practice,
and Experience: 7th ERCIM International Workshop on User Interfaces
for All, Paris, France, October 24–25, 2002, Revised Papers" (Springer
Berlin Heidelberg, 2003), pp. 360-371

[21] Mumme, C., Pinkwart, N., and Loll, F., "Design and implementation of a
virtual salesclerk". Proc. 9th International Conference on Intelligent
Virtual Agents (IVA 2009), September 14-16 2009 pp. 379-385

[22] Shimazu, H., "ExpertClerk: A Conversational Case-Based Reasoning
Tool for Developing Salesclerk Agents in E-Commerce Webshops",
Artificial Intelligence Review, 2002, 18, (3), pp. 223-244

[23] Raux, A., Bohus, D., Langner, B., Black, A.W., and Eskenazi, M.,
"Doing research on a deployed spoken dialogue system: one year of let's
go! experience". Proc. Ninth International Conference on Spoken
Language Processing (INTERSPEECH 2006), Pittsburgh, PA, USA,
September 17-21 2006 pp. 65-68

[24] Black, A.W., and Eskenazi, M., "The spoken dialogue challenge". Proc.
Proceedings of the SIGDIAL 2009 Conference: The 10th Annual
Meeting of the Special Interest Group on Discourse and Dialogue,
London, United Kingdom 2009 pp. 337-340

[25] Luger, E., and Sellen, A., "Like Having a Really Bad PA: The Gulf
between User Expectation and Experience of Conversational Agents".
Proc. Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, Santa Clara, California, USA2016 pp. 5286-5297

[26] Antoniou, G., and Van Harmelen, F., "Web ontology language: OWL",
in "Handbook on ontologies" (Springer, 2009), pp. 91-110

[27] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz, Y., "Pellet: A
practical OWL-DL reasoner", Web Semantics: Science, Services and
Agents on the World Wide Web, 2007, 5, (2), pp. 51-53

[28] ANTLR, 4.5.1, http://www.antlr.org/
[29] Parr, T., "The definitive ANTLR 4 reference" (Pragmatic Bookshelf,

2013. 2013)
[30] Apache Jena, http://jena.apache.org/ (accessed August 24, 2016)
[31] McBride, B., "Jena: a semantic Web toolkit", IEEE Internet Computing,

2002, 6, (6), pp. 55-59
[32] Heath, T., and Bizer, C., "Linked data: Evolving the web into a global

data space", Synthesis lectures on the semantic web: theory and
technology, 2011, 1, (1), pp. 1-136

203

