
Learning to Optimize FederatedQueries
Liqi Xu

University of Illinois (UIUC)
liqixu2@illinois.edu

Richard L. Cole
Tableau

ricole@tableau.com

Daniel Ting
Tableau

dting@tableau.com

ABSTRACT
Query optimization is challenging for any database system,
even with a clear understanding of its inner workings. Con-
sider then, query planning for a federation of third-party data
sources where little detail is known. This is exactly the chal-
lenge of orchestrating data execution and movement faced
by Tableau’s cross-database joins feature, where the data of
a query originates from two or more data sources. In this
paper, we present our work on using machine learning tech-
niques to address one of the most fundamental challenges
in federated query optimization: the dynamic designation
of a federation engine. Our machine learning model learns
the performance and data characteristics of a system by ex-
tracting features from query plans. We further extend the
ability of our model to manipulate database settings on a
per query level. Our experimental results demonstrate that
we can achieve a speedup of up to 10.7× compared to an
existing federated query optimizer.
ACM Reference Format:
Liqi Xu, Richard L. Cole, and Daniel Ting. 2019. Learning to Op-
timize Federated Queries. In International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management (aiDM’19),
July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3329859.3329873

1 INTRODUCTION
The proliferation of datasets generated and residing in mul-
tiple sources have increased demand for querying data man-
aged by more than one database. In response to these re-
quests, starting in Tableau 10, the cross-database joins fea-
ture [2] allows users to create connections to more than 60
data sources and directly join datasets across platforms. This
functionality addresses a fundamental requirement for users
that is even more important than fast query performance,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
aiDM’19, July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6802-5/19/07. . . $15.00
https://doi.org/10.1145/3329859.3329873

namely the ability to easily access local and remote data
spread across an organization.

At a high level, the execution of a federated query, a query
with cross-database joins, shares similarities with traditional
query execution: a query plan is generated and then exe-
cuted. In Tableau, this query plan is composed of component
query plans executed on each data source [3]. The compo-
nent results are then combined, e.g., via joins or unions, by
a single data source chosen to be the federation engine. In
such a process, the federation engine relies on individual data
sources to locally optimize their individual plans and hopes
that such a solution also yields a globally performant plan.
However, the selection of the federation engine in Tableau
is static and does not change for different workloads. This
can lead to long runtimes since a poor choice of federation
engine can lead to moving large amounts of data between
data sources or lead to splitting the work amongst the com-
ponents inappropriately.

In traditional databases, the solution would be to create a
global cost model which is evaluated over a set of enumer-
ated query plans. However, this is a challenge for federated
queries as data sources act as black boxes. Furthermore, the
internal cost models of the data sources may be incorrect due
to poor system configurations or not accounting for unique
costs associated with data transfer in federated systems.

In this paper, we present our supervised machine learning
approach on dynamically choosing the federation engine and
optimizing per query tominimize query runtime. This involves
learning a model to predict runtimes as well as partially
enumerating a set of plans that the costs can be evaluated on.
Doing so requires both extracting information out of the data
sources in order to predict runtimes as well as being able to
manipulate the system to evaluate and execute the desired
plans. We achieve this using mechanisms that are readily
available in most database systems, namely through EXPLAIN
PLAN and by sending appropriate hints and settings (e.g.,
enable_nestloop) with the SQL statements themselves.

One of the biggest challenges in federation engine predic-
tion is determining the inputs, or in other words, the features
of our predictive model. Because data sources are installed
in a user’s secure working environment, we cannot directly
access statistics, such as histograms, that are typically used
in cost models. However, using EXPLAIN PLAN allows us to
access a limited number of aggregated statistics and esti-
mates. We examined several feature sets based on these as

https://doi.org/10.1145/3329859.3329873
https://doi.org/10.1145/3329859.3329873

aiDM’19, July 5, 2019, Amsterdam, Netherlands Liqi Xu, Richard L. Cole, and Daniel Ting

well as feature sets based on the SQL texts themselves and
found the following to be useful features for the model: (i) es-
timated foreign cost, i.e., the estimated cost of completing
component query plan on each data source (ii) estimated
transfer size, i.e., the estimated amount of data that needs
transfer from a data source to the federation engine, and
(iii) estimated local cost, i.e., the estimated cost of combining
all results received from each data source on the federation
engine before returning the final results to users.
We evaluated the performance of our approach on both

Join Order Benchmark (JOB) [22] and TPC-H [7] workloads.
We compared our approach against the federation engine
selected directly based on the estimates in traditional query
optimizers. We observed that our approach could achieve
speedups of up to 4.5× and 10.7× for TPC-H and JOB work-
load respectively.
Outline. The chief contribution of this paper is the machine
learning-based approach to optimize federated query execu-
tion. We describe our methodology of representing query
related information and our learning workflow in Section 2.
We present out evaluation setups and demonstrate the per-
formance speedups we can achieve in Section 3. Lastly, we
describe related work in Section 4 and discuss future work
in Section 5.

2 LEARNED FEDERATED QUERY
EXECUTION

In this section, we first provide background information re-
garding federated query processing. We then describe the
feature representation as well as the machine learning work-
flow we use to optimize federated queries.

2.1 Federated Query Execution
A federated query, denoted as q ∈ Q , is a query that retrieves
information from datasets stored on a set of data sources
Dq ⊂ D, where |Dq | > 1. Those data sources are hetero-
geneous systems1 on local or remote servers. To execute a
federated query, we need to designate one data source in
Dq to control and coordinate the manipulation of these data
sources. We call this data source the federation engine for
queryq and denote it as FEq . A federation engine is in charge
of a). generating a federated query plan, b). receiving and
processing data transferred from other data sources, and
c). returning final results to users. An example is shown in
Figure 1.

Choosing a federation engine has a significant impact on
the overall runtime of a federation query. A naive approach
designates the same system as the federation engine for all
queries. Currently, in Tableau, by default the local Hyper
1In this paper, we focus on relational data sources such as Microsoft SQL
Server, Oracle and PostgreSQL.

Figure 1: AnOverview of a Federated Query Execution

[18] instance is always the federation engine. However, this
approach is not optimal in many scenarios. Suppose a query
accesses two tables, one small and one large. If the small
table is stored on the local instance and the large table is
stored on a remote data source, then the current approach
may move the large dataset to Hyper and thus increase the
overall query latency. Instead, amore efficient solutionwould
designate the data source that contains the large dataset as
the alternative federation engine; such an approach avoids
costly data movement across the network and consequently
improves query runtime.
The choice of federation engine can be seen as a query

optimization problem. Given a federated query, we can enu-
merate a set of query plans, one (or more) for using each
possible data source as the federation engine. In some cases,
multiple query plans can be generated per choice of federa-
tion engine through the use of query hints or settings. We
can then choose the data source with the smallest estimated
runtime as the alternative federation engine for the query.
The difficulty of the problem is that there is no reasonable
cost model that can be assumed. While homogeneous sys-
tems can make reasonable assumptions about the relative
costs of different operations, federated systems must deal
with the unknown performance characteristics of each sys-
tem as well as factors, such as network speed, which cannot
be hard coded. Thus, one must learn the cost model.

2.2 Our Machine Learning Approach
Learning a cost model to predict query runtime is challenging
since executing queries to collect training data is expensive.
Thus, it is important to choose a limited number of features
that are highly informative. Furthermore, these features must
be computable from the limited knowledge available from
the data sources.
Our approach is to generate a set of candidate queries

and use the results of an EXPLAIN PLAN for the data sources.
This allows us to indirectly access statistics in a way that
is readily available in many database systems. Furthermore,
this effectively allows us to perform query plan enumeration
over a much larger set than the federation engine would

Learning to Optimize FederatedQueries aiDM’19, July 5, 2019, Amsterdam, Netherlands

otherwise be able to do by itself. As each of the data sources
performs query optimization for its portion of work, each
enumerates a set of query plans and performs an initial prun-
ing based on its knowledge of local costs. The federation
engine takes this small set of good candidates from the set
of all enumerated queries and evaluates the cost of the can-
didates. This accounts for global costs that data sources are
not aware of, as well as the heterogeneity of the data sources.
The absolute scales of component cost estimates are not di-
rectly comparable due to differences in hardware capabilities
and the software. This approach can also provide a means to
mitigate the effects of a poor cost model in data sources.
Feature Representation. A federated query plan, gener-
ated by a query optimizer, specifies both partial execution
details on each remote data source and the final steps exe-
cuted on the federation engine. Figure 2 depicts an example
of a federated query plan using a query in Join Order Bench-
mark [22]. Here, we distribute datasets required to answer
this query on three data sources and designate d1 as the fed-
eration engine. In this example, we first join tablemk with
k , cn withmc respectively on d3 and only move the partial
results to d1. On the other hand, we directly scan table t
on d2 and move all tuples in t to d1. Note that, even for the
same query, using a different data source as the alternative
federation engine will result in entirely different query plans.

Figure 2: An Example of a Federated Query Plan

The model features we can extract from a federated sys-
tem are limited. We choose a generic mechanism to obtain
features by parsing the results of EXPLAIN PLANs. Given
a federated query plan, we extract three types of features:
(i) the estimated foreign costs F , (ii) the estimated transfer
sizes T , and (iii) the estimated local cost l . The foreign costs
and transfer sizes are computed per data source and directed
pair of data sources respectively. These choices target spe-
cific areas where the query optimizer’s cost model is likely to
have gross errors. These include network costs and foreign
costs, both which involve network links and hardware that
can vary significantly among machines.

We define each fi ∈ F as the total estimated cost of all op-
erators processing on each foreign data source di . Similarly,

we define each ti ∈ T as the total volume of data that must
be moved from di to the federation engine via the network.
Each ti is calculated as the total number of estimated rows
returned at di multiplied by the estimated size in bytes of the
returned rows. Last but not least, we define the local cost l
as the total estimated cost executed on the federation engine.
Examples of this cost include the costs that result from scan
and join operators that are local to the federation engine.
Workflow and Model. To train a model, we generate mul-
tiple SQL queries which add information designating the
federation engine and other query settings. We then collect
the query plan generated by the query optimizers for each
of these and extract the machine learning features from the
statistics contained in each plan. We generate training data
containing the features and the actual runtimes for a set
of queries that have been executed. We then fit a random
forest regression model (RF) to predict actual runtimes. We
fit separate RFmodels for different query settings as they can
drastically change performance characteristics. This is equiv-
alent to introducing a feature encoding the query setting and
fully interacting it with all other feature variables.
When a new query comes in, we first extract features

from the query plans using each of the data sources as the
federation engine. Note that these query plans are obtained
without physically running the plan2. We select the alterna-
tive federation engine and system setting according to the
runtime predicted by the model.
We initially evaluated random forests, linear SVMs, and

linear regression models while treating the problem as both
a regression problem for predicting the actual runtime as
well as a classification problem for predicting the best query
plan. We found that random forests were more robust and
the regression formulation was more useful in decreasing
overall runtime as the best two plans could have very simi-
lar runtimes. We also experimented with including features
based on the SQL text itself and a few other statistics such
as the estimated number of rows returned by an operator. In
each case, we found that they did not improve predictions
given the data sizes available to us. This suggests that, locally,
each data source appropriately combines raw statistics, and
a machine learning model does not find gross errors that it
can correct for given just these statistics.

3 PERFORMANCE EVALUATION
In this section, we evaluate the performance of our machine
learning method on the ability to improve query runtime.

2 Collecting query plans is not entirely free, primarily due to join order
optimization, e.g., JOB has up to 16 joins. Also, optimizing federated query
plans requires communication with remote data sources to optimize their
query plan fragments. In our experiments, the median time to optimize
federated queries in TPC-H and JOB was 0.5 and 1.8 seconds respectively.

aiDM’19, July 5, 2019, Amsterdam, Netherlands Liqi Xu, Richard L. Cole, and Daniel Ting

We show that our approach consistently outperforms the
approach that uses the query optimizer’s cost model to se-
lect the federation engine and system settings on various
workloads.

3.1 Experimental Setting
Federation System Setup. Our experiments were run on
a federation of three PostgreSQL servers. Servers pa1 and
pa2 were located in Palo Alto, while the third server, sea,
was located in Seattle. Every pa server was a 20-core ma-
chine with 32 GB memory while sea server was a 16-core
machine with 197 GB memory. Therefore, as shown in Table
1, network metrics vary significantly and are asymmetric
with respect to source and destination. All machines were
running CentOS Linux 7 and PostgreSQL v10.4 [5].

Server to Server Bandwidth (Mbits/sec) Ping (ms)
pa2 → pa1 941 0.2
pa1 → pa2 941 0.6
sea → pa1 543 41.1
sea → pa2 248 44.0
pa2 → sea 194 45.2
pa1 → sea 171 39.3
Table 1: Network Metrics by Bandwidth and Ping

PostgreSQL supports federated query execution via a For-
eign DataWrapper (FDW) [4]. When a user issues a federated
query using one server as the federation engine, FDW gener-
ates a federated query plan based on its internal cost model.
Each federated query plan is very similar to a query plan on
a single server. It specifies the physical query operators as
well as the execution order. More importantly, it orchestrates
the data movement across the network by deciding which
parts of the query to execute on remote and local server
respectively. Even for the same query, the federated query
plans are different when designating a different server as the
federation engine.
Workloads. We used two workloads, the Join Order Bench-
mark (JOB) and the TPC-H benchmark. JOB uses a snapshot
of data from the Internet Movie Database (IMDb), 3.6 GB as
CSV files. There are 113 unique queries with between 3 and
16 joins. The TPC-H benchmark was run at scale factor 1, i.e.,
1 GB as CSV files. The TPC-H query workload consisted of
10 streams of the 22 standard benchmark queries, for a total
of 207 unique queries3.
Our experiments used a fixed assignment of tables to

servers as listed in Tables 2 and 3 respectively. This approach
reflects the distributed ownership of data that is common
even within a single organization. However, this framework
3Stream generation in TPC-H does not guarantee uniqueness across all
streams, hence 207 unique queries rather than 220.

easily supports alternative table assignments or experiments
to optimize table assignment.

Server Tables
pa1 complete_cast, comp_cast_type, link_type

movie_info, movie_info_idx, movie_link
title

pa2 aka_title, company_name, company_type
keyword, kind_type, movie_companies
movie_keyword

sea aka_name, cast_info, char_name, info_type
name, person_info, role_type

Table 2: JOB Table Assignment to Servers

Modeling and Metrics. To obtain experimental datasets,
we ran every federated query on each of its data sources
and collected query plans as well as actual query runtime.
We extracted features from those query plans as described
in Section 2, and used actual query runtime as our training
labels. We prevented long running queries by setting a state-
ment timeout of 120 minutes for both JOB and TPC-H. For
those timeout queries, we approximated their actual time as
twice the timeout value. Moreover, for each federated query,
we noted the data source with the smallest actual runtime
as the best federation engine (Best) of that query.

Server Tables
pa1 lineitem, orders
pa2 part, partsupp
sea customer, nation, region, supplier
Table 3: TPC-H Table Assignment to Servers

To evaluate the ability of our model to reduce runtime, we
used 5-fold cross validation. Within each fold, we trained on
80% of the queries and predicted the runtime and chose the
predicted best query plan for the remaining 20% of queries.
(These are the original JOB and TPC-H queries without fed-
eration engine selection.) We compared our random forest
(RF) method against the federated query optimizer (QO). QO
made decisions directly based on cost estimates returned by
the query optimizer.

We compared the performance of RFwith the QO on query
runtime. Specifically, we computed the relative runtime dif-
ference.We define the relative runtime difference of amethod
M to be the actual runtime difference between M and the
best plan divided by the runtime of the best plan. This dif-
ference is zero if the selected federation engine and query
settings for methodM are the optimal ones.

Learning to Optimize FederatedQueries aiDM’19, July 5, 2019, Amsterdam, Netherlands

(a) Tuning Nested Loop

TPC-H JOB

Best 3.7 10.8
QO 16.9 1, 591.2
RF 3.7 149.1

(b) Default System Setting

TPC-H JOB

Best 14.6 54.5
QO 16.9 1, 591.2
RF 15.2 970.0

Table 4: Average Query Runtime (in seconds) for TPC-H
and JOB Workloads

3.2 Prediction Evaluation
We first evaluated the effectiveness of RF on both federation
engine selection and choosing query settings. We investi-
gated specifically on query optimizer’s enable_nestloop
parameter, due to its significant impact on varying query
runtime and plans.
This results in 6 possible query plans, 3 from the choice

of federation engine times 2 choices on whether to enable
nested loop joins. In our RF method, we collected the ac-
tual runtime for each query with nested loop on and off
respectively. We then trained two separate models, one for
nested loop enabled and another for nested loop disabled. At
the testing phase, we predicted both federation engine and
nested loop status based on the runtime estimated from all
six possible cases. In this experiment, there were 152 out of
207 TPC-H queries and 66 out of 113 JOB queries that had
the fastest query runtime with nested loop enabled. We re-
ported the average runtime per query for both TPC-H and
JOB workloads in Table 4(a). We also depicted the relative
runtime difference in Figure 3 in log scale.
For TPC-H, RF achieved query runtime almost as fast as

the best we could achieve, and had a speedup of 4.5× com-
pared to QO. For the JOB workload, even though 6.2% of
data points had an imputed training label due to timeouts,
RF still significantly outperformed QO with a speedup of
10.7×. This result was because our model was able to intel-
ligently decide the status of nested loop setting, while QO
always estimated that enabling nest loop was the best choice.
Moreover, we observed that the median of relative runtime
difference for RF and QO is 0.5 and 1.3 respectively, while
the 95th percentile of relative runtime difference for RF and
QO is 6.0 and 692.0 respectively. These results demonstrate
that RF can effectively learn to make better predictions from
the estimates and consistently reduce the runtime compared
to the federated query optimizer.

3.3 Default System Setting
We further evaluated the performance of RF over the default
federated systems setting. Here, we trained our model on
data points where nested loop was on and only predicted the
federated engine among three data source candidates. We

Model Optimizer
0

10
1

R
el

at
iv

e
R

un
tim

e
D

iff
er

en
ce

(a) TPC-H workload

Model Optimizer
0

10
1

10
3

R
el

at
iv

e
R

un
tim

e
D

iff
er

en
ce

(b) JOB workload

Figure 3: Relative Runtime Difference – The box
boundary represents the 25th and 75th percentiles
while the whisker represents the 95th percentiles of
the distribution.

Model Optimizer
0

10
1

R
el

at
iv

e
R

un
tim

e
D

iff
er

en
ce

(a) TPC-H workload

Model Optimizer
0

10
1

10
3

R
el

at
iv

e
R

un
tim

e
D

iff
er

en
ce

(b) JOB workload

Figure 4: Relative Runtime Difference with Nested
Loop Enabled

show the average query runtime in Table 4(b) and relative
runtime difference of this experiment in Figure 4.
For JOB queries, RF had a speedup of 1.64× compared

to QO, or on average 10 minutes faster than QO per query.
Moreover, the mean percentile of relative runtime difference
for RF was 0.17, smaller than the mean percentile (0.5) in
Section 3.2. Recall that this model was only trained on a
relatively small dataset with 270 data points on average. On
the other hand, RF was slightly better than QO on the TPC-H
workload, achieving a speedup of 1.11× and a speedup of
3.83× with respect to Best.
Finally, we analyzed the importances of RF features for

JOB queries over the default system settings. The overall
importance of the three classes of RF features, estimated for-
eign costs, estimated transfer sizes, and estimated local cost,
were 0.50, 0.25, and 0.25 respectively. All three feature classes
were important to the RFmodel, with estimated foreign costs
being the most important.

4 RELATEDWORK
In this section, we discuss prior work related to this paper.
Data Federations. There are many prior examples of re-
search into data federations that involve some measure of
query optimization [11, 14, 26, 27, 29]. Notably Garlic [26]
uses a wrapper architecture to provide cost and cardinality
information of remote data sources, extending classic query
optimization techniques to federated data. More recent work
in the context of Spark SQL [10], Presto [6], and System-
PV [17] support distributed SQL processing on remote data

aiDM’19, July 5, 2019, Amsterdam, Netherlands Liqi Xu, Richard L. Cole, and Daniel Ting

sources using connector architectures. Generally these sys-
tem have at least basic query optimizations to push some
query processing to the remote data source, with System-PV
having two phases of query optimization, a global optimiza-
tion phase and one specialized for the remote data. The em-
phasis is on mediating differences in the data models and
their query languages. The same can be said for Polystores
[8, 12, 28, 31].
Of these, the work that has some similarity to ours is

RHEEM [8], which extends classic cost-based query opti-
mization to multiple data sources by incorporating a priori
detailed knowledge of their operators and using simple lin-
ear regression to calibrate cost model functions of individual
query operators. The approach reimplements the functional-
ity, including cardinality estimation and cost modeling, of
remote data sources’ query optimizers. We instead leverage
existing database optimizers under the presumption that
they can perform better local optimizations than ourselves,
and we exploit mechanisms that require minimal knowledge
of the inner working of data sources.
Finally, a related area is that of multi-model databases,

e.g., Oracle, Drill [15], and AsterixDB [1], to name just a
few. These systems do optimize queries for multiple data
models; however, they are not federated systems. To sum up,
except where stated otherwise, the emphasis of this body of
work is on managing and specializing for the heterogeneity
of the data sources rather than significantly orchestrating
data execution and data movement. Additionally, none of
these systems use machine learning (except RHEEM) to opti-
mize the choice of federation engine or manipulate database
settings on a per query level.

Machine Learning in Database Systems. Machine learn-
ing techniques have been applied to a number of problems
and components in database systems. One fundamental prob-
lem is predicting the performance of a query. Ganapathi et
al. [13] use Kernel Canonical Correlation Analysis (KCCA)
model to estimate multiple metrics of interest including
query runtime, records used, disk I/O and message bytes. For
85% of their test queries, the predicted runtime is within 20%
of the actual query runtime. Akdere et al. [9] further improve
query runtime prediction by constructing finer-grained fea-
tures and training prediction models at the operator level. Ex-
amples of other machine-learning based predictions in data-
base systems include query cardinality estimation [19, 24]
and resource estimation [23]. These predictions can be used,
for example, in database tuning [30] or learned index struc-
tures [20]. Machine Learning has also been used to improve
query execution. Cuttlefish [16] provides a system that adap-
tively tunes a query plan’s operators using multi-armed ban-
dit techniques. [21] and [25] apply deep learning for better
query plan enumeration.

Although tied together by the common theme of machine
learning, each task faces significantly different challenges
involving the inputs available to the methods, the size of the
training data, and the actions that can be taken. For example,
join order enumeration tasks are able to generate large train-
ing data sets since they do not run the actual query plans.
They only require the relatively fast cost estimates from the
query optimizer. Pure prediction tasks do not address what
actions can be taken by a system. Our work examines the
problem of improving query runtimes in federated query
processing systems. This task involves both prediction of
query runtimes and taking actions that can improve them.
As these systems can be heterogeneous, a static cost model
that cannot take into account the different data sources, net-
work topology, and other factors can grossly misestimate
costs. Furthermore, any machine learning system only has a
limited amount of information available to it as inputs and
a limited number of actions it can take. Our work shows
that by exploiting common query plan features and manipu-
lating a few database settings on a per query level, we can
enumerate a small number of candidate query plans and
use machine learning to choose among them to significantly
improve performance.

5 CONCLUSIONS AND FUTUREWORK
In conclusion, we showed that simple machine learning tech-
niques can significantly improve query performance, com-
pared to the federated PostgreSQL query optimizer, when
choosing alternative federation engines in a federation of
data sources. We evaluated these techniques using JOB and
TPC-H workloads on both federation engine selection and
choosing query settings. Our machine learning model im-
proved query runtime, in some cases up to the best possible
runtime where every query was assigned to its ideal federa-
tion engine with the best possible query settings.

In the future, we plan to conduct more performance eval-
uations, including varying the assignment of tables to data
sources, evaluating additional workloads (e.g., TPC-DS and
workloads from Tableau), using a federation of data sources
besides PostgreSQL, and the ability tomanipulatemore query
settings given limited data. Additionally, there are several
interesting research directions we intend to pursue. First of
all, we plan to extend our methodology to broader use cases.
For example, rather than limiting plans to using a single
federation engine that all data sources communicate with,
we consider using multiple engines to further orchestrate
query plans. We also want to consider alternative machine
learning goals, such as optimizing for robustness rather than
best performance and accounting for uncertainty in the pre-
dictions.

Learning to Optimize FederatedQueries aiDM’19, July 5, 2019, Amsterdam, Netherlands

REFERENCES
[1] 2019. Apache AsterixDB. (2019). Retrieved 2019-03-18 from https:

//asterixdb.apache.org/
[2] 2019. Integrate your data with cross-database joins in Tableau 10.

(2019). Retrieved 2019-03-12 from https://www.tableau.com/about/
blog/2016/7/integrate-your-data-cross-database-joins-56724

[3] 2019. Join Your Data - Tableau. (2019). Retrieved 2019-03-
12 from https://onlinehelp.tableau.com/current/pro/desktop/en-us/
joining_tables.htm#about-queries-and-crossdatabase-joins

[4] 2019. PostgreSQL: Documentation: 10: F.34.Âăpostgres_fdw.
(2019). Retrieved 2019-03-06 from https://www.postgresql.org/docs/
10/postgres-fdw.html

[5] 2019. PostgreSQL: The world’s most advanced open source database.
(2019). Retrieved 2019-03-06 from https://www.postgresql.org/

[6] 2019. Presto | Distributed SQL Query Engine for Big Data. (2019).
Retrieved 2019-03-18 from http://prestodb.github.io/

[7] 2019. TPC-H - Homepage. (2019). Retrieved 2019-03-16 from http:
//www.tpc.org/tpch/

[8] Divyakant Agrawal, Sanjay Chawla, Bertty Contreras-Rojas, Ahmed K.
Elmagarmid, Yasser Idris, Zoi Kaoudi, Sebastian Kruse, Ji Lucas, Essam
Mansour, Mourad Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz,
Nan Tang, Saravanan Thirumuruganathan, and Anis Troudi. 2018.
RHEEM: Enabling Cross-Platform Data Processing - May The Big
Data Be With You! -. PVLDB 11 (2018), 1414–1427.

[9] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stan-
ley B Zdonik. 2012. Learning-based query performance modeling and
prediction. In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on. IEEE, 390–401.

[10] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin,
Ali Ghodsi, et al. 2015. Spark sql: Relational data processing in spark.
In Proceedings of the 2015 ACM SIGMOD international conference on
management of data. ACM, 1383–1394.

[11] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly
Ireland, Yannis Papakonstantinou, Jeffrey Ullman, and Jennifer Widom.
1994. The TSIMMIS project: Integration of heterogenous information
sources. (1994).

[12] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magdalena
Balazinska, Bill Howe, Jeremy Kepner, Samuel Madden, David Maier,
Timothy G. Mattson, and Stanley B. Zdonik. 2015. The BigDAWG
Polystore System. SIGMOD Record 44 (2015), 11–16.

[13] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener,
Armando Fox, Michael Jordan, and David Patterson. 2009. Predicting
multiple metrics for queries: Better decisions enabled by machine
learning. In Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on. IEEE, 592–603.

[14] Laura Haas, Donald Kossmann, Edward Wimmers, and Jun Yang. 1997.
Optimizing queries across diverse data sources. (1997).

[15] Michael Hausenblas and Jacques Nadeau. 2013. Apache Drill: Interac-
tive Ad-Hoc Analysis at Scale. Big data 1 2 (2013), 100–4.

[16] Tomer Kaftan, Magdalena Balazinska, Alvin Cheung, and Johannes
Gehrke. 2018. Cuttlefish: A lightweight primitive for adaptive query
processing. arXiv preprint arXiv:1802.09180 (2018).

[17] Manos Karpathiotakis, Avrilia Floratou, Fatma Özcan, and Anastasia
Ailamaki. 2017. No data left behind: real-time insights from a com-
plex data ecosystem. In Proceedings of the 2017 Symposium on Cloud
Computing. ACM, 108–120.

[18] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid
OLTP&OLAP main memory database system based on virtual memory
snapshots. In 2011 IEEE 27th International Conference on Data Engi-
neering. IEEE, 195–206.

[19] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A.
Boncz, and Alfons Kemper. 2019. Learned Cardinalities: Estimating
Correlated Joins with Deep Learning. In CIDR. www.cidrdb.org. http:
//cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[20] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The case for learned index structures. In Proceedings of the 2018
International Conference on Management of Data. ACM, 489–504.

[21] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein,
and Ion Stoica. 2018. Learning to Optimize Join Queries With Deep
Reinforcement Learning. (2018). arXiv:cs.DB/1808.03196

[22] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons
Kemper, and Thomas Neumann. 2015. How good are query optimizers,
really? Proceedings of the VLDB Endowment 9, 3 (2015), 204–215.

[23] Jiexing Li, Arnd Christian König, Vivek Narasayya, and Surajit Chaud-
huri. 2012. Robust estimation of resource consumption for sql queries
using statistical techniques. Proceedings of the VLDB Endowment 5, 11
(2012), 1555–1566.

[24] Tanu Malik, Randal C Burns, and Nitesh V Chawla. 2007. A Black-Box
Approach to Query Cardinality Estimation.. In CIDR. 56–67.

[25] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement
Learning for Join Order Enumeration. In Proceedings of the First In-
ternational Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, aiDM@SIGMOD 2018, Houston, TX, USA, June
10, 2018, Rajesh Bordawekar and Oded Shmueli (Eds.). ACM, 3:1–3:4.
https://doi.org/10.1145/3211954.3211957

[26] Mary Tork Roth, Laura M Haas, and Fatma Ozcan. 1999. Cost models do
matter: Providing cost information for diverse data sources in a federated
system. IBM Thomas J. Watson Research Division.

[27] Mary Tork Roth and Peter M Schwarz. 1997. Don’t Scrap It, Wrap It!
A Wrapper Architecture for Legacy Data Sources.. In VLDB, Vol. 97.
25–29.

[28] Ran Tan, Rada Chirkova, Vijay Gadepally, and Timothy G Mattson.
2017. Enabling query processing across heterogeneous data models: A
survey. In 2017 IEEE International Conference on Big Data (Big Data).
IEEE, 3211–3220.

[29] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. 1998. Scaling
access to heterogeneous data sources with DISCO. IEEE Transactions
on knowledge and Data Engineering 10, 5 (1998), 808–823.

[30] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang.
2017. Automatic database management system tuning through large-
scale machine learning. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1009–1024.

[31] Jingjing Wang, Tobin Baker, Magdalena Balazinska, Daniel Halperin,
Brandon Haynes, Bill Howe, Dylan Hutchison, Shrainik Jain, Ryan
Maas, Parmita Mehta, Dominik Moritz, Brandon Myers, Jennifer Ortiz,
Dan Suciu, Andrew Whitaker, and Shengliang Xu. 2017. The Myria
Big Data Management and Analytics System and Cloud Services. In
CIDR.

https://asterixdb.apache.org/
https://asterixdb.apache.org/
https://www.tableau.com/about/blog/2016/7/integrate-your-data-cross-database-joins-56724
https://www.tableau.com/about/blog/2016/7/integrate-your-data-cross-database-joins-56724
https://onlinehelp.tableau.com/current/pro/desktop/en-us/joining_tables.htm#about-queries-and-crossdatabase-joins
https://onlinehelp.tableau.com/current/pro/desktop/en-us/joining_tables.htm#about-queries-and-crossdatabase-joins
https://www.postgresql.org/docs/10/postgres-fdw.html
https://www.postgresql.org/docs/10/postgres-fdw.html
https://www.postgresql.org/
http://prestodb.github.io/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://arxiv.org/abs/cs.DB/1808.03196
https://doi.org/10.1145/3211954.3211957

	Abstract
	1 Introduction
	2 Learned Federated Query Execution
	2.1 Federated Query Execution
	2.2 Our Machine Learning Approach

	3 Performance Evaluation
	3.1 Experimental Setting
	3.2 Prediction Evaluation
	3.3 Default System Setting

	4 Related Work
	5 Conclusions and Future Work
	References

