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Abstract—Natural language question answering has been an area 
of active computer science research for decades. Recent advances 
have led to a new generation of virtual assistants or chatbots, 
frequently based on semantic modeling of some broadly general 
domain knowledge. However, answering questions about detailed, 
highly technical, domain-specific capabilities and attributes 
remains a difficult and complex problem. In this paper we discuss 
a prototype conversational virtual assistant designed for choosing 
test and measurement equipment based on the detailed 
measurement requirements of the test engineer. Our system allows 
for multi-stage queries which retain sufficient short-term context 
to support query refinement as well as compound questions. In 
addition to the software architecture, we explore an approach to 
ontology development that leverages inference from reasoners and 
minimizes the complexity of entering the specifications for a large 
collection of instruments. Finally, we provide insights into the 
issues of building this system and provide recommendations for 
future designs.  

Question answering; intelligent assistant; chatbot; ontology; 
semantic query; reasoning 

I.  INTRODUCTION 
Question answering systems have been an active area of 

research for many years beginning with early systems such as 
BASEBALL [1], LUNAR [2] and ELIZA [3]. In the past such 
efforts were developed largely in the field of artificial 
intelligence and have focused on expert systems in relatively 
limited domains. More recently, the advent of scalable cloud 
computing and improvements in natural language processing, 
voice recognition, and voice synthesis as well as ontology-based 
reasoning systems has led to ubiquitous access to such systems 
as Siri [4], Cortana [5], Alexa [6] and Google Now [7]. These 
newer technologies enable conversational access to so-called 
virtual assistants for answering simple day-to-day questions or 
performing various actions. While these systems are engaging, 
their usefulness to-date has been primarily limited to answering 
direct questions for information retrieval (the weather, stock 
quotes, etc.) or invoking specific commands (phone dialing, 
reminders, appointments, alarm setting, music playback, etc.).  

In the electronics industry, when new electronic parts or 
devices are designed, they need to be tested to validate that the 
design functions properly and to the intended specifications. 
This is true for single integrated circuits, circuit boards as well 
as complex devices such as mobile phones, televisions and other 
consumer electronics. Typically, one or more test engineers will 

have to design a test plan for the device under test that includes 
specifying the measurements and ranges required. These 
measurement requirements dictate the specific test equipment 
necessary. Creating this test setup can be a somewhat complex 
task. A typical test scenario will require many different 
measurements to be made over varying combinations of 
conditions and will usually involve multiple instruments and 
devices. Test and measurement companies such as Keysight 
have product lines consisting of hundreds of different 
instruments (both current and legacy models still in use) with a 
variety of potentially overlapping capabilities. Each device has 
its own characteristic measurement functions, measurement 
ranges, accuracy, software compatibility and more. 

To begin to address this instrument selection task, we 
explored constructing a conversational recommendation agent 
we call Nicky (after Nikola Tesla), focused on recommending 
test and measurement instruments based on a variety of required 
attributes and functions typically specified by the test engineer. 
This effort included investigating the feasibility of using an 
ontology to represent the relationship between test and 
measurement equipment and their capabilities. In particular, we 
hope to apply reasoning over this semantic network to aid in 
choosing appropriate instruments based on test criteria provided 
by the user.  

Our primary goal in this work was to explore the design 
space and feasibility of building an intelligent virtual assistant 
for a highly technically-focused task related to test and 
measurement. To this end we have built a proof-of-concept 
system and in the process have observed some interesting issues. 
Thus, the main contributions of this paper are: 

• A high-level description of system architecture 

• An efficient approach to ontology development that 
leverages reasoners to do much of the work 

• Observations about issues implementing a virtual 
assistant in a very technical domain 

• Lessons learned and recommendations with respect to 
handling complex specifications and how this informs 
design; particularly with respect to speech vs. text 
input/output. 
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II. RESEARCH QUESTIONS 
In considering how to design and use a question answering 

system in our domain we focused on several research questions:   

Q1: Can an ontology represent the complexity of test and 
measurement instruments and capabilities? 

A central issue in our work was determining if it was possible 
to efficiently represent the inherent complexity of instrument 
characteristics using an ontology. This representation needed to 
allow the characteristics of instruments to be modeled in 
sufficient detail to allow easily extensible complex queries. We 
were also interested in the level of difficulty in authoring such 
an ontology and whether suitable SPARQL [8] queries could be 
successfully formed at this level of detail and complexity. While 
descriptive logic systems should in principle be capable of such 
tasks, a key concern was how practical authoring and using such 
a domain-specific ontology might be. 

Q2: For our targeted use case, can reasoners provide useful 
benefit beyond a traditional relational database?  

One of the main benefits of an ontology-based system is the 
ability to compute over the relations and attributes within the 
ontology. In particular, reasoners can be applied and potentially 
provide matching results that might not be easily obtainable in a 
traditional table-based model using specific, targeted queries 
that match only attributes. 

Q3: Can a conversational interface efficiently support 
answering detailed, technical instrument queries and provide 
query refinement?  

Implementing a dialog-based system for a highly technical 
use case presents a number of challenges, which we will discuss 

in more detail later in this paper. Therefore, another key question 
for our research was to what extent is a conversational approach 
useful, what strategies are necessary and what limits might there 
be on such approaches. 

Q4: Can a domain-specific virtual assistant be built with 
modest resources and open source software?  

While a number of well-known, robust virtual assistants are 
already deployed as scalable, high-performance cloud-based 
services, we were interested in exploring the feasibility of more 
modest systems with a narrow task focus and based on client-
side hardware. Could we build a standalone application that 
replicated many of the features of these more extensive systems 
if the targeted task was sufficiently narrow? 

III. RELATED WORK 
Question answering systems have a long history in user 

interface research and artificial intelligence, dating back to such 
very early systems as BASEBALL [1], LUNAR [2] and ELIZA 
[3]. Frequently these types of systems are built as a dialog 
system or a conversational agent [9]. Conversational agents can 
also be utilized for imperative commands used for device control 
such as voice activated phone dialing, music selection or 
controlling televisions. Brennan [10] even makes a case for 
considering conversation as a form of direct manipulation [11]. 
Interfacing to such agents has been accomplished via voice 
recognition and synthesis [4-7] as well as through purely text-
based dialog systems [3, 12]. 

Advances in speech processing, natural language processing 
and artificial intelligence have led to the advent of modern 
virtual assistants which employ increasingly humanlike 
discourse. Siri [4] is a well-known pioneering example that was 

 
Figure 1. Basic class structure of the instrument ontology. Arrows indicate “is a” relationships. 
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largely based on the CALO project [13] from SRI and there are 
several other similar well-known systems [5-7]. However, these 
systems typically require extensive infrastructure to support a 
massive body of web-derived knowledge as well as a high 
volume of user queries. Additionally, query refinement through 
user context and discourse have begun to appear in such 
systems as Hound [14] and Viv [15]. 

Semantic networks, frequently in the form of ontologies, 
provide many affordances [16] that are often central to the 
reasoning systems of virtual assistants and conversational agents 
[17]. Such networks provide a rich infrastructure with which to 
express some knowledge domain and provide a computable 
representation for inference and query. Many of these systems 
are fact-based and provide means for querying a knowledge base 
for related facts or relationships. A rarer case is an ontology 
constructed around a highly technical and complex domain. A 
recent prominent example is IBM’s work with the Watson 
platform to provide a knowledge base of oncology aimed at 
providing recommendations about cancer treatment options 
[18]. Wolfram Alpha [12] incorporates a large body of largely 
fact-based technical knowledge covering various mathematical 
and scientific domains as well as the ability to perform symbolic 
math. There has even been early work by Freiling [19] which 
endeavored to describe test and measurement instruments and 
their operation which is particularly relevant and motivational to 
the domain of our inquiry. 

Finally, our targeted use case of device selection has similar 
intentions to previous work on virtual shopping assistants [20] 
and virtual sales clerks [21, 22]. These systems involve 
searching for relevant items for purchase based on attributes 
important to the user, such as style, price, etc. However, these 
attributes are generally well structured and easily searched by 
more traditional database technologies, although semantic 
approachs have begun to appear. 

Despite all these recent advances, crafting an efficient, 
accurate and useful virtual assistant is still challenging [23-25], 
particularly for a complex, technical use case. 

IV. ONTOLOGY DEVELOPMENT 
The instrument ontology was developed in OWL [26] using 

Protégé 5.0.0 for both editing as well as SPARQL [8] query 
prototyping. The Pellet reasoner [27] was used for inferring 
otherwise unspecified relationships and properties. We have 
implemented a collection of relevant instruments models as part 
of our “proof-of-concept”. This included a selection of AC and 
DC power supplies, function generators, multimeters, power 
meters and oscilloscopes. We intended this collection to display 
a level of representative complexity as well as give reasonable 
coverage over a variety of typical instruments with different 
input and output channels, each with a variety of functions, 
properties and ranges.  

To aid in the construction of the ontology we compiled a list 
of competency questions which were generally of the form: 

What instruments measure voltage? 

Which devices can produce current? 

What can measure 0 to 10 volts DC? 

What can produce 200 milliamps? 

What instruments work with MATLAB? 

Etc. 

Broadly, the questions fell into several classes based on the 
following:  

• What devices can measure some property (voltage, current, 
resistance, temperature, etc.), potentially over some range. 

• What devices can produce such properties (usually a signal 
of some kind).  

• Additionally, we included software as a category in the 
ontology so queries can also be constructed to select 
compatible software/hardware combinations. 

One of the main objectives of our ontology design was to 
simplify the entry of instrument specifications into the ontology. 
To this end we created a relatively simple hierarchy of hardware 
and software classes (Figure 1) with axioms sufficient to infer 
subclass assignments directly from instrument properties. Note 
that for our use case, there is only one instance of an instrument 
model and so we chose to limit the class hierarchy to generic 
instrument types rather than include specific models as part of 
the class hierarchy directly.  

Individual instrument models are primarily represented by a 
collection of signal configurations corresponding to the input 
and/or output modes the instrument supports. These signal 
configurations define the capabilities of the instrument via object 
and data property assertions but do not directly classify the 
instrument type. For a simple example, the U1273AX Handheld 
Digital Multimeter is defined as being composed of five 
individual input signal configurations as seen below in compact 
Turtle syntax: 
:U1273AX rdf:type owl:NamedIndividual , owl:Thing ; 
  rdfs:label "U1273AX Handheld Digital Multimeter, 
                4.5 digit"^^xsd:string ; 
  :modelNumber "U1273AX"^^xsd:string ; 
  :hasInputSignalConfiguration  
  :U1273AX_AC_Current , 
  :U1273AX_AC_Voltage ,  
  :U1273AX_DC_Current ,  
  :U1273AX_DC_Resistance , 
  :U1273AX_DC_Voltage . 
 

All five of these signal configurations actually belong to a 
single physical channel. Channels, i.e. the physical connections 
capable of measuring or providing signals, can often be capable 
of more than one signal type. Further, an instrument can and 
often does contain multiple channels. Our example multimeter 
has a single DC Voltage mode on channel 1 defined by the 
following signal configuration definition:  
:U1273AX_DC_Voltage rdf:type owl:NamedIndividual , 
                     owl:Thing ; 
  :minDcVoltage "0.0"^^xsd:float ; 
  :channelNumber "1"^^xsd:nonNegativeInteger ; 
  :maxDcVoltage "1000.0"^^xsd:float ; 
  :signalConfigurationName "DC Voltage"^^xsd:string ; 
  :canMeasure :DcVoltage . 
   

Each signal configuration is also unique to the instrument 
model. There is no hierarchy of signal channels or configurations 
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since they are unique properties of the instrument model and not 
shared with other similar instruments. Further, it is useful to split 
this composition between instrument and channels so that we 
can enumerate and search by signal configuration properties. 

Class axioms are used to infer subclass associations directly 
from these signal configurations. For example, an instrument 
that has a signal channel that produces voltage would map to a 
power supply, whereas a signal channel that measures voltage 
would map to a voltmeter as shown below: 
:Voltmeter rdf:type owl:Class ; 
  owl:equivalentClass  
  [  
    rdf:type owl:Restriction ; 
    owl:onProperty :hasInputSignalConfiguration ; 
    owl:someValuesFrom [  
      rdf:type owl:Restriction ; 
      owl:onProperty :canMeasure ; 
      owl:hasValue :Voltage 
    ] 
  ] ; 
  rdfs:subClassOf :Hardware , 
  [ 
    rdf:type owl:Restriction ; 
    owl:onProperty :typeOfHardware ; 
    owl:hasValue :Voltmeter 
  ] . 
 

In this way, the editor of the ontology does not have to manually 
determine with which instrument classes to associate a new 
entry, and our class hierarchy alone can now establish high-level 
relationships. All the multimeter instances will have several 
signal configurations that map through axioms to voltmeter, 
ammeter and ohmmeter and the following class definition will 
automatically assign such instruments to the class multimeter: 

:Multimeter rdf:type owl:Class ; 
   owl:equivalentClass [ rdf:type owl:Class ; 
       owl:intersectionOf ( :Ammeter 
                            :Ohmmeter 
                            :Voltmeter )  

] ; 
rdfs:subClassOf [  
    rdf:type owl:Restriction ; 
    owl:onProperty :typeOfHardware ; 
    owl:hasValue :Multimeter 
] . 

 

Using this strategy, a modest amount of class definitions and 
axioms greatly simplifies the effort needed to specify and 
classify the numerous instruments we are interested in defining.  

V. DESIGN AND IMPLEMENTATION 
Nicky was developed as a stand-alone application written in 

Java (JDK 1.8) and has been verified to operate on Microsoft 
Windows, MacOS and Linux. Figure 2 depicts a block diagram 
of the main components of the architecture. In the following 
sections we describe these components in greater detail.  

A. Query Input 
Two modes of interaction are provided for conversing with 

the system: 

Speech input is obtained via the computer’s microphone 
input. The captured audio is sent to a third-party cloud-based 
speech-to-text service for conversion to text. A virtual button on 
the display (Figure 3) is used for a “push-to-talk” function 
(PTT). When the PTT button is released, the captured audio is 
remotely processed and returned as text in less than 1-2 seconds. 
While an always-listening mode might be more natural for the 
user, the use of a PTT function disambiguates “turn taking” often 
problematic in conversational agents. For our prototype, we are 
relatively immune to extended pauses in utterances that might 
otherwise be taken as a turn marker. 

For comparison to speech input, we also implemented a 
keyboard-based interface in the same display. The user can, 
therefore, optionally type directly into the display to enter 
questions without using the PTT function. Such keyboard input 
eliminates the need for external calls to cloud-based speech 
processing and allows execution to take place entirely on the 
user’s computer. 

B. Domain-Specific Language Processor 
Once a question is entered and the text acquired, it is 

submitted for further processing to the “Domain-Specific 
Language Processor”. Since our use case has a reasonably 
limited vocabulary, we chose to not employ a full natural 
language processing system and instead relied on developing a 
compact domain-specific language processor with ANTLR 4 
[28, 29].  

We started with the basic competency questions used for 
ontology development and constructed ANTLR expressions to 
match most of the reasonable variations for formulating these 
questions. In this way we could handle syntax variations such as: 

“What measures voltage?” 

“Which instruments measure DC voltage?” 

“What can measure 0 to 10 VDC? 

etc.  

In addition, we could process some normalizations at the 
lexical level. In particular, recognizing VDC or VAC as “volts 
DC” and “volts AC” respectively. Unit conversions were also 
handled within the ANTLR-constructed parser. For example, 
“mv” is interpreted as “millivolts” and properly converted to 
0.001 volts when used in a query against the ontology. For our 
use case, one of the critical aspects of handling flexible text input 

 

Figure 2. A high level overview of the Nicky architecture 
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is this ability to understand and convert various methods of 
specifying the same value in different units and/or abbreviations. 

Once the user’s sentence is fully parsed and normalized, 
entity extraction is performed to identify the key verb and object 
pairs such as “measure voltage” or “produce current” as well as 
any range restrictions such as “0 to 10 volts DC”. This extracted, 
normalized query data is stored in an extensible context cache. 
If the parser detects specific continuation phrases such as “from 
those” or “which of these” etc. the extracted information is 
appended to the context cache. In the absence of a continuation 
phrase the cache is cleared before storing the current information 
and a new query sequence is begun.  

C. SPARQL Query Generation and Execution 
A SPARQL query is assembled and prepared for execution 

by enumerating the context cache containing one or more user 
supplied criteria. As our examples illustrate, signal requirements 
result in a hasSignalConfiguration statement, a canMeasure or 
canProduce statement and a corresponding filter restriction. 
Software requirements add a similar compatibleWithSoftware 
statement and matching filter. Additional instrument related 
attributes are added for retrieval. Our narrow use case permits 
all queries to take the same extensible form and can be 
assembled in a consistent, straightforward manner. We used 
Apache Jena [30, 31] as our run-time ontology processor.  

D. Results Extractor 
After a SPARQL query is executed, Jena returns a list of 

strings containing the query results. These results must be parsed 

to extract the relevant data, typically an instrument model 
number and type.  

E. Response Composer 
The extracted response elements are assembled into a 

reasonable English sentence as the answer to the user’s question. 
When there is a large list of compatible instruments, summary 
statistics are computed to list the type and number of instruments 
found. If the list is small, a concatenated list of instruments is 
generated. To invoke a bit of personality into the system and 
avoid monotonous replies, a randomly selected prefix is 
prepended to the response such as “I know of” or “The” as well 
as a randomly selected preamble. See Figure 3 for example 
sentence constructions. 

F. Response Output 
If the PTT function is invoked and we are operating in voice 

mode, the text response is sent to a third-party cloud-based text-
to-speech service for conversion to high quality audio output. 
This output is then streamed to the computers speakers for an 
audible response. The net effect is a conversational refinement 
of searching for an instrument.  

In contrast, if the text interface is being used by simply 
typing, then the result is immediately output and no speech-to-
text is applied. 

VI. EXAMPLES 
In this section we provide several illustrative examples of 

how the system functions.  

Example 1: Query refinement through dialog 

Figure 3 shows the display and a discourse to find an 
instrument that can measure voltage, temperature and is 
compatible with the software platform MATLAB. In this simple 
example, we first begin by looking for instruments with 
interfaces that are compatible with MATLAB. Since there are a 
number of them, rather than enumerate them all with voice 
synthesis, the system provides a brief summary. We then narrow 
the list first by asking a follow-up question for an instrument that 
measures voltage. We finally refine our query to arrive at a 
device that can also measure temperature. The corresponding 
final SPARQL query combining all questions is: 
SELECT DISTINCT ?instrumentLabel ?typeLabel 
WHERE { 

?instrument :hasSignalConfiguration ?sig1 .  
?instrument :hasSignalConfiguration ?sig2 .  
?instrument rdfs:label ?instrumentLabel .  
?instrument :compatibleWithSoftware ?software1 .  
?software1 rdfs:label ?swtitle1 .  
?sig1:canMeasure ?measure1.  
?sig2:canMeasure ?measure2.  
?instrument :productWebPage ?link .  
?instrument :typeOfHardware ?type .  
?type rdfs:label ?typeLabel . 
FILTER  
( 
  ( regex(str(?swtitle1),"matlab","i") ) 
  &&  
  ( regex(str(?measure1),"voltage","i") ) 
  &&  
  ( regex(str(?measure2),"temperature","i") ) 
) 

} ORDER BY ?instrument  

 
Figure 3. A typical session illustrating the layout of the prototype’s user 

interface. Note the “push-to-talk” button at the bottom of the display. 
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Note that the keywords “Of these” and “Among those” are the 
key phrases used to indicate to the query generator that these 
secondary queries should be combined with the previous query. 
In this way, while the SPARQL query retains the same basic 
form, it accumulates additional signals, software requirements 
and filter statements. 

The basic structure of the query is to collect the relevant 
attributes such as signal configurations and software 
compatibility. These attributes are then used to filter the results 
based on query criteria. In this instance, it is necessary to obtain 
duplicate signals so we can use two different criteria (voltage 
and temperature). This construction allows compiling SPARQL 
queries to obtain any arbitrary combination of requirements 
retained in the context cache. Selecting items based on filters is 
potentially inefficient. However, since our instrument collection 
is never likely to evolve past a few thousand individual 
instruments, the flexibility afforded by this query construction 
for building extensible, complex queries is a useful trade-off. 

Example 2: Compound queries 

Nicky supports direct compound queries with Boolean 
conjunctions. An example equivalent to Figure 3 is: 

What works with MATLAB and can measure voltage and can 
measure temperature? 

This generates exactly the same SPARQL query shown in 
Example 1, and thus retrieves the same result, the 34405a digital 
multimeter. 

Example 3: Query over ranges 

When we introduce value ranges on instrument attributes, both 
the human and machine queries become slightly more 
complicated. An example is the question and answer: 
 
What can generate 2 amps AC and 1 to 5 volts AC?  

How about this? The ac6801a basic AC power source.  
 

The corresponding SPARQL query is generated as: 
SELECT DISTINCT ?instrumentLabel ?typeLabel 
WHERE { 

?instrument :hasSignalConfiguration ?sig1 .  
?instrument :hasSignalConfiguration ?sig2 .  
?instrument rdfs:label ?instrumentLabel .  
?sig1:canProduce ?generate1.  
?sig2:canProduce ?generate2.  
?instrument :productWebPage ?link .  
?instrument :typeOfHardware ?type .  
?type rdfs:label ?typeLabel . 
?sig1 :minAcCurrent ?minAcA1 . 
?sig1 :maxAcCurrent ?maxAcA1 . 
?sig2 :minAcVoltage ?minAcV2 . 
?sig2 :maxAcVoltage ?maxAcV2 . 
FILTER  
( 
( regex(str(?generate1),"ac.*current","i") && 
 ( ( ?minAcA1 <= 2.0 ) && ( ?maxAcA1 >= 2.0) ) ) 
&&  
( regex(str(?generate2),"ac.*voltage","i") && 
 ( ( ?minAcV2 <= 1.0 ) && ( ?maxAcV2 >= 5.0) ) ) 
) 
}GROUP BY ?instrumentLabel ?typeLabel   
 ORDER BY ?instrument 

 

The basic structure of the query is similar to the earlier examples 
where we depend on filter selection. However, in this case we 
filter not only on object properties, but also on the ranges of 
relevant data properties. 
 
Example 4: Queries that take advantage of inference 

Each of the previous examples leverage inference. Our 
queries did not take the more traditional form of “what 
instruments are voltmeters”. Instead, we approached the 
questions from higher level abstractions such as “what can 
measure voltage” and “what can generate current”. 

However, even direct queries about instrument classes rely 
on inference. The following question and answer is an example: 

What instruments are multimeters?  
Here are some possibilities. The 34401a digital 
multimeter, the 34405a digital multimeter and the 
u1273ax handheld digital multimeter. 

 

Remember that these instruments were never explicitly 
defined as multimeters, but the class axioms defined for 
ammeter, ohmmeter and voltmeter as well as multimeter allows 
the ontology to assign them the class and function of multimeter 
purely from the signal channel definitions. 

VII. DISCUSSION 
From our experience developing and testing the Nicky 

prototype, we can begin to answer the research questions posed 
in Section II. It is important to note that while we considered 
usability in our design, our interest to date is primarily focused 
on the more basic issue of feasibility. We were successful in 
producing a working and accurate system that returns true 
statements about instrument queries, and this is the context for 
most of our observations. 

Q1: Can an ontology represent the complexity of test and 
measurement instruments and capabilities? 

Given the subset of instruments we examined, we manually 
verified that query matches were accurate and complete. Given 
our ability to generate these accurate queries we conclude that it 
is possible to create an ontological structure that captures the 
complexity of measurement types and ranges necessary to 
sufficiently describe the instruments in question and satisfy our 
initial use case. This structure includes distinguishing between 
input and output channels, signal measurement vs. signal 
production, the ranges of electrical and radio frequency 
properties supported as well as what software is compatible with 
each instrument.  

Despite leveraging the reasoner to make class assignments, 
we still found that creating and populating a test and 
measurement ontology was somewhat tedious and complicated 
in practice due to the numerous attributes and varying properties 
required to completely define an instrument. The basic concept 
of an ontology is foreign to most test and measurement experts 
and the difference relative to a traditional database is a difficult 
concept to grasp. For constructing a more complete ontology of 
instruments we feel custom authoring tools would be helpful. 
Such tools are critical since few sufficiently knowledgeable 
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domain experts are likely to have the desire or skills for direct 
ontology editing in a system like Protégé. Further, our technique 
of isolating the individual instance data from the class hierarchy 
removes the burden of both the tools and the editors from 
needing complete understanding of the ontology. However, this 
approach will only work with sufficient and accurate class and 
axiom definitions to accomplish the appropriate instance to class 
mappings. Such axiom mappings can be useful for cases where 
a moderate amount of work on the ontology contributes to a 
substantial simplification of later specification entry. 

An added issue is that in most cases, entering the 
measurement ranges and characteristics of an instrument 
requires manually extracting detailed information from an 
instrument data sheet. These values are generally expressed in a 
table and these tables do not always conform to a consistent 
layout. Extracting data from such tables requires a fairly 
complex reading and comprehension task on the part of the 
ontology author to interpret the table and extract the appropriate 
information. 

Q2: For our scenario, can reasoners provide useful benefit 
beyond a traditional relational database?  

Employing reasoners was found to be useful in two different 
scenarios: 

 During ontology construction, we were able to describe 
instances of instrument classes by simply describing the 
capabilities of the instruments via signal configurations and 
allowed the reasoner to infer the class based on signal-related 
axioms. This inference relieves the ontology author from having 
to think deeply about what the correct class assignment should 
be. This cognitive task is particularly problematic for multi-
function instruments that may be definable by several different 
classes (e.g. a multimeter that is simultaneously an ammeter, 
voltmeter and ohmmeter).  

The reasoner can also discover non-traditional classes or 
functionality. Many measurement devices are multi-function 
and semantic reasoning has the potential to remind the test 
engineer of obscure or novel uses of such instruments. For 
example, a waveform generator which can produce sinusoidal 
waveforms can be used in some limited cases as an AC power 
supply. And we have already seen an example of a multimeter 
which can function as a thermometer. 

Q3: Can a conversational interface efficiently support 
answering technical instrument queries and query refinement?  

Due to the potential complexity of query refinement, care 
should be taken in how voice and even text input is used in this 
type of query task. We were driven, early in our prototyping 
process, to develop the ability to have ongoing multi-step 
refinement using a series of questions. Segmenting the dialog in 
this manner is necessary for two reasons:  

First, speaking a complete specification question into the 
system might take multiple sentences and numerous parameter 
specifications. A lengthy monologue places an increased burden 
on the accuracy of the speech-to-text processing as well as the 
human trying to formulate a complex but interpretable question. 
User satisfaction would also be severely impacted if after 
dictating a several-minutes-long question, the system failed to 

parse the speech input correctly and the user had to repeat the 
entire, lengthy dictation. Thus, we submit what we consider a 
reasonable proposition: that it is better to ask simpler, shorter 
questions and maintain some form of multi-question query 
refinement process. In addition to a simpler conversational 
dialog, it may allow the questioner to observe an unexpected 
intermediate result that could lead to a different endpoint. This 
tactic is consistent with Brennen [10] which cited many relevant 
aspects of dialogue as an interaction technique. She specifically 
calls out building a complex query that takes more than one 
exchange. 

Second, the results of some queries may include a fairly large 
number of potential instruments. This fact led us to implement 
the form of “summary” responses where a count of matches is 
provided with the assumption that the user would ask further 
refinement questions to reduce the response to a reasonable 
number of devices. Particularly for speech output, this is critical 
as a typical user would not be inclined to listen to a lengthy 
monologue of various model numbers and instrument types. 

As a general observation we note that for simple questions 
and responses voice works well and is an engaging mode of 
interaction. As the dialog becomes more complex, text input and 
output seems more efficient. For very complex queries requiring 
multiple signal definitions and potentially requiring multiple 
instruments, a more traditional form-based query-by-example is 
probably required. Further user study is required to fully validate 
these findings, but we offer our initial experience and 
observations in the spirit that they may prove useful for future 
research. 

Similarly, for our very focused and limited vocabulary, we 
found that a domain-specific language (DSL) parser was 
relatively easy and quick to implement. For many similarly 
focused cases, a DSL is probably sufficient and preferable to the 
overhead of a full NLP system. However, if our system were 
developed to handle increasingly complex compound queries 
over a broader range of domain questions, implementing a true 
NLP is likely necessary. 

Q4: Can a domain-specific virtual assistant be built with 
modest resources and open source software? 

We found that it was possible to construct an efficient system 
that executed primarily on the user’s local machine. The only 
non-local processes were the speech-to-text and text-to-speech 
which may not be required or even desired for some cases such 
as noisy environments or where privacy might be of concern. 
This opens intriguing possibilities for similar semantic reasoning 
to be included in features of client-side applications typical of 
test and measurement software. Further, since many modern 
instruments are actually driven by embedded computer systems, 
such ontology-based capabilities could be practically integrated 
into the instrument itself, particularly if speech processing is not 
required. Ontology-driven test and measurement has been 
considered for some time [19] and our results appear to indicate 
that the computing power and software support has finally begun 
to catch up to this long established vision. 

VIII. CONCLUSION AND FUTURE WORK 
We have presented Nicky, a proof-of-concept question-

answering virtual assistant for selecting test and measurement 

202



 

instruments based on user-supplied criteria. We have been able 
to explore a number of aspects of building a virtual assistant for 
a complex technical domain. This has provided useful insight 
into ontology construction, issues with user dialog management 
and user interface development. We also have a high degree of 
confidence that with sufficient effort, a workable ontology can 
be created to fully describe the capabilities and functional 
relationships of a large inventory of instrument types. While we 
have verified feasibility, formal user studies are needed to verify 
and refine the usability of such conversational systems for 
technical tasks such as instrument selection and at what point the 
complexity of the exercise requires a different mode of 
interaction.   

Future work should include an expanded ontology that 
includes a wider array of instruments and devices to further 
explore issues of complexity and scalability. To enable this, we 
believe work toward domain-specific authoring tools is 
necessary to simplify data entry for domain experts. Such tools 
are particularly needed in an industrial context where ontology 
experts with sufficient domain expertise will typically be in short 
supply. This more complete ontology could leverage content and 
design principles from the Linked Open Data community [32] as 
well as potentially contribute to the growing body of publicly 
available ontologies. 

While we have focused on a narrow use case of instrument 
selection, a semantic inventory of instruments offers a number 
of intriguing possibilities for future work ranging from on-line 
store search, instrument asset management to intelligent 
instrument control and automation. In addition, other technical 
domains with similarly structured relationships and selection 
criteria might also be amenable to a similar treatment. For 
example, selecting electronic components from a parts inventory 
could have similarities with respect to range criteria and 
complex multi-function and/or multi-application properties.  
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