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Abstract— 1 We consider the problem of similarity search in
applications where the cost of computing the similarity between
two records is very expensive, and the similarity measure is not
a metric. In such applications, comparing even a tiny fraction
of the database records to a single query record can be orders
of magnitude slower than reading the entire database from disk,
and indexing is often not possible. We develop a general-purpose,
statistical framework for answering top-k queries in such databases,
when the database administrator is able to supply an inexpensive
surrogate ranking function that substitutes for the actual similarity
measure. We develop a robust method that learns the relationship
between the surrogate function and the similarity measure. Given
a query, we use Bayesian statistics to update the model by taking
into account the observed partial results. Using the updated model,
we construct bounds on the accuracy of the result set obtained via
the surrogate ranking. Our experiments show that our models can
produce useful bounds for several real-life applications.

I. INTRODUCTION

Traditionally, two assumptions have governed the design of
algorithms for “best match” or similarity search in databases.
The first is that the cost of determining the similarity of a
database record to a query is negligible once a record is read into
main memory [20], [2]. The second is that the distance measure
between two records is a metric or near-metric (i.e., the triangle
inequality can be violated only up to a given amount) [21], [7].
If the second assumption holds, then indexing is usually a viable
option [2], [4], [21], [7], [23]. If the first holds, then in the worst
case a sequential database scan can always be used [9].

Unfortunately, these assumptions do not hold for many emerg-
ing applications. For instance, in the following applications,
computing the distance/similarity between even two records is
exceedingly expensive.
• PROTEIN STRUCTURE SEARCH. When the 3-dimensional

structure of a new protein is determined, the next task is often
to check if there are any known proteins in a protein structure
database that have a similar 3-dimensional shape. Such sim-
ilarities can help in predicting functions of the newly found
protein [11]. Here, “similarity” is typically defined as the best
root-mean-square deviation (RMSD) between the atoms in the
two proteins after one of them is rotated and translated to
superimpose on the the other one in the best possible way [16]
or a statistical measure such as the Z-score of the alignment.
Finding a good superimposition between two proteins is a difficult
problem. Existing heuristics, such as CE [22], take ten seconds to
a minute for a pair of proteins. Furthermore, RMSD or Z-score
can violate the triangle inequality.
• DRUG MOLECULE SEARCH. Once a protein or enzyme is
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determined to be a drug target, an important problem is to find
the drug molecules that have highest affinities to the target among
all drug molecules [12]. Existing algorithms, such as DOCK [5]
and Glide [10], compute the affinity of a drug molecule to a
pocket in a protein or enzyme by fitting the drug molecule’s
structure to that pocket for many alternative orientations of the
drug molecule. Glide takes five to ten minutes to compute the
affinity of a single drug molecule to a protein. Again, the affinity
measure is not a metric.
• PATHWAY SEARCH. Aligning two pathways to find the

similarity between them is related to the subgraph or graph
isomorphism problem. Such an alignment helps in functional
annotation of paths [13]. Computing an alignment for a pair of
pathways takes from a few seconds to a few minutes, depending
on their size and complexity [19].

In addition to the extreme cost of comparing two records, the
similarity measures in the above examples are not metric. Hence,
indexing these databases is difficult. Perhaps the only available
method for finding records similar to a query is to compute the
similarity of each database record one by one. The problem with
this approach is not the cost of reading the database. For example,
the 3-dimensional structure of all the proteins in PDB takes
up less than 250 MB. The difficulty is the tremendous expense
of each application of the similarity computation software. For
example, 30 seconds per protein similarity computation translates
to weeks of computer time to search the PDB.

Problem statement. In this paper, we study similarity search
when there is a computationally expensive, possibly non-
Euclidean ranking function R that may not satisfy the triangle
inequality and cannot be effectively indexed. Given a query record
q and a ranking function R, our goal is to find the k items in a
database that are closest to q, where “closest” is defined as the
set of database objects D that minimize (or maximize) the value
R(q, d) for d ∈ D.

We develop a general-purpose framework for answering such
queries efficiently, using virtually any expensive ranking function
(i.e., similarity measure), as long as the database administrator
can choose a “surrogate” ranking function R′. A surrogate
ranking function is one that is
(a) computationally efficient, and
(b) tends to produce the same ordering of database objects as

the original ranking function R.
Supplying an appropriate surrogate ranking function is often quite
easy for a domain expert. For example, in the 3-dimensional
protein structure alignment application, a good surrogate ranking
function R′(q, d) is the similarity of q and d found by Blast [1].
Blast is a sequence comparison software which measures the



(1, 89) (2, 78) (3, 82) (4, 80) (5, 65) (6, 53) (7, 62) (8, 71) (9, 43) (10, 47) (11, 51) (12, 48)

Fig. 1. (Score, rank) pairs for a database of twelve records, sorted according to the surrogate ranking function R′. The first number in each pair is the rank of
the record, according to R′. The second number is the similarity of that record to the query q, according to the expensive similarity (or ranking) function R. R′ is
computed for all the records. However, in this example, k′ = 5, so R is computed only for the underlined five records. In this example, if k = 3, then the surrogate
ranking function has correctly returned three out of the top three results (since 89, 82, and 80 are the top three records, according to R).
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Fig. 2. Examples of two protein-matching queries. The surrogate ranking
produced by Blast is plotted against the eZ−score of the CE alignment. The rank
(horizontal) axis is in log scale. For the left query, there is a strong relationship
between Blast and CE, and the top 10 Blast results are all in the top 20 CE
results. The relationship for the right query seems to be mostly random.

extent to which the sequence of residues in the proteins are
similar. This makes sense because Blast is computationally very
efficient. Blast aligns a query protein with a database of 10,000
proteins in a few seconds, while it takes days to align the
structures of the proteins in the same database using CE on a
single computer. Also, the sequence similarity of two proteins has
close relationship with their 3-dimensional structural similarity.
This is because the sequence of amino acids of protein is the
main determinant of its 3-dimensional structure.

Given an appropriate surrogate ranking function R′, the algo-
rithm that we propose to answer a top-k query is simple:

1) First, find the top k′ matches for q using the surrogate
ranking function R′, for some k′ > k.

2) Next, compute the top k matches for q using the actual
ranking function R, considering only the k′ objects returned
in step (1).

3) Return the set of k objects obtained from step (2), as well
as probabilistic guarantees on result accuracy, to the user.

The general process is illustrated above in Figure 1. The proba-
bilistic guarantee in step (3) above takes the general form:

“With probability p, at least h of the true top k items are present
in the result set.”

If the user is not happy with this result (because p is too low for
a given h), then k′ can be made larger by applying R to more
objects from the database, and p will grow. This can even be
done anytime, as the user waits. Such an online computation is
immensely preferable to waiting weeks or months for a single,
monolithic computation to complete. Typically, k is much smaller
than the database size. Therefore, if R′ is chosen appropriately so
that it has a close relationship with R, then the user may be able
to end the computation in only a fraction of the time required to
process the entire database.

Figure 2 illustrates this on a real-life example. In this example,
the goal is finding the few proteins closest to a query protein (in
terms of RMSD) in a database of 10,000 proteins. The surrogate
ranking function is provided by Blast. For the query on the left,
Blast does quite well. The top two matches in the entire database
according to RMSD are among the first ten proteins returned
according to Blast’s surrogate ranking. Also the top ten proteins
with the best RMSD are all in the top 20 proteins according to
Blast’s ranking. In this case, our algorithms would ideally inform
the user that after a few dozen proteins have been examined,
there is a very high probability that the top one or two proteins
according to RMSD have been returned.

For the query on the right in Figure 2, Blast does poorly. The
top protein according to RMSD is near the end of the Blast
ranking, and the set of top proteins according to RMSD seem to
be scattered randomly. In this case, our algorithms would ideally
inform the user that after many proteins have been examined,
there is still a good chance that the top proteins have not yet
been returned.

Once a surrogate ranking function is determined, the algorithm
itself is almost trivial. However, providing mathematically mean-
ingful, probabilistic guarantees on the accuracy of the result set
that has been returned remains a difficult task. The guarantees
should be accurate whether R′ is a high-quality surrogate for R
or not. After all, both R and R′ are arbitrary, domain-specific,
and user-supplied. So the framework that we develop cannot rely
on any specific property of these two functions.

Our contributions. We develop a general-purpose statistical
framework that learns the relationship between R and R′, and
uses it to provide the user the required guarantees after a subset
of the database is investigated. Our framework is generic as it
does not require that these ranking functions follow metric rules.
It uses a set of previously-answered training queries to model
mathematically how predictive R′ is for R. When a user issues a
query q, it uses this model to provide probabilistic guarantees to
the result that is returned to the user. Over time, as R is applied to
more database records ranked by R′ for the particular query point
q our understanding of the relationship between the ranking of
R′ and R improves. For example, it may become clear that for q,
R and R′ are not as closely related as predicted by the model —
or, it may become clear that R and R′ are exceedingly close for
this particular q. We use Bayesian statistical techniques to update
the model in the light of the observed partial results, as the query
is answered. In this way, the model is tailored to the particular q
in a mathematically rigorous fashion, as the query is processed.
We show in our experiments that our methods can produce highly
accurate bounds, in the sense that the user can rest assured that if
the software claims that there is a probability p of having enough
true results in the answer set, the actual probability is indeed p.

The following summarizes our technical contributions:

1) We propose a unique statistical model for the relationship



between a user-defined surrogate ranking function R′ and
a true ranking function R.

2) We derive learning algorithms for the model, in the form of
an expectation-maximization- (EM-)based [15] maximum
likelihood estimation (MLE) [6].

3) We provide algorithms for updating the model in response
to the partial computation associated with an actual query
q, and for using the updated model to bound result set
accuracy.

4) We experimentally evaluate our algorithm in several real
application domains.

The rest of the paper is organized as follows. Section II
presents an overview of our method. Section III describes our
mathematical model. Section IV discusses how we learn the
parameters of our model. Section V discusses how we update the
model parameter for a query. Section VI discusses our algorithm
for computing the bounds for the results reported. Section VII
presents the experimental results. Section VIII concludes the
paper.

II. OVERVIEW OF THE METHOD

At a high level, our goal is to provide a probabilistic guarantee
on the quality of the set of k database objects that are returned to
the user. We propose a unique statistical approach to this problem.
Our solution avoids making assumptions on the intrinsic prop-
erties of the ranking function R (such as whether it is a metric
measure). We instead rely on its extrinsic, statistical properties —
specifically, how it observably relates to its surrogate R′. We are
aware of no similar research in the computer science literature.

Our approach first learns a set of query classes from the
historical query workload, each of which, in principle, describes
a possible relationship between R and R′. Given a new query,
our method then determines which class of queries it belongs to,
and then uses that class membership to predict the accuracy of
the surrogate ranking on the current query. Our approach has four
steps:

1) We define a parametric, statistical model for different
classes of queries that a user may postulate. Each class
of queries includes a model for the relationship between R
and R′.

2) We derive a method to learn the entire model from a
historical query workload, so that it can be tailored to a
specific R′ and R for a specific database. In this context,
“learning” the model refers to the process of choosing
the set of model parameters so that the result accurately
describes the historical workload. Note that the models will
include all types of historical queries. For some of those
queries R′ may be a poor surrogate, while for others it may
be excellent.

3) After processing a small fraction of the database for an
actual query, we update the model. This is because the
underlying model is generic, and covers all possible types
of queries. For an actual query where it is clear that R′ is (or
is not) a reasonable surrogate for R, a generic probabilistic
guarantee may be too loose (or too tight). To deal with this,
we update the model as we start evaluating an actual query.
We use the portion of the database for which both R and R′

are computed to alter the model in Bayesian fashion [18].

For example, if R′ has served as a close surrogate for R so
far, the updated model will prefer the query class for which
R′ works well. On the other hand, if R′ has done a very
poor job so far, the updated model will tend to increase its
“belief” in the possibility that R′ is poor for this query.

4) Finally, we use the updated model to compute the probabil-
ity that the k answers returned to the user thus far contain
at least h of the actual top-k database objects, and this
information is returned to the user.

Underlying Assumptions. We end this overview section with a
brief discussion of when our methods will tend to work well, and
when they might not.

The utility of our approach is measured by its ability to provide
for accurate guarantees. If our algorithms tell a large number
of different users that there is a p × 100% chance that at least
h of the top-k database objects are present in the the query
result set, then for p × 100% of those users, at least h of the
top-k database objects should be in the result set. Thus, a very
reasonable question is: What assumptions are required for the
mathematics we employ to guarantee this sort of correctness? The
answer is simple: if the model learned in step (2) above correctly
describes the process by which future queries are generated, then
the bounds will be correct.

There is one major way in which the learned model may be
flawed: when the past query workload is not a reasonable predic-
tor of the workload in the near future. Although our methods can
adapt to shifts in the distribution of queries, pathological cases
will cause problems. For example, if for each and every training
query, R′ and R have a very close relationship, then the learned
model will not admit the possibility that R′ could do a poor
job. But if R′ can perform very poorly in some future case, our
method will be unable to recognize this, and mislead the user.

That being said, the advantage of our algorithm is that even
if the ranking defined by R′ and R differ greatly, the bounds it
computes will be appropriately wide as long as this distribution
is modeled by at least one of the learned query classes.

Why Model Rank vs. Score? In this paper, we attempt to predict
the score of an object, given its surrogate rank. A reasonable
question is, why not model its score, given its surrogate score?

We could have done this, and indeed, all of the algorithms
we suggest in this paper could be trivially adapted to a score
vs. score, rank vs. rank or score vs. rank model. In fact, as
future work we plan to investigate which method is preferred.
However, there is an obvious reason that one would initially
prefer rank vs. score: ranks are scale-free. Imagine two queries,
one with surrogate scores that range from 10 to 20, and another
with surrogate scores that range from 10 to 10000, but where
both sets of surrogate scores produce the exact same ranking.
Both queries will look exactly the same if one models rank vs.
score (and thus they can share the same model), but will look
radically different if one models score vs. score. This means
that two different models must be used to capture both queries.
Effectively, using rank vs. score removes a parameter from the
model—the scale of the surrogate score.

Notation. For simplicity we will use the following convention
for our mathematical notation in this paper unless otherwise
stated. We will use capital letters for sets, random variables



TABLE I
COMMONLY USED SYMBOLS IN THIS PAPER.

q, d query record, database record
N number of database records
M number of observed query results
k, k′, h parameters of top-k query.
R(), R′() actual and surrogate ranking functions
ri, r ranks obtained by R′
si, s scores obtained by R
c, g number of query classes, Gaussian components
αi, βj weight of a query class, Gaussian
F∗() probability density function
Θq , Ψj parameter set for a query class, Gaussian
L(), Q() likelihood and Q-functions
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Fig. 3. An illustration of the stochastic process that governs the generation of
a set of ranks and scores for a user’s query over the database containing objects
A, B, C, and D. First, a query class is assigned to the query ; the probability of
assigning class i is αi (step 1). Next, the database objects are ranked using the
surrogate ranking function (step 2). Finally, the ranks are used to stochastically
assign scores to the database objects, conditioned on the assigned ranks (step
3). This results in two vectors describing the user’s query result set: a vector of
scores for the objects, and a vector of ranks.

and functions. Lower case letters will be used for variables. We
will use bold-face letters to denote vectors and matrices. Table I
summarizes the most frequently used symbols in this paper.

III. THE MODEL

In this section, we define the mathematical model that forms
the basis for our algorithms. Without compromising the generality
of the problem definition, assume that the actual ranking function
is a similarity measure; that is, a large value of R indicates high
similarity. If R is a distance function so that small values indicate
best results, then the negative value of R can be used instead.
A. The Generative Process

The first step is to postulate a generative, statistical model
for the process of answering a top-k query using the surrogate
ranking function R′. The reason that we need a model is that by
tailoring the model to the historical workload, it will subsequently
allow us to learn how accurate (or inaccurate) the process of
ranking via a surrogate ranking function is. This will allow
us to make predictions regarding the possibility that by only
considering the highest ranked database objects according to R′,
we might miss those objects with a high score according to R.

The model will take the form of a probability density function
(PDF) which can be manipulated mathematically. The PDF

β1 0.2=

β2 0.5=

β3 0.2=

β4 0.1=

?
Fig. 4. Using a bi-variate, four component GMM to generate a data point.
The four ovals show the area covered within one standard deviation of each
normal/Gaussian component. To generate a point, a component is first selected
at random (in this example, the most likely one has been selected) and then that
component is used to generate the data point.

describes the stochastic process of a user first issuing a query,
ranking all of his or her database object using the surrogate
ranking function R′, and then assigning scores to the database
objects using the actual ranking function R. The generative
process is illustrated pictorially in Figure 3. In this figure (and in
the rest of the paper), r denotes the vector of ranks for database
objects, and ri denotes denotes the rank of the ith database
record according to the surrogate ranking function R′ for a given
query. For example, if the ith database record is the third closest
database record to the query according to R′, then ri = 3. s is the
vector of scores according to the expensive function R, and we
use si to denote the actual similarity of the ith database record
to the query; the top-k query attempts to find records with the k
largest si values.

The specific steps in the generative process are:

1) A user first poses a query q. There are c different query
classes that this query can belong to. Depending upon
which class it belongs to, there may be a different relation-
ship between R and R′. The specific class is determined
by rolling a biased die (step 1 in Figure 3). We denote
the probability of choosing the ith query class by αi,
∀i ∈ {1, 2, · · · , c}.

2) We rank the N database objects with respect to the query
using the surrogate function R′(q, d). This is a deterministic
process that assigns the labels 〈1, 2, · · · , N〉 to the different
database objects. The result of this is the vector r (see step
2 in Figure 3).

3) Let Fs(si|ri) be a function that describes in a probabilistic
sense the relationship between si and ri. We obtain the ac-
tual score R(q, di) for the ith database object by sampling
a single score value from Fs(si|ri), where the likelihood
of generating a specific score depends upon the rank. We
do this for all database objects. As depicted in Figure 3–
step 3, there is a different form of Fs associated with each
query class — for some query classes, a rank close to one
may always mean a very high score; for others, the rank
and the score may be less closely related.



B. Generating a Score, Given a Rank
Given such a setup, the big remaining question is regarding the

specific form of Fs. There are many possibilities for this PDF.
We use a standard, two-dimensional Gaussian (normal) mixture
model (GMM) [14] as the basis for Fs. Figure 4 illustrates the
basic process of using a GMM to generate a data point. This
process works as follows:
• Assume that there are g Gaussians for a given GMM. First,

one of the g GMM components is chosen at random, the
probability of choosing the jth component is βj .

• Next, a two-dimensional point (r, s) is sampled from the
normal distribution FN (s, r|Ψj). In this formula, FN is the
two-dimensional normal PDF, and Ψj is the set that contains
the means, variances, and covariance for the jth normal PDF.

There are many reasons to choose a GMM. GMMs are very
flexible, and can model very complex, multi-modal, multi-variate
distributions. Even though one of our dimensions is discrete—
a GMM is still the most natural choice. If we chose to use
a discrete distribution for the object’s surrogate rank and a
separate, continuous distribution for the object’s score, we would
lose the ability to easily model the covariance between these
two quantities on a per-component basis, which would greatly
compromise the flexibility of the model.

In our model, there are c different GMMs, with one associated
with each query class. Assume that query q belongs to the ith

query class. The GMM associated with q will have the parameter
set Θi. Θi contains the means, variances, and covariances for
each individual normal/Gaussian distribution in the GMM, as well
as the weights (the βj’s) associated with each of the individual
GMMs. Under this setup, the general form of the PDF for a
g-component GMM is:

FGMM (s, r|Θi) =
g∑
j=1

βjFN (s, r|Ψj)

The only problem with employing a GMM as the basis of
Fs is that Fs must describe the PDF for a score given a rank,
whereas FGMM describes the joint distribution of scores and
ranks. However, a simple transformation can be used to obtain a
PDF of appropriate form:

FGMM (s, r|Θi) = FGMM (s|r,Θi)FGMM (r|Θi)

So,

Fs(s|r,Θi) = FGMM (s|r,Θi) =
FGMM (s, r|Θi)
FGMM (r|Θi)

where FGMM (s, r|Θi) is as given above, and FGMM (r|Θi) is
nothing but the one-dimensional GMM obtained by ignoring the
score. That is,

FGMM (r|Θi) =
g∑
j=1

βjFN (r|Ψj)

C. Putting It All Together
Given this setup, we model the process for generating a single

query result set (s, r) via the following PDF:

Fq(s|r,Θ) =
c∑
i=1

αi

N∏
j=1

Fs(sj |rj ,Θi)

Let M be the size of the training data (i.e., then number of
queries for which we know the value of the actual ranking
function as well as the surrogate ranking function). Let us denote
the entire historical query workload using the M × N matrix
S = 〈s1; · · · ; sM 〉. Here, the vector si = 〈si,1, si,2, · · · , si,N 〉 is
the ith row of the the matrix S. It shows the scores of all the
database records for the ith query in the training data according
to the actual ranking function. In other words si,j is the score of
the ith query and jth database record. R denotes the same for the
surrogate ranking function. Then the PDF for an entire historical
query workload is simply:

F (S|R,Θ) =
M∏
m=1

Fq(sm|rm,Θ)

In this expression, Θ = {(αi,Θi)|1 ≤ i ≤ c} is the set of
variables that contains all of the various αi’s, as well as the
individual Θi’s.

IV. LEARNING THE MODEL

Now that an appropriate parametric model family has been
defined, the next task is figuring out how to learn the model.
That is, we need to be able to choose Θ so that the resulting
model is a good fit for the observed historical query workload
defined by (S,R).

There are two obvious ways to learn such a complicated
model. One is to use a traditional maximum likelihood estimate
(MLE) [6]; another is to rely on a more modern, Bayesian
approach, such as a Markov Chain Monte Carlo (MCMC)
method [8]. There are several pros and cons of each approach.
We use MLE for one main reason: MLE procedures are generally
much faster than MCMC methods and tend to scale to larger data
sets. This is significant because the number of individual (score,
rank) pairs in (S,R) can easily be in the millions, which is beyond
what an MCMC method might be expected to handle for the sort
of reasonably complicated, hierarchical model that we utilize.
A. Expectation Maximization

MLE aims to choose the parameters of a distribution that
maximize the probability or likelihood that the observed historical
query workload would have been produced. That is, given the log
likelihood function:

logL(Θ,R|S) = logF (S|R,Θ) =
M∑
m=1

logFq(sm|rm,Θ)

We need to solve the problem:

argmaxΘ {logL(Θ,R|S)}.

Unfortunately, this is quite difficult as we do not know which
query class for each of the M different queries that are in
the historical query workload. This is a classic “hidden data”
problem. We address this problem using the well-known and
widely-used Expectation Maximization (EM) algorithm [15]. The
EM algorithm, rather than being a single “algorithm”, is actually
a generic framework for solving hidden data problems. In theory,
EM can be used to derive a solution for any particular hidden-
data MLE, though in practice utilizing EM for a specific MLE
can be quite challenging.

A complete description of EM could span several papers, and
so we refer to interested reader to the relevant literature on



the subject [15]. Rather than attempting to maximize the log
likelihood function directly, EM works by repeatedly trying to
maximize the expected value of the complete-data log likelihood
function, where the hidden data are treated as a random vari-
able whose values are conditioned on the current value for Θ.
Specifically, let q = 〈q1, q2, · · · , qM 〉 be the unknown (hidden)
set of classes for each of the M different historical queries. For
example, if the first query belongs to the fourth query class then
q1 = 4. Let Θ′ refer to the current guess for the value of Θ. EM
works by repeatedly maximizing the value of the Q function:

Q(Θ,Θ′) = E[logF (S,q|R,Θ)|S,R,Θ′]
The Q function represents the expected value of the complete-
data log likelihood function. Assume that the underlying query
belongs to the ith query class. Since logF (S,q|R,Θ) must
take into account the likelihood of observing the vector q, its
expression is:

logF (S,q|R,Θ) =
M∑
m=1

logαiFq(sm|rm,Θ)

Given the Q-function, in pseudo-code, EM runs the loop:
start with an initial guess for Θ;
Repeat

Θ′ = Θ;
maximize Q(Θ, Θ′) wrt Θ;

Until (change in Θ is small)

B. Maximizing the Q-Function
In our case the Q-function can be re-written as:

Q(Θ,Θ′) =
M∑
m=1

c∑
i=1

(logαi+logF (sm|rm,Θi))Pr[qm = i|sm, rm,Θ′]

Maximizing the Q-function with respect to Θ requires maximiz-
ing it with respect to each of Θ′s parts: all of the αi’s and all
of the Θi’s. By taking the derivative with respect to each of the
αi’s and by setting the result to zero, we can get the following
simple maximization rule for each αi:

αi ←
M∑
m=1

Pr[qm = i|sm, rm,Θ′]
M

. (1)

In this expression, Pr[.] is known as the “posterior probability”
that the mth query was produced by class i. We compute this as:

Pr[qm = i|sm, rm,Θ′] =
α′iFGMM (sm, rm|Θ′i)∑c
j=1 α

′
jFGMM (sm, rm|Θ′j)

.

C. Handling the Model Parameters
Maximizing Q(Θ,Θ′) with respect to each Θi is a harder

problem than maximizing the Q-function with respect to each
αi. To perform this maximization, we first observe that since the
various αi’s and Θi’s are added together in the Q-function, one
can maximize all of the parameters separately and still obtain
a global maximum. This observation simplifies the problem.
Removing everything in Θ from the Q-function except for those
terms depending upon Θi, we have:

Q(Θi,Θ′) = log
M∑
m=1

logF (sm|rm,Θi)Pr[qm = i|sm, rm,Θ′]

Maximizing this function directly is still difficult. However,
after some algebraic manipulation, we can rewrite it as:

Q(Θi,Θ′) = log
M∏
m=1

Nm∏
j=1

Fs(sm,j |rm,j ,Θi)Pr[qm=i|sm,rm,Θ
′]

where Nm is the number of (score, rank) pairs in the mth query
from the historical workload.

Given this rewriting, the Q-function is then reduced to the log
of a product of a large number of individual likelihoods, each
raised to a certain power. At this point, we can view the Q-
function itself as a new likelihood function. We thus evaluate it
over a new dataset that we “created” by adding n × Pr[qm =
i|sm, rm,Θ′] copies of the historical query (sm, rm) to the new
data set, for some very large n. It is worth saying that we do not
literally create the simulated dataset. We conceptually assume
that it exists for our mathematical derivation. We require a large
n here only so that an integral number of copies of each query are
added to the new, simulated data set; for very large n, rounding
n × Pr[qm = i|sm, rm,Θ′] to the nearest integer will have no
effect on the result of the maximization.

Let the new, synthetic database D′ be the multiset

M⋃
m=1

Nm⋃
j=1

· · ·
n×Pr[qm=i|sm,rm,Θ

′]⋃
i=1

{(sm,j , rm,j)}

In this expression, sm,j is the jth score value in the mth query;
rm,j is defined similarly.

Then for large n, we have:

Q(Θi,Θ′) ≈ log n

√ ∏
(s,r)∈D′

Fs(s|r,Θi)

Since the nth root of the multiplicative term is a monotonically
increasing function, we can maximize log

∏
(s,r)∈D′ Fs(s|r,Θi)

separately for each Θi and obtain the same result as if we had
maximized the original Q-function directly. Let S′ be the set of all
score values in D′, so that sm refers to the mth score in this set.
Let R′ be defined similarly, so that (sm, rm) is the mth pair in
D′. The problem of finding the maximum value of this function
over all possible Θm is then itself equivalent to an MLE:

argmaxΘi
{logL′(Θi,S′|R′)}

with

logL′(Θi,S′|R′) =
|D′|∑
m=1

logFs(sm|rm,Θi).

Again, this is a difficult problem because Fs(.|Θi) encodes the
mixture model for the ith class of query, and we do not know
which mixture component produced the mth point in D′. Let
gm denote the unknown identity of the Gaussian used to produce
the mth point in D′. Again, we can use an EM algorithm to
solve this problem. For this second EM, we obtain the following
Q-function:

Q(Θi,Θ′i) = E[logFs(S′, g|R′,Θi)|S′,R′,Θ′i]



where logFs(.|Θi) can be derived (using Bayes’ law) as:

logFs(S′, g|R′,Θi) =
|D′|∑
m=1

log
βgm

FN (sm, rm|Ψgm
)

FGMM (rm|Θi)

In this expression, Ψgm refers to the parameters associated with
the gmth Gaussian or normal in the mixture model parameterized
by Θi, and βgm gives the probability of selecting the gmth normal
in the mixture.

Via algebraic manipulations, Q(Θi,Θ′i) can be written as:

Q(Θi,Θ′i) =∑|D′|
m=1

∑ci

j=1[log βj + logFN (sm, rm|Ψj)−
logFGMM (rm|Θi)]Pr[gm = j|sm, rm,Θ′i]

In this expression, Pr[gm = j|sm, rm,Θ′i] is the probability that
the jth normal was used to produce the mth data point, and is:

Pr[gm = j|sm, rm,Θ′i] =
βgFN (sm, rm|Ψj)
FGMM (sm, rm|Θ′i)

Unfortunately, maximizing this Q-function is still quite difficult,
due to the term logFGMM (rm|Θi). Since FGMM is itself a
summation, we are attempting to perform a maximization over
the logarithm of a summation of terms, which is hard. Thus, as
an approximation, we drop this term, the justification being that
as a one-dimensional PDF, its logarithm will generally be much
less significant than the two-dimensional FN that also appears.
The final update rules for αj and Ψj (the parameter set for jth

normal in the ith query class) are:

βj ←
PM

m=1
PNm

j=1 Pr[qm=i|.]Pr[gm=j|.]PM
m=1NmPr[qm=i|.]

µj,r ←
PM

m=1
PNm

j=1 Pr[qm=i|.]Pr[gm=j|.]rm,jPM
m=1NmPr[qm=i|.]

σ2
j,r ←

PM
m=1

PNm
j=1 Pr[qm=i|.]Pr[gm=j|.](rm,j−µj,r)2PM

m=1NmPr[qm=i|.]

Covj ←
PM

m=1
PNm

j=1 Pr[qm=i|.]Pr[gm=j|.](rm,j−µj,r)(sm,j−µj,s)PM
m=1NmPr[qm=i|.]

Pr[gm = j|.] denotes Pr[gm = j|sm,j , rm,j ,Θ′i] and Pr[qm =
i|.] denotes Pr[qm = i|sm, rm,Θ′]. µj,r is the mean rank for
the jth normal in the GMM for the ith query class. σ2

j,r is the
variance of this normal, and Covj is the covariance between the
rank and the score in this normal. While no formula is given
above for updating µj,s and σ2

j,s, these can be obtained by simply
replacing s for r in the above rules.
D. The Complete Learner

Given all of this, the complete learning algorithm is as follows:
start with an initial guess for Θ;
Repeat

Θ′ = Θ;
for each query class i in 1 · · · c:

update αi; (Equation (1) in Section 4.2)
Repeat

Θ′i = Θi

for each Gaussian j in 1 · · · g:
update βj, Ψj; (Section 4.3)

end for
Until (change in Θi is small)
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Fig. 5. Updating the component weights in response to a partially-completed
query. In this case, the prior weights are all even at 1

3
. However, after observing

a few points that were highly ranked according to the surrogate ranking function
R′, it is possible to mathematically “rule out” the possibility that this particular
query was produced by the first GMM; the relationship between score and rank
is all wrong. The third model looks most plausible, though it may not be possible
to rule out the second with so little data. Therefore, the updated set of weights
might be 〈0, 1

10
, 9
10
〉.

end for
Until (change in Θ is small)

This algorithm contains nested loops. The innermost loop updates
the weights of the Gaussians for each of the query classes. The
outermost loop updates the weights of query classes once the best
weights for the Gaussians are selected.

V. UPDATING THE MODEL

The previous section discussed how to learn the model param-
eter set Θ in order to fit the model to a historical query workload.
The learned model is generic, in the sense that it covers the entire
historical query workload. This generic model can be used to
correctly bound the accuracy of the surrogate ranking function
for new queries. To do this, one needs to compute the probability
that for an arbitrary query generated via the learned model, the
surrogate ranking function will return at least h of the true top
k items in the database after processing k′ items (k′ ≥ k). This
probability could correctly be returned regardless of the particular
query in question.

Although we can compute a bound for a query, using the
existing model blindly is problematic. This is because some of
the query classes can describe the relationship between R′ and
R well for one query and other classes can do it well for another
query. We do not know in advance which query model is the
best choice. In order to have a much better idea of how accurate
the surrogate ranking will be, we tailor the model to the current
query, rather than reporting a probability that will hold for an
arbitrary query, about which no information is known.

Intuition. It is quite easy to update the query class weights α1,
α2, · · · , αc in response to a particular query. Intuitively, what
one has access to at model update time are a number of learned
GMMs, one for each query type, as well as a set of score, rank
pairs that have been processed thus far for the current query.
Those GMMs that were more likely to have produced the current
query will be given a higher updated weight, as depicted in



Figure 5. In this Figure, we can see that the third model likely
explains this query best and the first model explains the worst.
Thus, it makes sense to have a high weight for the third model
and low weight for the first model.

Update Equation. Let αnewi denote the updated weight for the
ith query class. Assume that the vector s denotes the partially-
observed scores. Let r/s denote only those ranks for which a
score observation has been made — obviously, for a database of
size N , r will always be of size N once the surrogate ranking
is complete; however, for the moment we are only interested in
those ranks for which we actually have score values. Finally, let
q∗ be the (unknown) query class (GMM) that was used to produce
this particular query. Then,

αnewi = Pr[q∗ = i|r, s,Θ] =
αifGMM (s, r/s|Θi)∑c
j=1 αjFGMM (s, r/s|Θj)

VI. OBTAINING THE BOUNDS

The last significant technical hurdle to surmount is being
able to use the model and the updated weights to compute the
probability that the number of actual top k objects returned to
the user exceeds some user-specified value h.
A. Applying the Updated Weights

Our basic algorithm (described in Section 1) computes R(q, d)
exactly for those database objects with the k′ best rankings
according to R′. So if the database object d is in the top k′

according to R′, and d is also in the top k according to R, then
d will correctly be returned to the user. Let us denote the random
variable which controls the number of true results observed (i.e.,
the objects that are in the top k according to R and are also in
the top k′ according to R′) with H . Our goal is then to compute
the quantity Pr[H ≥ h|r, s,Θ].

To compute the above probability, we start by doing algebraic
manipulations on it. We know that:

Pr[H ≥ h|r,s,Θ]

=
c∑
i=1

Pr[q = i|r, s,Θ]Pr[H ≥ h|q = i, r, s,Θ]

=
c∑
i=1

αnewi Pr[H ≥ h|q = i, r, s,Θ]

where the computation of αnewi is as described previously.
Unfortunately, analytically computing the term Pr[H ≥ h|q =

i, r, s,Θ] is difficult. Let s̄ denote the set of scores that are
currently unknown (that is, scores that currently have rankings
in r, but no associated value in s). We have to compute the
probability that the number of values in s that are in the top k in
the combined set (s ∪ s̄) exceeds c. Computing this probability
exactly likely requires exponential time complexity in the size of
s̄, because it seems as if we would have to explicitly consider the
likelihood of all possible combinations of values for the items in
s̄. Thus, we resort to Monte Carlo methods.
B. Naive Monte Carlo

We begin by describing a relatively simple Monte Carlo
algorithm to obtain an approximate value for Pr[H ≥ h|q =
i, r, s,Θ]. Note that we repeat this algorithm for each query class
i. Our Monte Carlo algorithm works by using the ith GMM to
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Fig. 7. Estimating Pr[H ≥ 4]. In this example, the set of six (score, rank)
pairs for which an actual score has been computed are “superimposed” over each
of the five hypothetical database instances. Specifically, (88, 1), (86, 2), (83, 3),
(41, 4), (44, 5), (42, 6) are all superimposed over ranks one through six. Then,
each database instance is checked to see whether the number of actual or non-
simulated scores in the top k (with k = 4) database scores is at least four. The
score values in the top k are shown in bold-italic. In this case, the number of
non-simulated scores in the top k is at least four in two of the five hypothetical
database instances. Thus, 2

5
= 0.4 is returned as as estimate for Pr[H ≥ 4].

generate a vector of possible scores, with one score associated
with each rank in r. This set of possible scores constitutes
a hypothetical “database instance”. We create many database
instances by repeatedly generating vectors of possible scores.
This is illustrated above in Figure 6. Notice that the entries for
each database instance are sorted according to their surrogate
ranks, not the actual similarity scores.

Once a large number of database instances have been created,
then the actual score vector is “superimposed” over each database
instance, by adding si ∈ s to the rthi position in each database
instance. We then check, for each database instance, whether
H is at least as large as the cutoff value h. If it is, then the
database instance “passes the test.” By counting the fraction
database instances that pass the test, we obtain an approximation
for Pr[H ≥ h|q = i, r, s,Θ]. It is possible to bound the
approximation accuracy using standard techniques. This basic
process is illustrated in Figure 7.

One issue that requires a bit of clarification is how to condi-
tionally generate a score, given a specific rank. The process of
sampling from Fs(s|r,Θi) can be viewed as generating a very
large number of (s, r) pairs from the two-dimensional GMM



parameterized by Θi, and then accepting the first (s, r) pair where
the rank is precisely the desired rank. Let G be the identity of the
component that produces the acceptable pair. Then the probability
that G = j is:

Pr[G = j|r,Θi] =
Pr[G = j|Θi]FN (r|Ψj)

FGMM (r|Θi)

This means that we can select an appropriate Gaussian to
generate our s value by rolling a biased die, where the probability
of obtaining a j is Pr[G = j|r,Θi]. If we happen to select the jth

Gaussian to generate our score, we then generate our actual score
by sampling from the PDF FN (s|r,Ψj). It is a widely-known
fact that when a Gaussian or normal distribution is conditioned
on one or more of its dimensions, the resulting distribution is
still a normal distribution in a lower-dimensional space, with
(possibly) updated parameter values. In our case, FN (s|r) is a
one-dimensional normal distribution with mean

µ = µj,s +
Covj
σ2
j,r

(r − µj,r)

and variance
σ2 = σ2

j,s −
(Covj)2

σ2
j,r

In these expressions, µj,s, µj,r, σ2
j,r, and Covj are all param-

eters within Ψj .
C. A Faster Monte Carlo

Although the naive Monte Carlo method computes the bounds
correctly, its running time makes it impractical for online query-
ing. If one thousand database instances for each query class are
generated, and each database instance has 105 items, and there
are ten query classes, then one billion scores must be generated.
Generating these scores to compute bound every time we need
to compute a bound will take significant amount of time.

The obvious way around this problem is to generate the various
database instances, and store them in memory once. Then, we
can compute the bounds using this pre-generated data for all the
queries. After all, the 8GM of RAM needed to store one billion
scores only costs a few dollars in 2008 prices. This strategy avoids
generating Monte Carlo instances online. However, counting the
number of synthetic scores in each instance that make their way
into the top k (as illustrated in Figure 7) must be done carefully.

We develop an efficient algorithm that computes the bound
using a small subset of the entries in the pre-computed instances.
Figure 8 illustrates our algorithm. We simply keep the entries
of each database instance sorted according to the actual score R
instead of the surrogate rank R′. For a given query, assume that
we have computed the score R for the k′ database records with
highest surrogate rank. Assume that the the hth best score among
these observed results is s. We compare s to the entries of the
Monte Carlo instances in descending order of score starting from
the first one until one of the two stopping conditions is met.

(1) The top example in Figure 8 describes the first stopping
criteria. The score in the Monte Carlo instance becomes less than
or equal to s. This means that there are no other entries in the
Monte Carlo instance that has better score than the observed hth

best score. If the we check the number of entries examined from
this instance that are not ranked in top k′ according to surrogate
ranking. Such entries “reject” the hth best observation. If this
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Fig. 8. Fast counting of the number of items on two Monte Carlo database
instances. In this example, 44 is the fourth (hth) best actual score of the six (k′)
obtained thus far. In the instance on the top of the figure, only the top four scores
in the Monte Carlo instance are better than 44. None of them have a rank greater
than k′. Therefore, this instance results in a “yes”. In the instance at the bottom
of the figure, we stop after seeing score 47. This is because now we have seen
two entries whose score exceed 44 and rank exceed 6. This number greater than
the difference k − h = 5− 4 = 1. Therefore, this instance results in a “no”.

number is at most k − h, the Monte Carlo Instance supports
that the observed results contain at least h of the top k results.
Otherwise, it does not.

(2) The bottom example in Figure 8 describes the second
stopping criteria. It follows the observation made in the first one.
If the total number of examined entries that reject the hth best
observation exceeds k − h, the Monte Carlo Instance does not
support that the observed results contain at least h of the top k
results. Thus, there is no need to examine the rest of the entries
of the Monte Carlo instance.

VII. APPLICATIONS AND EVALUATION

In this section, we apply our model to three application
domains: protein structure alignment, image matching, and bio-
chemical pathway alignment. The two questions that we wish
to evaluate are: First, do reasonable surrogate ranking functions
exist for these example application domains? Second—and much
more important for this particular paper—can our model correctly
predict when the surrogate ranking will work well, and when it
will not?
A. Protein Structure Search

Problem Domain. The first problem we tackle is searching a
database of protein structures for the k proteins that most closely
align with a query protein, according to the CE structure matching
algorithm [22]. We use the Z-score computed by CE as the
similarity measure. As described in the introduction, we used
Blast’s sequence alignment score as the surrogate for the Z-score.

Experimental Setup. To apply our model to this problem do-
main, we created a database of 10,000 protein structures, sampled
at random from PDB (http://www.rcsb.org). We then selected
at random 101 proteins as training proteins, and 100 proteins
as query proteins from the remaining ones in PDB. Thus, the
database, training, test sets do not have any common proteins.
We learn a model having ten different query classes, each a ten-
component GMM.

We then queried each of the query proteins in the test database.
For each query, we compute the exact CE score for the query’s



TABLE II
AVERAGE Pr[H ≥ h] VALUES FOR VARIOUS k′ , h COMBINATIONS, WITH

k = 10, FOR THE PROTEIN DATA SET. SECTION VII-A PROVIDES A DETAILED

EXPLANATION OF HOW TO INTERPRET THIS TABLE, UNDER THE HEADING

“RESULTS AND DISCUSSION”. “—” DENOTES THAT NO QUERIES FELL IN

THAT PARTICULAR CELL. THE ROW “OBS.” SHOWS THE TOTAL NUMBER OF

QUERIES THAT FALL INTO CATEGORY “Y” OR “N” (I.E., SURROGATE

RANKING IS SUCCESSFUL OR FAILS).

h = 1 h = 5 h = 8 h = 10
k′ “Y” “N” “Y” “N” “Y” “N” “Y” “N”
50 0.70 0.10 0.53 0.00 0.24 0.00 — 0.00
100 0.78 0.12 0.52 0.00 0.44 0.00 — 0.00
500 0.78 0.00 0.44 0.04 0.56 0.01 — 0.01
obs 248 52 45 255 24 276 0 300

top k′ matches according to BLAST, and return the top k CE
scores from that set. Among those k proteins, we then count the
number of proteins that are actually among the top k proteins
according to the Z-score of CE in the entire database. We also
use our model to predict the probability that this value exceeds
a constant h for all h ∈ {1, 2, · · · , k} using the model of this
paper.

We ran two sets of experiments for the protein structure
matching application. In the first set, we use k = 10 and test
all combinations of k′ ∈ {50, 100, 500} and h ∈ {1, 5, 8, 10}.
In the second set, we use k = 1, and so h = 1. We test k′ ∈
{50, 100, 500} in this experiment as well.

Results and Discussion. The overall results are summarized in
Tables II, III, and Figure 9.

TABLE III
AVERAGE PROBABILITY

VALUES FOR PROTEIN DATA

SET, WITH k = 1. SEE

SECTION VII-A FOR

DETAILS. THE ROW “OBS.”
SHOWS THE TOTAL NUMBER

OF QUERIES THAT FALL

INTO CATEGORY “Y” OR

“N” (I.E., SURROGATE

RANKING IS SUCCESSFUL

OR FAILS).

h = 1
k′ ‘Y” “N”
50 0.32 0.09
100 0.38 0.25
500 0.47 0.32
obs. 187 133

The Figures require a bit of expla-
nation. In all of these figures, queries
are divided into two classes: “Y”
or “Yes” queries, and “N” or “No”
queries. “Y” queries are those for
which the surrogate ranking was suc-
cessful. That is, for a particular h
value, a query is a “Y” query if at
least h of the top k queries were in
the k′ queries returned by the surro-
gate ranking. Thus, if the surrogate
ranking were perfect in all cases, there
would be only “Y” queries and no “N”
queries. The reason that we partition
all queries into “Y” or “N” queries
is that our model returns a Bayesian
belief or probability that a given query
is a “Y” query. Thus, for “Y” queries
we hope that the probability returned
by our model is close to one. For “N”
queries, we hope for a zero.

In each of these Figures, the number that we are most interested
in is the probability value assigned by our model to each
query. Tables II and III show average probabilities over different
groupings of queries. Thus, in Table II, the 0.70 at the top left of
the table means that for those “Y” queries with h = 1, k′ = 50,
our model (on average) said that there was a 70% chance that
the query would fall in the “Y” class. The bottom row in both of

these Figures counts the total number of queries that fell in that
column. For example, 248 queries were “Y” queries for h = 1.

Table III shows the same data in more detail for specific h,
k, k′ combinations. In this figure, each individual probability
assigned by our model is plotted. The “Yes” portion of the figure
shows each of the different probabilities assigned for all of the
queries where the surrogate ranking was effective. If the model
were perfect, all of these values would be one. The “No” portion
shows the probabilities assigned when the surrogate ranking did
not return at least h of the top k. If the model were perfect, all
values would be zero.

There are several interesting results. First, BLAST is a reason-
able surrogate for CE’s structure match. Consider Table III. Out
of 300 queries total (100 each for k in 50, 100, 500), more than
half of the time, BLAST was able to find the single best match out
of the 10,000 proteins in the database. That being said, BLAST is
not perfect. For example, it was never able to find ten out of the
top ten CE answers in any of the experiments where h = k = 10.

Significantly, our model was able to do a very good job in
bounding the accuracy of BLAST as a surrogate ranking function;
in fact, our model even tended to be a bit too pessimistic, which
we observed systematically throughout our experiments. If there
must be any bias, then a bit of bias towards the pessimistic side
is preferable, since it does not give the end-user a false sense
of security. Consider the case of k′ = 500. Except for h = 5
where the average probability returned was 0.04—so it always
got the “N” cases right. Over all “Y” cases, the model returned
an average probability of 0.74.

The plots in Figure 9 are particularly interesting. Here we plot
the probabilities for particular sets of “Y” and “N” cases side-by-
side. It is clear that our model assigns much higher probabilities
of success to queries where the surrogate ranking produces good
results, and so in general, our model is able to successfully
distinguish among the queries where BLAST will be successful,
and when it will not. It is also interesting that more data generally
seems to help boost the accuracy, which is definitely a desirable
characteristic of any machine learning method. Consider the two
plots furthest to the right. They test exactly the same scenario,
except that k′ is much lower in the right plot. As one might
expect, this relative lack of data hurts our model’s ability to
correctly assign high probabilities to “Y” queries.
B. Image Search

Problem Domain. The second problem that we consider is image
similarity search using Earth Mover’s Distance (EMD). EMD is
in fact a metric and so it is possible to index, but it still serves as a
good testbed for our models for a couple of reasons. First, in our
experience generic, metric-type indexes do not often work well
with EMD. Second, computing the EMD between two images can
be arbitrarily expensive, and so sequential scans are not a good
option. As a surrogate for EMD, we use Euclidean distance.

Experimental Setup. The database in question consists of 3500
retinal images obtained from UCSB Bioimage database, with 105
training queries and 105 test queries. Just as before, we use k′ ∈
{50, 100, 500} and h ∈ {1, 5, 8, 10}. For brevity we only report
the results for k = 10. All of the model learning parameters in
this experiment were the same as that in the protein matching
experiment.
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Fig. 9. Detailed results for four particular settings, protein data set. A discussion of how to interpret this plot is provided in Section VII-A.

TABLE IV
AVERAGE Pr[H ≥ h] VALUES FOR VARIOUS k′ , h COMBINATIONS, WITH

k = 10, FOR THE IMAGE DATA SET USING THE EUCLIDEAN SURROGATE

RANKING. “—” DENOTES THAT NO QUERIES FELL IN THAT PARTICULAR

CELL.

h = 1 h = 5 h = 8 h = 10
k′ ‘Y” “N” “Y” “N” “Y” “N” “Y” “N”
50 1.00 — 0.98 0.95 0.59 0.43 0.13 0.05
100 1.00 — 0.98 — 0.88 0.90 0.55 0.23
500 1.00 — 1.00 — 0.99 — 0.86 0.59
obs 315 0 314 1 302 13 258 57

Results and Discussion. The detailed results for the original
Euclidian ranking are given in Table IV. It is immediately clear
is that the surrogate ranking performs exceedingly well in this
domain. For example, the Euclidean surrogate returns at least
eight out of the top ten in 302 of 315 of the total cases. It is
even very accurate in the case of k′ = 50, when for 95 out of
105 cases, at least eight out of the top ten images were returned.

Significantly, our model was able to capture the near perfect
relationship between EMD and Euclidean distance. For both h =
1 and h = 5, our model correctly predicted that in nearly every
case, the Euclidean surrogate would return at least h of the top
ten.

The more interesting cases to examine are all of the h = 10
cases, and the case of h = 8, k′ = 50, which has a h value
close to ten coupled with a small sample size. In such cases, the
goal is to predict whether or not there will be a very slight error:
one or two missed results. It is in these cases where our model
tended to be less precise, and gave much less sure predictions.
Contrast the leftmost plot of Figure 10 where our model almost
always assigned one probabilities to every “Y” case to the other
three plots in the figure, where the model assigned a variety of
probabilities to both the “N” and “Y” cases, indicating a level
of uncertainty. The reason for this is that while there is a very
strong relationship between Euclidean distance and EMD, the
relationship is not perfect. It is not unusual to encounter one or
two errors out of ten results, which would correspond to a “N”
for h = 8 or h = 10. However, it is exceedingly difficult to
predict exactly when these errors will happen, because unlike for
the protein structure problem, the surrogate uniformly performs
quite well. In the protein domain, it is often clear after just a few
proteins have been examined that the query is a bad (or good)
one, and then our model returns an appropriately small (or large)
probability. But there is not much of a clue that there will or will
not be one or two errors out of ten. This leads to probabilities
that are scattered throughout the range of zero to one, for both
the “N” and “Y” cases.

TABLE V
AVERAGE Pr[H ≥ h] VALUES FOR VARIOUS k′ , h COMBINATIONS, WITH

k = 10, FOR THE METABOLIC PATHWAY DATA SET.

h = 1 h = 5 h = 8 h = 10
k′ “Y” “N” “Y” “N” “Y” “N” “Y” “N”
50 0.96 0.00 0.95 0.00 0.90 0.00 0.62 0.00
100 0.98 0.00 0.97 0.00 0.97 0.00 0.95 0.00
500 1.00 0.08 1.00 0.00 1.00 0.00 0.99 0.00
obs 198 198 198 198 198 198 198 198

C. Pathway Search

Problem Domain and Experimental Setup. In this particular
domain, the query is a metabolic pathway for a particular organ-
ism, and the goal is to find the few pathways in the database that
most closely match the query. The actual ranking is obtained
using the sum of the topological and homological similarities
of the two pathways (We used the alignment software and the
scoring measure developed in [3] for this purpose). We compute a
surrogate ranking function as the ratio of the number of common
enzymes and compounds in two pathways to the total number of
enzymes and compounds in the union of the two pathways. In
this experiment, the database contains 6000 metabolic pathways
from the KEGG database [17] from randomly selected organisms.
In addition to these pathways, we use 128 training queries and
198 test queries.

Unfortunately for testing the utility of our model, this particular
surrogate is even better than Euclidean distance for EMD. It is
uniformly perfect, which results in trivial plots and tables (results
omitted). This is because usually if two organisms share the
same pathway, they often have almost the same set of enzymes
and compounds. Furthermore, the biological features of these
enzymes and compounds dictates the same topology on these
pathways. It is worth saying that even for these kinds of databases
where the surrogate function and the expensive score produce
almost the same ranking, our method still worked correctly, and
correctly predicted that the top results will be found very quickly.

To make the modeling problem more challenging, we do the
following. We randomly select 10% of the training queries, and
reverse all of the ranks for each of those queries, so the top-ranked
pathway for a query according to the surrogate function actually
becomes the lowest-ranked pathway. These means that for 10%
of the training queries, the surrogate will perform very poorly.
Then, we do the same swapping for 50% of the test queries,
in order to test the case where the fraction of queries that the
surrogate performs well on has evolved over time.

Results and Discussion. The overall results are summarized in
Table V; some particular results are shown in detail in Figure 11.
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Fig. 10. Detailed, selected results, for the image data set.
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Fig. 11. Detailed, selected results, for the pathway data set.

By design, the surrogate ranking function works well exactly
one half of the time, but our model is found to function almost
perfectly; for k′ = 100 and k′ = 500, nearly all “Y” cases are
assigned one probabilities, and nearly all “N” cases are assigned
zero. We note that this excellent accuracy was obtained after
the prevalence of the “reversed” queries increased five-fold from
training to testing.

VIII. DISCUSSION AND RESULTS

In this paper, we have proposed a general framework for
handling similarity queries with very expensive scoring functions:
use an inexpensive, surrogate ranking function, and then apply a
statistical model to accurately predict the quality of a surrogate
ranking function on a per-query basis. The goal of the paper was
not to suggest surrogate ranking functions. Rather, our primary
technical goal is to predict the quality of the ranking function.
Judged along those lines, our results are very good. Consider
the case of protein structure search. This is perhaps the most
interesting application, because it is the application for which
the surrogate function was most inaccurate. Even in this case, our
models were able to accurately distinguish between cases where
the surrogate works, and cases where it does not. Examine the
case where k = 10 in Table 2. In this case, when 5 out of the top
10 matches for the query are actually in the result set, our model
gives an average result of around 0.5—meaning that (on average)
our model says that there is a 50% chance that 5 of the top 10
matches are present when they actually are there. On the other
hand, in the case where less than 5 matches are present, our model
gives an average result of 0.01—meaning that with almost total
accuracy it successfully recognizes that the surrogate ranking is
not working.

REFERENCES

[1] S. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. Basic
Local Alignment Search Tool. Journal of Molecular Biology, 215(3):403–
410, 1990.

[2] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed
dimensions. In SODA, pages 271–280, 1993.

[3] F. Ay, T. Kahveci, and V. de Crecy-Lagard. Consistent alignment of
metabolic pathways without any abstaction in modeling. In Computational
Systems Bioinformatics Conference (CSB), 2008.

[4] S. Berchtold, B. Ertl, D. Keim, H.-P. Kriegel, and T. Seidl. Fast Nearest

Neighbor Search in High-dimensional Space. In ICDE, pages 209–218,
1998.

[5] R. Brenk, J. J. Irwin, and B. K. Shoichet. Here Be Dragons: Docking and
Screening in an Uncharted Region of Chemical Space. J Biomol Screen,
10(7):667–674, 2005.

[6] S. R. Eliason. Maximum Likelihood Estimation: Logic and Practice . Sage
Publications, 1993.

[7] R. F. S. Filho, A. J. M. Traina, J. Caetano Traina, and C. Faloutsos.
Similarity Search without Tears: The OMNI Family of All-purpose Access
Methods. In ICDE, pages 623–630, 2001.

[8] D. Gamerman and H. F. Lopes. Markov Chain Monte Carlo: Stochastic
Simulation for Bayesian Inference. Chapman & Hall/CRC, 2006.

[9] H. Garcia-Molina, J. D. Ullman, and J. D. Widom. Database Systems: The
Complete Book. Prentice Hall, 2002.

[10] T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye,
W. T. Pollard, and J. L. Banks. Glide: A new approach for rapid, accurate
docking and scoring. 2. enrichment factors in database screening. Journal
of Medicinal Chemistry, 47(7):1750–1759, 2004.

[11] H. Hegyi and M. Gerstein. The Relationship Between Protein Structure and
Function: a Comprehensive Survey with Application to the Yeast Genome.
Journal of Molecular Biology, 288(1):147–164, 1999.

[12] W. L. Jorgensen. The Many Roles of Computation in Drug Discovery.
Science, 303(5665):1813–1818, 2004.

[13] J. Kim and S. D. Copley. Why metabolic enzymes are essential or
nonessential for growth of escherichia coli k12 on glucose. Biochemistry,
46(44):12501–12511, 2007.

[14] G. McLachlan and D. Peel. Finite Mixture Models. Wiley-Interscience,
2000.

[15] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions.
Wiley-Interscience, 1996.

[16] D. W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring
Harbor Laboratory, 2004.

[17] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa.
KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids
Research, 27(1):29–34, 1999.

[18] A. O’Hagan and J. J. Forster. Bayesian Inference. Volume 2B of Kendall’s
Advanced Theory of Statistics. Arnold, second edition, 2004.

[19] R. Y. Pinter, O. Rokhlenko, E. Yeger-Lotem, and M. Ziv-Ukelson. Align-
ment of metabolic pathways. Bioinformatics, 21(16):3401–8, 2005.

[20] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries. In
SIGMOD, San Jose, CA, 1995.

[21] T. Seidl and H. Kriegel. Optimal Multi-Step k-Nearest Neighbor Search.
In SIGMOD, 1998.

[22] I. Shindyalov and P. Bourne. Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Engineering,
11(9):739–747, 1998.

[23] Q. H. Vu, B. C. Ooi, D. Papadias, and A. K. H. Tung. A graph method
for keyword-based selection of the top-k databases. In SIGMOD, pages
915–926, 2008.

[24] P. Yianilos. Data Structures and Algorithms for Nearest Neighbor Search
in General Metric Spaces. In SODA, pages 311–321, 1993.


