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(a) initial utterance (b) implicit intent to retain context (c) implicit intent asking for a correlation

Figure 1: Example ‘analytical conversation’ from our study showing how intent could drive visualization responses for a dataset of Titanic
passengers. Following an initial utterance (a), an anaphoric reference conveys an implicit intent to retain context (b). Attributes Children
Aboard? and Survived? are retained, while Sex and Age are added in a way that preserves the previous chart structure. In (c), ‘correlation’
suggests an implicit intent for a new visualization such as a heat map to depict relationships between attributes %survived, Age, and Fare.

Abstract

Natural language can be a useful modality for creating and interact-
ing with visualizations but users often have unrealistic expectations
about the intelligence of natural language systems. The gulf between
user expectations and system capabilities may lead to a disappoint-
ing user experience. So — if we want to engineer a natural language
system, what are the requirements around system intelligence? This
work takes a retrospective look at how we answered this question
in the design of Ask Data, a natural language interaction feature for
Tableau. We examine two factors contributing to perceived system
intelligence: the system’s ability to understand the analytic intent
behind an input utterance and the ability to interpret an utterance
contextually (i.e. taking into account the current visualization state
and recent actions). Our aim was to understand the ways in which
a system would need to support these two aspects of intelligence
to enable a positive user experience. We first describe a pre-design
Wizard of Oz study that offered insight into this question and nar-
rowed the space of designs under consideration. We then reflect on
the impact of this study on system development, examining how
design implications from the study played out in practice. Our work
contributes insights for the design of natural language interaction
in visual analytics as well as a reflection on the value of pre-design
empirical studies in the development of visual analytic systems.

Index Terms: Human-centered computing—Visualization—
Empirical studies in visualization; Human-centered computing—
Interaction paradigms—Natural language interfaces

1 Introduction

Natural language (NL) interfaces for visualization [14, 19, 27, 43, 44,
49, 51] can enable effective and engaging interactions with data and
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may lower the barriers to entry for less-skilled individuals. Design-
ing NL systems for visual analytics is challenging because people
often overestimate the system intelligence [27, 43], leading to unre-
alistic expectations and disappointment when those expectations are
not met. This challenge is not limited to visual analytic systems; it
is an established trend for all emerging technologies [20, 35, 46].

When engineering such systems, it is nearly impossible to meet
the high bar of expectations around their intended behavior, given
resource constraints and technology limitations [35, 46, 52]. So then
— what are the requirements that an analytical conversation system
needs to meet, in order to deliver a delightful user experience? We
take a retrospective look at how we answered this question in the
design of Ask Data [2], a recently developed NL capability for
Tableau, shown in Figure 2.

Figure 2: Ask Data’s response to “gold medals of each gender over time.”

Our previous work on Eviza [43] and Evizeon [27] revealed that
people often underspecify details in their NL queries, expecting the
system to both fill in the gaps and interpret queries in the context
of the current visualization state. Thus, when we began developing
Ask Data, we knew that two aspects of perceived system intelligence
would be its ability to understand analytic intent (i.e., what a user is
trying to achieve) and its relation to context (i.e., the current visual-
ization state). An open question though, was the extent to which the



system would need to understand these aspects of communication
to support a positive experience. We were also unclear what visual
analytic intents people had in mind and how they would express
them. Given the underspecificity of these utterances, what would
the system need to infer? A ‘smart’ system might exhibit forms of
computational intelligence to better understand the user’s needs and
personalize or guide the interaction [42].

Figure 1 illustrates how an analytical conversation system might
respond to a series of NL utterances. For a useful transition from
(a) to (b), the system needs to infer that utterance (b) represents an
intent to retain the existing chart layout but add information. To
create a useful visualization in response to utterance (c), the system
needs to infer that there is a new line of inquiry and that ‘correlation’
implies a desire to see the relationship between variables.

Figure 1 represents an ideal interaction that could be difficult to
fully realize in a first-generation system, particularly when deployed
at scale where it must work with any data source. Could we get
away with something simpler and then improve it over time, without
severely compromising the experience? At the extreme end, would
it be terrible if all the system could do was recognize attributes
and values in the input utterance and then use a visual encoding
recommender like ShowMe [37] to generate a chart, ignoring all
context information and any additional expressions of intent?

To elicit requirements around intent and context for the yet-to-
be-built Ask Data system, we ran a Wizard of Oz study. The results
were deeply influential, ultimately effecting decisions around design
principles, system requirements, evaluation criteria, and implemen-
tation phasing. We first describe our study and its results. We then
reflect on the study’s impact on development, examining how design
implications from the study played out in practice. Our work con-
tributes insights for the design of NL interaction in visual analytics, a
reflection on the value of pre-design empirical studies, and a glimpse
into the user experience challenges involved in technology transfer
and productization.

2 RelatedWork

Literature on intent can be classified into: Intent for search in in-
formation retrieval systems and Intent for analytical tasks in visual
analytics.

2.1 Intent for search in information retrieval systems

Most research on understanding intent centers on information search,
where it is an important aspect of improving precision and recall.
Harrison and Dourish recognize the need for determining users’ con-
text to better support their activities through appropriate behavior
and relevant actions [15]. Broder introduced a taxonomy of search
intent with three categories of queries: navigational, informational
and transactional [7]. This led to approaches mapping query intent to
algorithmically classified search result categories [10, 29, 33, 40, 53].
Hu et al. deduced intent from user behavior of URL clicks [28].
Baeza-Yates et al.’s approach suggested related queries based on
query log data and clustering. Query recommendation and refine-
ment are concepts that help further hone user intent, i.e., transform-
ing an initial query into a more relevant one capable of satisfying
the user’s information need [4, 32]. Often, information needs evolve.
Research has explored interactive intent modeling and reinforcement
learning, where search intents are estimated and visualized for in-
teraction [22, 41]. However, the paradigm of intent deduction from
search cannot be directly translated to visual analytical workflows,
as their goals and the results tend to be different [45].

2.2 Intent for analytical tasks in visual analytics

Numerous systems recommend or automatically create visualiza-
tions, based on theoretical foundations such as the data state
model [11] and the visualization reference model [8]. Data prop-
erty based systems (e.g., APT [36] and ShowMe [37]) rely on data

characteristics to choose a visual representation. Systems such as
Voyager [56] recommend views to reveal data features based on
statistical properties, whereas task based systems (e.g., [9, 16]) rely
on formal definitions of the user’s task. Most recently, Draco [38]
combined many of these ideas in a constraint-based programming
framework.

Few visualization systems have attempted to infer a user’s ana-
lytical intent. Gotz and Wen [23] used click interactions as implicit
signals of intent. Steichen et al. [50] and Gingerich et al. [21]
demonstrated that low-level visualization tasks could be inferred
from eye gaze patterns. These results were demonstrated with a
small number of pre-defined tasks on known visualizations; a gen-
eralization suitable in automated presentation systems does not yet
exist. However, the basis for such systems are task models, data-,
quality- or interestingness measures.

Recurrent neural networks have been used in conversation-style
chatbots [47]. Systems for NL interaction for exploring data [14,
17, 19, 27, 30, 43, 49, 51] depend on understanding user intent and
can infer intent since NL utterances may hint at a user’s goals.
Cook et al. guide the user using a mixed initiative approach [12].
However, most systems infer very limited aspects of intent, typically
relying on explicitly named data attributes, values, and chart types.
Conversational interpretation in Nicky [30] was supported by a
domain-specific ontology, which tends not to generalize outside a
particular domain. Evizeon [27] and Orko [49] supported follow-on
utterances through simplistic models of intent [24], but only for
filters. Recent research [48] encouraged researchers to study NL
utterances to understand user needs. We build on this progress by
elucidating ways in which conversational analytics systems may
understand and respond to intent.

3 Study Method

Prior to an expensive software development process, we needed to
understand the importance of intent and context in analytical con-
versations, to define the minimum viable product and plan future
improvements. We therefore conducted a Wizard of Oz study, with
the goal to gather qualitative data on user expectations related to
intent and context behavior. Many other studies followed, but we
focus on this one as it was particularly influential. We first docu-
ment the study and its findings; we then reflect on how the findings
impacted development.

We iteratively refined our task, data set, and wizard behavior
rules through a pilot study with 10 participants, which also provided
wizard practice. We discarded data sets where the data was not easily
understood or participants could not consistently achieve meaningful
insight within 25 minutes, leading us to the Titanic dataset. We also
refined wizard behavior rules to keep users in the flow of analysis as
much as possible within each condition (judged qualitatively based
on actions users took to correct ‘system’ behavior as well as users’
expressed frustration).

We use the term utterance to refer to a participant’s typed input
to the system (used by the wizard) and aloud to refer to a vocaliza-
tion in conversation with the experimenter (used in our subsequent
analysis).

3.1 Conditions

We compared 4 conditions, in which ‘system’ behavior varied across
axes of context and intent (see Table 1). B (baseline) examined
whether a simple system that chooses visual encodings based pri-
marily on data attributes (via ShowMe [37]) could be sufficient. The
other conditions allowed us to explore the added value of under-
standing intent and remembering context, plus user expectations
surrounding those concepts. A wizard controlled chart creation in
all conditions. We chose a between-subjects design to avoid learning
and fatigue effects.



Table 1: Study conditions (Cx = context memory). C, I, and CI conditions
add functionality beyond the Baseline condition. A more detailed version
of this table is available in supplementary material.

No Intent Understand Intent

No Cx

B (Baseline)
ShowMe default encoding.
Add NumberOfRecords

if no measure given.
Fuzzy string match.
On explicit request:

filters, chart types,
calcs, sorting, binning.

I (Intent)

Understood synonyms
& semantics.

Custom visual encodings.
Automatic binning,

calcs, sorting.

Cx

C (Context)
Prescriptive content retention rules:

Retain all on explicit request or
anaphoric reference. Reset all
on ‘reset’. Otherwise:

Retain filters, dimensions.
Replace measures.

CI (Context & Intent)

I plus context memory.
Wizard judgment of

what to retain
and when to reset.

Intent: In the no-intent conditions (B, C), the wizard followed
prescribed rules. Initially, we planned B to simply use ShowMe plus
filters. Pilots demonstrated that this was frustrating, so we added the
additional B rules in Table 1. The visual encoding was always the
ShowMe default except for explicit requests. In intent conditions (I,
CI), the wizard made smarter choices based on their understanding
of the user’s analytical intent and used their semantic knowledge of
the data (e.g. upper class = class 1).

Context: In no-context conditions (B, I), every utterance was
treated independently; the wizard cleared the view between visual-
izations. Context conditions could adapt the existing visualization
state (C by pre-defined rules, CI by wizard judgment). C context
retention rules were adapted and refined over a series of pilots, as
we found it difficult to define prescriptive rules for transitioning the
context of attributes without unexpected behavior. Ultimately, unless
there was an anaphoric reference or explicit instructions in the input,
we retained both dimensions (independent variables) and filters, but
replaced numeric measures (dependent variables) when a new one
was specified.

Context and intent understanding are not strictly independent. CI
involved wizard judgment of two types of intent: analytic intent as in
I, plus context intent of what the user wants to retain from the prior
step. Experiencing the wizard role helped us break intent into these
two components and understand the need for systems to interpret
both.

3.2 Participants
We recruited 41 volunteers (18 female, 21 male, 1 male/female
pair who walked in together): 26 via an information desk at the
Tableau Conference and 15 by email within our organization. All
were fluent in English. Participants spanned several industries (retail,
education, finance, travel, etc.) and all had analytics experience with
spreadsheets and Tableau. They were each randomly assigned to
one of 4 conditions.

3.3 Task and Data
We employed an open-ended task with no correct answer. Partic-
ipants examined the Titanic dataset (1309 records, 10 fields) and
attempted to answer the question “Which characteristics made it
more likely that a passenger survived?” Participants were instructed
to phrase their input naturally, as if they were interacting with a
search engine that only knew about the Titanic dataset. They were
given a reference page containing data fields and example values.
We used only one dataset because the wizard needed to be very
familiar with the data. None of our participants reported familiarity
with the data set itself, though they were familiar with the Titanic
disaster.

3.4 Apparatus and Setting

We used a custom version of Tableau Desktop 10.5 [3] shown in
Figure 3 (top). Custom additions were a text input box for the user
to type NL input and a red text field for feedback. Input utterances
were copied to the feedback field, which could be edited by the
wizard (e.g. for error messages). Participants interacted with Tableau
only in presentation mode, which showed only the visualization, a
descriptive caption, filter controls, and legends. The wizard used the
full Tableau Desktop interface to produce visualizations.

Three experimenters (including the authors) played the wizard
role. All were regular users of Tableau, with a minimum of 1.5
years experience with the tool. Wizards intensively discussed and
documented behavior rules during pilots to ensure consistency.

Each session started with a blank screen, mirroring the experi-
ence of authoring a visualization from scratch in tools like Tableau
Desktop. Subsequent questions were asked with the previous visu-
alization still in view. Filter widgets were always shown for any
applied filter. Participants could interact with visualizations through
tooltips, filter controls, and by selecting items in a legend to highlight
the related subset; these automatic actions did not require wizard
intervention.

Figure 3 (bottom) shows the physical setup. Participants inter-
acted with content on a 20” monitor using a mouse and keyboard. A
wizard used a MacBook Pro laptop to create visualizations and had
a 20” monitor to duplicate the user’s screen. Whenever the wizard
was manipulating a visualization, the user’s screen displayed, “Pro-
cessing, please wait. . . ”. The wizard switched the monitor between
the visualization display and the processing message by toggling
between extended and mirrored display modes. Due to constraints of
the conference setting, the wizard had to be in the same room as the
participant; however, the physical setup obscured the participant’s
view of the wizard’s actions. We screen recorded the participant’s
view plus audio.

Figure 3: Environment and hardware setup used in the study (bottom)
and participant’s view of the software (top).

3.5 Procedure

Sessions lasted approximately 25 minutes (2-5 minutes of introduc-
tion, 15-20 minutes of actual task, 3-5 minutes of wrap-up) and
participants created an average of 9 visualizations. An experimenter



led the session and employed a question-asking protocol to elicit
qualitative information (alouds) from the user for subsequent data
analysis. The wizard was introduced as “technical support”; their
role was revealed during wrap-up.

Input to the system was typed, not spoken, and wizards were
trained to respond only to the text utterances. After typing their
input, participants saw the processing screen and the wizard created
the visualization (or provided a pre-defined error message if the input
did not match ‘understandability’ criteria). Wizard response time
was typically 30−60s. During this time, the experimenter asked the
participant what they expected the system to do. The experimenter
subsequently prompted them for feedback on the system behavior.
Some participants guessed that the system was being operated by
a human, but played along; we did not notice a difference in their
behavior compared to participants who did not know. The wrap-
up interview asked participants to reflect on unexpected system
behavior and possible improvements.

3.6 Post-Study Analysis

We created detailed notes for each session, including exact text utter-
ances, timestamps, visualization screenshots, mouse actions such as
filtering and sorting, and participants’ alouds (i.e., their comments
about expectations and feedback). Subsequent analysis was con-
ducted on this video catalog, which is available as supplemental
material.

We conducted a qualitative, multi-pass, open coding analysis
based on grounded theory [5]. We focused on user and system
behaviors around intent, context, and their relationships. Input ut-
terance / visualization response pairs were the unit of our analysis.
Each pass investigated a new concept and refined the coding of
previous passes. To mitigate impact of varying wizard behavior
(both intentional variation across conditions and occasional uninten-
tional variation within conditions), we explicitly chose to analyze
the user’s expectations of the response to their input in relation to
the actual visualization generated (i.e., rather than the expected vi-
sualization based on the wizard rules). Experimental condition was
also considered as a contextual factor that was likely to impact user
expectations.

To understand user intent in relation to visualizations, we catego-
rized unexpected system behaviors based on participants’ alouds and
actions they took to prevent or recover from system errors. We also
examined visualization design elements (beyond the basic condition
B behavior) that users reported were helpful. To understand context,
we used alouds to categorize user intent around transitions, such as
whether the user intended to adjust the visualization, elaborate on it,
or start over. We compared this expectation against the visualization
response to identify instances where context was unexpectedly lost
or retained.

Open coding tags were organized through axial coding. At this
stage, we realized that our initial groupings corresponded to steps
in the visualization reference model [8] and we identified relation-
ships between categories. The axial coding step resulted in our
conversational transitions model (next section). Later structured
coding passes were done to gather quantitative information and to
completely describe expected vs. actual visualization transitions
using our model. We note that our focus was on qualitative under-
standing of system requirements rather than quantitative comparison
of conditions. We collected frequency data for our observations
(as a rough indicator of prevalence); however, we did not employ
statistical hypothesis testing and would not expect these numbers to
be representative of real system use.

4 Study Findings

We first introduce the conversational transitions model that emerged
from our analysis and helped us to organize and interpret our findings.

We then describe what we learned about how VA systems might
handle context information and user expressions of intent.

4.1 Conversational Transitions Model
Our conversational transitions model (Figure 4) describes how to
transition a visualization state during an analytical conversation. The
model is inspired by conversational centering [24], commonly used
for identifying structure in human communication. Conversational
centering describes how the context of a conversation adjusts over
time to maintain coherence, through transitional states that retain,
shift, continue, or reset discourse elements (in this case, visualization
components).

Figure 4: Conversational transitions model.

A key insight during our analysis was that users’ intent around
transitions (how they expected the visualization to change) may
apply to any or all aspects of a visualization state, not just filters
as in Evizeon [27] and Orko [49]. Applying transitions to filters
alone is insufficient for a conversational system that creates new
visualizations in response to user input, especially one that updates
a single visualization at each step. We adopted our state definition
from the visualization reference model [8], wherein the visualization
state is comprised of the data attributes in play, transformations
(e.g. calculations to create derived attributes), filters, and the visual
encoding of attributes.

After interpreting a visualization (the thinking human in Figure 4),
a user may continue their analytical conversation by formulating a
new question. This analytical intent will ultimately drive a user’s
transitional goals (how they wish to transform the existing visual-
ization to answer the new question), which in turn drive user actions.
We identified the following transitional goals: elaborate (add new
data to the visualization), adjust / pivot (adapt aspects of the visu-
alization), start new (create an altogether new visualization), retry
(re-attempt a previous step that failed), and undo (return to the prior
state).

This model was derived through the coding analysis. Topical
organization of unexpected behaviors revealed categories related to
attributes, transformations, filters, and visual encodings. An unex-
pected encoding might show a bar chart when the user expected a
crosstab. Attributes could be unexpectedly dropped or retained from
the prior step or the system could include a different attribute than
the user intended in cases of ambiguity. Unexpected filtering often
occurred when users asked for ‘survivors’, where they sometimes
wanted both Survived? = ‘yes’ and ‘no,’ but other times wanted
only ‘yes.’ Unexpected behavior around transformations included in-
stances where the system showed raw counts instead of an expected
survival rate percentage. Organization into these categories also re-
vealed a 1:1 correspondence between system actions and unexpected
behaviors: smart system actions prevented unexpected behavior and
/ or supported error recovery, whereas naïve system actions led to
problems. One smart system action (in I and CI) was to interpret
‘survival’ as the calculation %survived.

Initially, we wondered whether a simple system based on
ShowMe [37] could be sufficient for analytical conversation, given a
list of attributes extracted from the utterance. Our transitions model



made it clear that the answer was no, and helped us articulate why.
ShowMe automatically creates a visual encoding for selected at-
tributes. However, it does not infer missing attributes or intended
transformations, does not address filtering, and does not consider
what visual encoding a user might intend. Apart from the point
case of adding a single attribute to a view, it also does not ensure
visual encoding coherence between states. A more intelligent system
would infer a user’s transitional goals based on their actions and then
update the visualization components accordingly. It would also be
able to interpret and respond to user intent around each component
of a visualization state (i.e., attributes, transformations, filters, and
visual encodings).

4.2 Impact of Failing to Understand Intent and Context

What goes wrong when the system fails to correctly understand
intent or context? Here we summarize people’s reactions to sys-
tem behavior to examine the impact of these components of intel-
ligence. We focus first on unexpected system responses, as these
were often problematic or undesirable. We use the notation [Par-
ticipant.Condition] to contextualize quotes with the condition the
participant experienced.

4.2.1 Unexpected System Behavior

In relation to our model (Figure 4), unexpected system behaviors
(Figure 5) mapped to the four visualization state components or an
incorrect transition. Most often they related to visual encodings (62
cases) or transformations (44 cases, of which 28 were calculations).

Figure 5: Total unexpected behaviors (gray: vis state, blue: transitions).

For attributes, unexpected behaviors involved an unexpected
schema (e.g. misunderstanding the parents & children aboard?
{yes, no} attribute) or a failure to infer an un-named attribute (e.g.
expecting that the system would also include NumberOfRecords even
when the user asked for a % calculation). Transformation errors
included binning (failure to bin or unexpected binning), aggregation
at an unexpected level of detail (or lack thereof), or misunderstood
intent around calculations. For instance, with the question, “Did
younger women survive better than older women?” [P21.I] expected
the system to choose a threshold value and group ages above and
below the threshold. Instead the wizard showed all 5-year age bins.

Filter problems were typically failures to include or exclude data
values. Observing a chart of %survived, [P12.C] input, “show this by
count instead of percent,” expecting to see only a count of survivors.
Instead the wizard substituted NumberOfRecords for %survived,
producing a total count. Participants also sometimes expected a filter
widget to be available even when they had not asked to filter.

Unexpected visual encodings occurred most often when
ShowMe chose a poor chart type for the task or when the participant
simply expected a different chart type. For instance, while looking
at a scatterplot, [P17.CI] requested, “split by class,” expecting the
system to create small multiples rather than add color encoding.

Unexpected behavior around transitions meant that either de-
sired context from the prior state was lost, or undesired context was
retained, in any visualization state component (attributes, transfor-
mations, filters, or encodings). When [P22.C] asked, “What class
were people in?” while looking at a bar chart showing counts of sur-
vived vs. not, he expected class to be added as an additional variable
rather than replacing the Survived? attribute. We also observed poor
continuity in visual encodings. Figure 6 shows an example where
ShowMe substantially shifted the visual encoding when adding two
new attributes.

Figure 6: (Top) Response to, “people by parents or children” [P23.C].
(Bottom) Response to follow-up utterance, “count of survival by age (bin)
and parents or children.” ShowMe substantially changed the view, moving
the row attribute to color and changing the bar orientation.

Unexpected visualization states were not always problematic. In
14 instances, unexpected behavior was actually more helpful: 5 times
for encodings, 3 times for binning, 3 times for a retained attribute,
once for a retained filter, and 2 times for a failure to exclude data
values. Figure 1c is a real example from [P21.I], who expected a
scatterplot. After examining the chart he remarked several times on
its value, “This is a very interesting chart...This is actually telling
the story of what happened. You can see that people who paid the
most, and were in the middle age bucket, they survived the most as
well...This is the most useful chart that it showed, out of everything.”

4.2.2 Comparison of Conditions

Figure 7 compares total unexpected system behaviors per condi-
tion. Unsurprisingly, the ‘intelligent’ CI condition had the fewest
unexpected behaviors, validating the usefulness of both intent and
context understanding. Examining the other 3 conditions, though,
was helpful to derive minimum system requirements.

B, I, and C had similar unexpected behavior totals, but the distri-
bution differed. B had the most unexpected visual encodings, sug-
gesting that ShowMe’s rules were insufficient. C (context without
intent) had the most transition problems. Even in pilot studies, we
found it difficult to prescribe accurate transition rules. I’s attribute
errors were mostly failures to infer an unnamed attribute (8/13 cases)
and its transformation errors were mostly unexpected calculations
(13/19 cases). Qualitatively, we observed the most frustration with
C, as users could not predict what the system would choose to retain
from the prior step. In contrast, B and I’s behaviors were at least
predictable. Participants learned to repeat and adjust their prior ut-
terances to adapt the view, a strategy that was slightly annoying but
effective. Unexpected visual encodings tended to have less impact
on analysis than unexpected attributes, transformations, and filters —



it is better to present the correct information non-optimally than to
present the wrong information.

Figure 7: Unexpected behaviors by condition.

Additional indicators of system failure are retry, repair, and ex-
plicit reset (“start over”) actions, summarized in Figure 8. Retries
involved rephrasing the prior utterance after it failed to achieve the
desired result. Repair actions were explicit corrections (e.g., select-
ing and excluding an unexpected value, or removing an unexpected
attribute as in, “take out fare bin” [P40.C]). Frequent resets suggest
that participants lack confidence in the system’s ability to transition
between states. [P22.C] resorted to this (annoying) strategy when
he lost confidence in the system’s ability to detect an implicit reset.
Most interesting here is the weak performance of C (context without
intent).

Comparing the conditions revealed two key insights that later
informed our system design: (1) Avoid trying to understand context
without understanding intent (i.e. the poor performance of C) and
(2) B was surprisingly okay since its behavior was predictable.

Figure 8: Total reset, retry, and repair actions across all participants.

4.3 Responding to Intent and Context in VA Systems
Conversational analytics systems need to extract user intent from
the utterance and then choose how to respond. The supplemental
material documents keywords and cues that may help with extracting
intent from NL. Here we focus on the latter problem: once we
understand intent, how can we produce the most useful visualization?

4.3.1 Supporting Explicit and Implicit Intent

Wizard choices were often better than ShowMe’s default because the
wizard could understand a user’s analytical intent (whereas ShowMe
relies only on field types). Here, we explore how a system like
ShowMe might be extended, given intent as an additional input.
Prioritize explicit intent requests: Explicit intent requests clearly
state user expectations, and therefore should take priority. For ex-
ample, “color by sex” indicates color encoding, “show only female”
indicates a filter, and the utterance in Figure 9(c) specifies a scatter
plot.
Visual encoding heuristics for implicit intents: Implicit intents
do not directly specify encodings, but visualization best practices
can define encoding heuristics. We observed that actions and targets
from Munzner’s why framework [39] could be identified from utter-
ances and used to model intent. The following examples illustrate
how actions and targets can be translated to suitable visualizations
by linking them to Few’s [18] best practices for data visualization:

• Numeric analysis: Figures 9(a) and 10 identify a distribution
target suited to a histogram. In contrast, a correlation target
can be revealed in a scatterplot (if the variables are continuous)
or highlight table (if discrete), as in Figure 1(c).

• Categorical data analysis: For an overview of many at-
tributes, as in “Show survival by class, sex, ChildrenAboard?
and SpouseAboard?” use the compact heatmap representation.
In contrast, Figure 10 implies a comparison of target attribute
survived?: side-by-side views are appropriate for such compar-
ison tasks. A comparator attribute can be redundantly encoded
with color if cardinality is low. Alternatively, if the target is an
extreme as in “Class with the highest survival rate,” the target
item should be sorted to the top and highlighted.

4.3.2 Transitions: Prioritize Intent Over Encoding Coherence

A key insight of our model (Figure 4) was that transition states of
continuing, retaining, and shifting need to be applied to all visual-
ization state components (attributes, transformations, filtering, and
encoding) to maintain conversational coherence. Maintaining co-
herence in the visual encoding is important, as abrupt changes to
the visual representation can be jarring and easily misinterpreted.
Figure 11 shows an example where the naïve use of ShowMe in B
resulted in a misunderstood change. The participant responded in
surprise, “Oh!...Wait a minute, so where...age has disappeared!...Oh
shoot, this is not the graph that I wanted...I want my bar chart back
with a label.” [P38.B] More coherent transitions could be achieved
by adapting the existing visualization state rather than building a
new visualization at each step.

However, analytical intent may conflict with the goal to maintain
visual encoding coherence. Examining instances from the study
convinced us that analytical intent should take priority when it is
known. Sometimes it is worth the cognitive cost of interpreting a new
encoding to gain a better visualization for one’s task. For example,
in Figure 1, the second utterance can be handled by simply adding
a new column and color encoding to the existing view; however,
supporting the correlation target in the third utterance requires a
substantial encoding change. The poor performance of C (context
without intent) underlines the importance of this prioritization and
the need to accurately infer user intent in a system that supports
follow-on utterances.

4.3.3 Anticipate User Needs with Proactive Design

We observed that some wizard design choices were proactive, fail-
safe and supported flexibility. These design choices enabled users to
easily correct misunderstandings or adapt the visualization to answer
more questions. Key fail-safe and proactive design choices were:

• Display filter controls and interactive legends: Filter con-
trols enable users to recover data that was incorrectly filtered
or restore it later for comparison. Interactive legends similarly
enable highlighting and filtering.

• Show data in context: Instead of filtering to a named value,
show the target value in comparison to alternatives. E.g. the
answer to “how many people survived?” is more interesting in
comparison to the number who did not survive.

• Visually encode filtered attributes: Including a filtered at-
tribute as an encoded variable supported follow-up actions. By
adjusting the filter control, participants could obtain a useful
comparison visualization, as illustrated in Figure 12.

• Add bonus info: Anticipate future needs by adding more
information than requested. E.g. [P4.CI] asked how many
children were under age 10, and the system responded with an
age histogram showing frequency of all age groups.

• Apply transformations: Binning quantitative variables
(binned versions of age and fare were easier to interpret) or
creating useful calculations (e.g. percentages).



(a) “Distribution of sur-
vivors by fare?”

(b) “split this data by survived status” (c) “scatter plot of survival status by age and
fare”

(d) “add a trend line”

Figure 9: A snippet of analytical conversation in [P17.CI]’s session. “Distribution” in (a) is an implicit intent for a histogram. “split this” in (b) indicates a
transition to small multiples. In (c), the full sentence and new attributes suggest a new line of inquiry and “scatter plot” is an explicit encoding request.

• Adjust row/column nesting order: Changing the default at-
tribute order to create a hierarchy suited to the question. E.g.
“Compare survival by sex for each class” implies a different
nesting order than “Compare survival by class for each sex.”

• Redundant color encoding: Redundantly encoding an impor-
tant variable, typically the focus of a comparison. E.g. in
the nesting examples above, redundantly encode sex in the
first case and class in the second. Figure 10 shows another
example.

• Encoding based on semantics: Using similar encodings and
placement for semantically related attributes enhances inter-
pretability (e.g., parent/child and sibling/spouse).

Figure 10: Response to, “What is the age distribution of those who
survived and didn’t survive?” [P11.I] The distribution target and implied
comparison action suggest two histograms. The target attribute survived?
is redundantly encoded using position and color.

(a) “percent survived for each age
bin”

(b) “percent who survived for each age bin,
plus the number who survived”

Figure 11: Transition with poor visual coherence, from [P38.B]’s session.
Age moves from the y axis to color, which the participant fails to notice.

Figure 12: (Top) Response to, “How many passengers in class 1 sur-
vived?” [P5.B] (Bottom) Because Class is also a row attribute, adjusting
the filter control creates a comparative visualization.

Anticipating user needs in these ways was nearly always met
with praise. Participants expressed excitement and were impressed
with how well the system could answer their questions. For exam-
ple, [P41.I] commented, “This is better than I expected, because I
thought I was just going to get a filter to yes...but I got no as well, so
now I have more of the context, which is good.” Similarly, [P34.C]
appreciated filter widgets, “Even though I only asked for males, it
has options.”

Proactive behavior is an established concept in intelligent user in-
terfaces, explored in domains such as information systems (e.g. [6]),
task management (e.g. [57]), and mobile interaction (e.g. [55]). How-
ever, proactivity has been only minimally investigated for analytics
and visualization, despite a recent call for more proactive behavior
in visualization tools [48]. Guo et al. explored proactive sugges-
tions for data wrangling, with mixed feedback from users [25] and
various visual analytics systems have explored recommendations
(e.g., [38, 56]), but none of these systems integrated an explicit un-
derstanding of user intent. It is clear from our results that proactive
behavior is a worthwhile future direction to explore for analytical
conversation.

We are working towards implementing proactive behavior. Ask
Data includes filter controls and legends, visually encodes filtered
attributes in a bar chart, and offers limited support for calculation
transformations.

5 Study Takeaways for Ask Data Implementation
This section examines how results of the Wizard of Oz study influ-
enced Ask Data, drawing on example utterances from the study as
well as subsequent observations of the system in use. We reflect on
how our experience developing Ask Data, and studies of the system
in use, confirmed or contradicted what we learned in our pre-design
study.



Figure 13: Ask Data’s response to “age as a histogram.” Because Age is
a numerical dimension as opposed to a measure, the system infers the
binned form of the field and displays a bar chart to provide a reasonable
alternative to the user’s request.

Participants in the study got into a flow of analysis, employing
related utterances in series to investigate a problem. This behav-
ior prompted our most important design principle for Ask Data: no
dead ends. We also observed that when participants were in the flow
of analysis, their alouds focused on the data; when their flow got
disrupted by undesirable system responses, they focused on system
design. This led to the design principle the interface disappears;
it’s all about my data. These design guidelines also served as eval-
uation criteria, helping us understand what to look for in subsequent
usability studies.

Based on these design guidelines, the main technical takeaways
for designing the system behavior were:

• Handle underspecified utterances and make smart system in-
ferences to keep users in the flow of analysis.

• Maintain context to facilitate a conversation with the system
based on previous utterances and the current visualization state.

5.1 Inferencing to Handle Underspecificity
Nearly all utterances in the study were underspecified. Visual en-
codings and data attributes were frequently incomplete, left out, or
specified indirectly as an analytical goal (e.g. “sales over time” with
a time attribute left out). This motivated us to develop heuristics
and inferencing logic to provide defaults for missing inputs [44].
Ask Data infers data attributes and encodings for partial analytical
expressions to help satisfy the intent in input utterances. Our infer-
encing logic includes inferring a descending sort order when users
ask for “products with highest sales” to show the highest value on
top. We also support visualization responses requested by users,
with sensible inferencing to map an abstract concept such as ‘loca-
tion’ to an appropriate geo attribute or inferring a scatterplot when a
user types “show me the correlation.”

In addition to supporting vague and underspecified analytical in-
tents, Ask Data also supports flow by providing suitable alternatives,
in case the system does not support the direct request. For example,
in Tableau, one can only create a histogram with a measure, and
not a dimension. So, if Age is a numerical dimension, and a user
types “age as a histogram,” Tableau would not return a visualization
response. However, the underlying intent is probably to view the
number of records per numerical quantity, especially if the user has
created a binned form (Age (bin)). Ask Data can infer the binned
field and display Age (bin) as a a bar chart, seen in Figure 13. Simi-
larly, based on user feedback, we improved analytical intent for the
phrase “How many” to infer ‘distinct count’ for countable entities
such as dimensions, but the default aggregation such as ‘sum‘ or
‘average’ for quantitative measures.

Figure 14: Top: Mapping the intent of “how many" to distinct count for
a countable dimension room types. Bottom: The default aggregation
average for a measure Beds is inferred for “how many”.

5.2 Managing Context in Conversational Flow

Context in a “smart” system is its ability to take into account the
information, circumstances and factors surrounding the interaction
with a user [54]. Specifically with an NL system such as Ask Data,
realizing the pragmatic meaning of such an analytical conversation is
a matter of matching up the linguistic elements of the utterances with
the schematic entities of the context. These entities could be people,
places, or objects that are considered relevant to the interaction [13].

A surprising and encouraging finding from the study was that
B, arguably the least intelligent condition, was not so bad in terms
of the user experience. C (context) was clearly worse due to its
unpredictability. To us, this meant that the implementation of Ask
Data could be broken into phases — develop a basic system first,
iteratively improve its understanding of intent, and then add support
for contextual understanding. We adopted an incremental approach
to implementing contextual understanding based on the classifica-
tion of context in ordered degrees of complexity, stemming from
linguistic literature [34].

Situational Context: Situational context refers to the environ-
ment and information where the interaction occurs [31]. With respect
to analytical conversation, that environment is the underlying data
source being explored. To provide situational context in the analyti-
cal workflow, we surfaced an explicit interface, the data pane, that
displays information about the attributes in the data source and their
data properties. Icons are used to distinguish the various data types
(e.g., geo, date time, numeric and text). Hovering over each attribute
provides additional semantic information such as synonyms and top
values in the data domain based on cardinality (refer to Figure 15).

Context through Intentional Interaction: The study also re-
vealed how we could retain the character of conversational inter-



Figure 15: An explicit contextual data pane that provides situational
context regarding the types of attributes and their properties to help a
user type valid analytical expressions in Ask Data.

action (principle of no dead ends), with only limited contextual
understanding of follow-on utterances. A key annoyance with the
no-context conditions was repeating partial utterances (e.g. “survival
by sex” followed by “survival by sex and age” to add one attribute).
In Ask Data we resolved this problem through a refinement user
interface (UI). Clicking on any interpreted phrase opens a graph-
ical UI where users can change their query, similar to how study
participants used filter widgets to make adjustments. Users could
also elaborate by typing a new scoped query that would add on to
the current interpretation. The top row in Figure 16 shows these
various intentional interactions. Using a combination of on-boarding
documentation for Ask Data and visual treatments to indicate that
phrases in the UI textbox were editable, users were encouraged to
adopt a mixed initiative approach for repair and refinement.

Linguistic Context: Linguistic context, or cohesion, refers to
the relationship amongst tokens in the NL utterances, and how they
relate to their predecessors and successors in a discourse [26]. We
leverage Ask Data’s underlying query language Arklang to determine
how linguistic context from the previous utterance informs interpre-
tation of a new utterance. ArkLang provides a set of all syntactically
valid and semantically meaningful analytical expressions that can
be obtained from the semantic model describing the underlying data
source, a context-free grammar, along with a fixed set of semantic
constraints [44].

Linguistic context is determined by a set of Add, Remove and
Replace operations as implemented in Algorithm 1 and shown in
Figure 16 (bottom row). For example, if τ = “distinct count of Beds
by Neighborhood," and β is the filter expression “Beds at least 2,"
Ask Data will update τ with β, applying a filter to the visualization in
context. A Replace intent “by Description instead of Neighborhood,"
will replace the group expression “by Neighborhood" with the group
expression “by Description," where α = “by Neighborhood," and
β = “by Description." If β is the Remove intent for “at least," with
α = “Beds at least 2" in play, the update U function will remove the
filter on the current visualization.

5.3 Impact on work in progress

Some insights from the study are not yet in the product (at the time
of writing) but are influencing work in progress. These include
comparison intents (as in Figure 10), additional semantics to in-
form inferencing, and visual encoding coherence to address jarring
changes such as Figure 11.

6 Discussion

6.1 What We Missed

The study presented here naturally missed some insights and iden-
tified others that turned out to be less important. One observation

Algorithm 1: Handling linguistic context in Ask Data
Input: natural language utterance β
Output: VizQL
Let U = (τ,α,β) be the update function that determines the
linguistic context to perform Add, Remove and Replace
operations to the current contextual set of analytical

expressions
τ in the system.
α is an analytical expression that is part of τ.
β is the current utterance in the discourse.
Add determines intent for adding β to τ.
Remove determines intent for removing α from τ.
Replace determines intent for replacing α with β in τ.

1 Perform an Add(β) operation if β < τ.
2 Perform a Remove(β) operation if β = α.
3 Perform a Replace(α,β) operation where we apply

Remove(α) and Add(β).
4 Apply U if U = (τ,α,β) satisfies Arklang constraints.

was that breaks in analytical flow could be detected via overlap of
concepts in subsequent utterances (see supplemental material). This
turned out to be irrelevant because we designed the interface to re-
tain prior inputs until a user explicitly removed them. Additionally,
while the study identified a need for smart inferencing, details of
what to infer (and when) required substantial follow-up. The study
also did not offer insight into user learning or skill development.

Because the Titanic data set had only one measure (Num-
berOfRecords), we also saw little diversity in calculations or nu-
merical targets like outliers. Even within the limited context of the
Titanic data set (where most transformations were % calculations),
the ways in which people expressed intent around calculations were
varied and complex. We later repeated the Wizard of Oz approach in
a follow-on study specifically focused on understanding calculation
intents.

6.2 Limitations and Future Work

Our study design has several limitations that restrict the general-
izations we can draw from our results. Most notably, we chose to
sacrifice some internal validity by running the study in a noisy con-
ference setting with the wizard in the same room as the participant;
we made this choice for external validity since it enabled access
to our target user population. However, wizards may have been
influenced by overhearing the conversation and participants may
have been influenced by the wizard presence. Additionally, wizard
judgment played a large role in the ‘system responses’ and was not
strictly controlled, making system responses less machine-like and
subject to human bias and interpretation. We mitigated some of
these effects by having the wizard follow strict rules in the no intent
conditions and training them to respond only to text utterances. We
also analyzed what users said they expected in relation to their input,
regardless of the actual system response, focusing on what system
behavior they intended with their utterance.

Absence of autocompletion and delayed response time reduced re-
alism, as expected in this type of study. At the same time, the system
delay enabled us to ask people about their expectations, generating
rich qualitative data. The study also used only one data source that
was somewhat simplistic. Later investigations for Ask Data elab-
orated on this work by exploring more complex data sources and
utterances.

Future work might investigate changes in interaction patterns
over the longer-term course of an analysis session, intents around
learning system capabilities, and handling query over-specification
(e.g. suggesting reduced constraints when no results are returned).
We would also like to explore voice and multi-modal interaction.



Adding “at least 2 beds" Replacing Neighborhood with Description Removing “with Beds at least 2"

Figure 16: A user interacting with the New Orleans AirBnB [1] data source in Ask Data. Top row: First version of Ask Data supporting intentional interaction
to explicitly add, replace and remove utterances as scoped queries. Bottom row: Newer version of Ask Data that additionally supports natural language
utterances to add, replace and remove interpreted phrases using linguistic context.

6.3 Studying Smart Systems

Studying analytical conversation systems is notoriously difficult.
Any structured (i.e., quantitatively measurable) task is nearly im-
possible to articulate without biasing users’ NL input. Such tasks
are also poor representatives of real world use. When we evaluated
Eviza [43], we noticed substantial behavior differences on structured
tasks compared to open-ended analysis. Yet without structured tasks,
it is difficult to define concrete indicators of success. Observing that
when users are in the flow of analysis, they focus on the data, not the
interface, was a key insight. We looked for this throughout future
studies of Ask Data.

The Wizard of Oz study enabled us to test ideas and make key
decisions early. Despite the study’s limitations, the results were
impactful, reducing uncertainty around requirements and design
choices, undoubtedly reducing costly development time. We repeat-
edly found ourselves referring back to examples from this pre-design
study to answer small questions that arose throughout development.

7 Conclusion

We presented a pre-design empirical study that informed design
considerations for Ask Data, a deployed analytical conversation
system. Results of the study gave us a systematic way to think
about intent and context understanding in analytical conversations,
suggested approaches to interpret and respond to intent, and revealed
how varying levels of system understanding might effect the user
experience. Findings influenced our design principles and prompted
us to develop inferencing to handle underspecification and strategies
to manage user expectations around context. Overall, the study
narrowed the space of design options under consideration, reducing
uncertainty around timing and feasibility. We hope that others may
find value in our insights around the design of intelligent visual
analytics systems, the value of pre-design studies, and the challenges
of productizing research.
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