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ABSTRACT
Cardinality estimation plays an important role in processing

big data. We consider the challenging problem of computing

millions or more distinct count aggregations in a single pass

and allowing these aggregations to be further combined

into coarser aggregations. These arise naturally in many

applications including networking, databases, and real-time

business reporting. We demonstrate existing approaches to

solve this problem are inherently flawed, exhibiting bias that

can be arbitrarily large, and propose newmethods for solving

this problem that have theoretical guarantees of correctness

and tight, practical error estimates.

This is achieved by carefully combining CountMin and

HyperLogLog sketches and a theoretical analysis using sta-

tistical estimation techniques. These methods also advance

cardinality estimation for individual multisets, as they pro-

vide a provably consistent estimator and tight confidence

intervals that have exactly the correct asymptotic coverage.
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1 INTRODUCTION
Distinct count aggregations are particularly important but

costly statistics for database applications. As a result, approx-

imate distinct counting sketches have enjoyed widespread

adoption in databases and in other applications. These enable

arbitrarily large distinct counts to be computed in a single
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pass with just a few kilobytes and errors under 1%. However,

a number of applications require instantiating many coun-

ters, sometimes in the billions and beyond. In such cases,

even a few kilobytes for every counter is too much.

These cases arise whenever aggregate statistics must be

computed for a large number of subgroups or datasets. For

example, networking applications may compute the num-

ber of distinct flows per destination IP [16] to detect DDoS

attacks. A web search engine may compute the number of

distinct users that have used a word in a query or clicked on

a search result, or web advertisers may wish to know how

many distinct users have seen each of their ads [24]. The use

cases include a broad range of applications and are not re-

stricted to reporting. For example, [2] estimate the diameter

of a large social network by computing the number of distinct

users d relationships away. In each case, billions of distinct

counts are computed with cardinalities that can also reach a

billion and beyond. These cases can occur for non-web scale

data as well. A group-by clause with multiple categorical

columns can generate exponentially many counters in the

number of columns. Similarly, in OLAP cube applications,

the number of vertices of the cube grows exponentially as

more possible breakdowns are admitted.

Although the problem of approximating a single distinct

count is well-studied, few methods [9, 35] do so when the

number of distinct counters explodes. We show these meth-

ods can suffer severe deficiencies in performance, and these

deficiencies appear when applied to real data sets. Further-

more, there are limited error guarantees and no way to detect

when the performance is poor. This makes it difficult or im-

possible to build systems where engineers can be guaranteed

that performance will be acceptable for their workloads and

users can be assured that the results can be trusted.

This work addresses these deficiencies, yielding sketches

and distinct count estimators which dominate previous ones

in accuracy while still maintaining a fixed size and O(1) up-
dates. For each, we obtain guarantees that the approximated

counts converge to the truth, and derive tight confidence

intervals that deliver almost exactly the promised coverage.

We also consider the problem of merging counters, both

across sketches and within a single sketch. This allows the

functionality of the sketch to be close to that of storing

individual distinct counting sketches. We discuss practical
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implementation issues including the choice of sketch pa-

rameters and tradeoffs in terms of functionality, theoretical

guarantees, and reduction of noise. Our work also applies

to cardinality estimation on a single dataset. It yields a new

state-of-the-art estimator that requires no empirical bias cor-

rection and is the first to provide tight error estimates over

the entire range of cardinalities.

1.1 Related Work
Past work has extensively studied the problem of approx-

imately computing the cardinality, or number of distinct

items, in a single dataset as well as the problem of approxi-

mately computing a non-distinct count for many multisets

keyed by some label. For estimating a single cardinality, many

methods exist such as Probabilistic Counting (PCSA) [18],

Linear Probabilistic Counting [34], HyperLogLog (HLL) [17],

Multiresolution Bitmap [16]. While there continues to be

research on improving these sketches [7, 15, 19, 21, 29], the

possible gains in improving single multiset cardinality es-

timators appear limited. The optimal space complexity has

been achieved [20]. Other theoretical results give optimal es-

timators with the best possible constants for any sketch [29],

and information theoretic results provide lower bounds on

the space occupied by a sketch construction [21]. Thus, there

is little room for improvement when estimating large counts.

For small counts, approaches using sparse representations

[19] can significantly reduce space usage.

When there are many multisets keyed by some label,

CountMin [12] and theAlon-Gibbons-Matias-Szegedy (AGMS)

sketch [1, 11, 28] address the problem of approximately com-

puting non-distinct counts for each label. Like the distinct

counting results, [31] provide a provably optimal estimator

for the CountMin sketch. If only large counts are of inter-

est, frequent item sketches such as Misra-Gries [26], Space-

saving [25], Lossy counting [23], and RAP [3] can provide

both a estimated list of frequent items and counts.

These counting sketches can provide some ability to per-

form further aggregation as well since any counting sketch

can approximate the count over multiple labels as long as

the labels can be enumerated. If the labels cannot be enumer-

ated, for example when the aggregation is over an unknown

universe of labels that match some filter condition, Unbiased

Space Saving [32] can be used.

This paper addresses the problem of estimating distinct

counts for many multisets and allowing for further aggrega-

tions when the labels can be enumerated. We call this the

many distinct count problem. Although a few past works

[9, 35] have proposed solutions by combining distinct count-

ing sketches with counting sketches, sections 6 and 7 show

these past solutions are inefficient and can be highly biased.

Other approaches use coordinated or hash based sampling

[8]. Since these can store actual samples, filtering, grouping,

aggregation, and other set operations can be simple to per-

form [5, 30]. However, these sketches require an order of

magnitude more space to achieve the same error as a Hy-

perLogLog sketch for single multiset cardinality estimation.

Furthermore, a cardinality estimate for a small subset still

requires scanning the entire sketch and can result in high

computational costs.

1.2 Many Distinct Count Problem
Consider a streamD of (item, label) pairs (x1, ℓ1), . . . , (xT , ℓT )
and the following queries that define the many distinct count

problem.

• A pointwise count distinct query takes a label ℓ and
returns the number nℓ of distinct items with label ℓ.
We write Xℓ to be the set of items with label ℓ.
• An aggregate count distinct query takes a collection

of labels ℓ1, . . . , ℓc and returns | ∪ci=1 Xℓi |, the number

of distinct items that match any label in the collection.

• The total count distinct query returns the total number

of distinct items in the stream irrespective of the labels.

In terms of SQL, these span queries of the form

SELECT count(distinct x)
FROM table
WHERE label in (...)

where ... represents some list of labels or the case where

the in clause is omitted entirely.

Denote by L the universe of distinct labels. We consider

the regime where both the number of distinct items ntot
and the number of distinct labels |L| are large. We wish to

construct a sketch C that has the following properties.

• C has bounded size.

• It provides approximate answers to all 3 types of queries.

• The estimators converges to the truth.

• It provides tight error estimates.

• Merging with sketch C ′ computes a union of datasets.

2 OVERVIEW
Although our paper addresses an important problem for

databases, it employs statistical techniques that may not

be familiar to the database researcher. We briefly introduce

some of these statistical ideas. The confident reader may skip

this section and revisit it as a summary. A table of symbols

is provided in the appendix for reference.

Like other approximate distinct counting methods, our

method relies on transforming a stream into a random pro-

cess where the parameters of the distribution are the car-

dinalities. Cardinality estimation thus becomes a statistical

parameter estimation problem where one wishes to infer the

parameters θ that yield the true data generating distribu-

tion p(Sketch|θ ). Unlike most statistical estimation problems



that require strong, unverifiable assumptions about the true

model, in other words the functional form of p(Sketch|θ ), the
true model can be derived from the sketch construction.

Under this viewpoint, sketching algorithms can be split

into two parts: construction, which is about designing the

observable data i.e. the sketch, and estimation, which extracts

information from the sketch by applying the appropriate

statistical machinery. These can be further decomposed into

the following steps.

• Sketch design

• Distribution identification

• Parameter estimation

• Error estimation

Construction

Estimation

We cover these in reverse order since the design of good

constructions is informed by a reducation of the estimation

problem to a distribution identification problem. For those

interested only in estimation for HLL sketches, section 3 on

estimation is self-contained.

2.1 Estimation overview
Using existing statistical machinery for estimation provides

several benefits. First, the methods typically come with the-

oretical guarantees. The most basic guarantee is consistency,

or convergence to the truth. Second, they often provide tight

error estimates. Third, many statistical methods are asymp-

totically efficient. They not only have an optimal error rate,

but they attain the best possible constant governing that

rate. Fourth, the methods are general. They can be applied

to multiple sketch constructions with minor modifications.

A standard approach for statistical estimation is to ap-

ply maximum likelihood estimation. The likelihood function

L(θ ;Data) = p(Data |θ ) reinterprets the probability function

as a function of the parameters rather than data. The data

is fixed to be the observed data. The maximum likelihood

estimate (MLE) is the cardinality under which the data has

the highest probability of being observed. It plays a pivotal

role in statistics as the likelihood principle [4] states that all

information about the parameter is contained in the likeli-

hood and the MLE is asymptotically efficient under some

regularity conditions. Unfortunately, maximum likelihood

cannot be applied in our cases as the likelihood function

is intractable to compute. However, our procedure follows

the same simple paradigm. Maximize a objective function

measuring the goodness of an estimate. Base it on the true

probability so that it is guaranteed to converge to the truth.

The particular method we use is composite marginal like-

lihood. This reduces the problem of estimation to that of

computing the univariate, also known as marginal, distribu-

tion for each sketch entry. Summing over the observations

gives the marginal likelihood and our objective function. De-

riving these marginal distributions through operations on

cumulative distribution functions (cdfs) and empirical cdfs

is a major component of this paper. The cdf F of a random

variable X is defined by F (x) := P(X ≤ x). It fully char-

acterizes a distribution since p(X = x) = F (x) − F (x − 1)

when X is integer valued, so we refer to a distribution in-

terchangeably with its cdf. The empirical cdf is the cdf of

the observed data, which is a random draw from the true

underlying distribution.

2.2 Construction overview
We propose a pair of sketch constructions that combine the

distinct counting abilities of HyperLogLog (HLL) with the

counter compression abilities of CountMin. Both our and

existing sketches are equivalent to first generating separate

HLL sketches, one for each label, and then projecting them

into a much smaller set of entries in a compressed sketch.

The differences among constructions are small. Every con-

struction uses random hash functions and generates the

same uniform distribution over registers and geometric dis-

tribution for the value for an (item, label) pair. However, by

varying the inputs to the hash functions, they introduce dif-

ferent dependencies among data points. These small changes

have significant impact on the properties of the sketch.

The main challenge of the construction phase is identify-

ing the marginal distribution of sketch entries. This is needed

for our composite likelihood estimator. The exact distribution

is impossible to compute since it depends on the unknown

cardinality of every label. The critical idea which enables us

to identify the distribution is decomposing each sketch entry

Ci = Si ∧ ϵi into independent signal Si and error terms ϵi
with respect to a given label ℓ. Here x ∧ y := max{x ,y} and
the signal Si corresponds to the ith entry of a HLL sketch

constructed just from items with label ℓ.
We can then circumvent the problem of an intractable ex-

act error distribution by empirically estimating the indepen-

dent error distribution from the sketch itself. Our estimators

are non-parametric which means that there are no assump-

tions on the distribution of the cardinalities that might limit

the resulting estimates’ validity to a certain set of cases.

2.3 Asymptotics and assumptions
Although most of our theoretical results are asymptotic, they

often accurately predict the finite sample behavior when the

asymptotic regime mimics realistic scenarios. This is a gen-

eral characteristic of many statistical estimation methods for

problems with few parameters. The experiments in section 7

validate this. In contrast, guarantees derived from probabil-

ity inequalities typically provide only a rate or an extremely

loose bound which may not be of practical use.

The asymptotic regime we consider mimics the case where

the sketch is large but the number of labels and items per



sketch entry is modest in size. More precisely, we consider

the case where for sequence of sketches that are d ×w arrays

and some constants λℓ

d →∞ (1)

nℓ/d → λℓ for all ℓ ∈ L. (2)

The number of labels |L| is either fixed or |L|/w → ρ as

w → ∞ for some constant ρ > 0. When |L| → ∞, we

assume the set for each label is an independent draw from

some distribution Γ over sets. We will call the regime where

|L| is fixed to be the standard asymptotic regime. When

|L| → ∞, we refer to it as the width increasing regime.

The regimes we consider avoid easy cases such as when the

sketch grows faster than the number of items, as well as cases

where one can exploit unrealistic asymptotic normality, such

as the case when the number of labels per sketch entry goes

to infinity.

In this regime, we are primarily concerned with consis-

tency of the estimator N̂ . Specifically we show convergence

in probability N̂ℓ/d
p
→ λℓ to the truth. Equivalently, the

relative error (N̂ℓ − nℓ)/nℓ
p
→ 0. We also give distributional

convergence results that provide error estimates. These nat-

urally imply that the estimators achieve the standard, and

optimal, rate of convergence for parametric problems of

O(1/
√
d).

Throughout, we assume that all hashes used are universal

in the sense that for a random hash function h and for the

data {Xi }, their hashed values {h(Xi )} are a collection of

independent, identically distributed (i.i.d.) random variables.

This independence property may thus be a property of the

hash function, of the data, or both.

3 ESTIMATION AND
COMPOSITE-LIKELIHOOD

We first cover cardinality estimation using composite likeli-

hood methods and use the HLL sketch [17] as an example.

In particular, we use composite marginal likelihood which

reduces the problem of cardinality estimation to that of com-

puting the marginal probability of an individual sketch entry.

While HLL has a particular parametric form for this mar-

ginal probability, the calculations in this section apply to

other sketch constructions without modification. The only

difference is that the marginal cumulative distribution func-

tion (cdf) for HLL entries is substituted with the cdf for the

chosen construction.

This section is largely self contained. It also makes two

contributions to estimation for basic HLL sketches. To the

best of our knowledge, we provide the first provably consis-

tent estimator of the cardinality. Furthemore, we provide the

only tight error estimator and confidence intervals (CIs) for

the entire range of cardinalities.

3.1 HyperLogLog sketch
We first introduce the HLL sketch and its construction. It is

widely used in practice as it is accurate for wide range of

cardinalities and highly space efficient, requiring < 8KB to
approximate cardinalities exceeding 2

50
with < 1% relative

error [17].

The sketch consists of an arrayC of d small, non-negative

integers which we refer to as registers. Each unique item xt
in the stream is hashed to a register bt = h(xt ) and value

zt = д(xt ). Both h,д are random hashes where h(xi ) is uni-
formly distributed and д(xi ) ∼ Geometric(1/2). The final

valueCb of register b is the maximum of all values hashed to

it. Succinctly, the random process generating the HLL sketch

may be described as follows.

xt
h
7→ Bt ∼ Uni f orm(d)

xt
д
7→ Zt ∼ Geometric(1/2)

Cb = max{Zi : Bi = b} (3)

Here the notation X ∼ F denotes that the random variable

X is drawn from the distribution F . In pseudocode this is

represented by

function HLL-add(C, x)

b ← hash(x , seed1) mod d
z ← TrailingZeros(hash(x , seed2)) + 1
C[b] ← max(C[b], z)

end function
for some fixed seeds. Here, TrailingZeros refers to the num-

ber of trailing zeros in the binary representation of the

hashed value. Since any duplicates xi and x j hash to ex-

actly the same register and value, the sketch is unchanged

by duplicates, making it suitable for distinct counting.

For large cardinalities, the original HLL estimator is n̂HLL =

d2αd
(∑

b 2
−Cb

)−1
where αd is some constant that depends

on the sketch size d . Rather than asymptotic unbiasedness

and consistency, the estimates are only guaranteed to have

an asymptotic bias that is small [17]. They also provide an

asymptotic error. These results are only for the simpler as-

ymptotic regime where the number of items per register

goes to infinity. Small to medium cardinalities require other

estimators or empirical corrections [19]. The analysis of the

estimates is quite involved, and it is unclear to us if this

analytic approach can be applied to more general sketch

constructions.

3.2 The max and HLL sketch distributions
To cast cardinality estimation as a statistical parameter es-

timation problem, we must derive the distribution of the

HLL sketch and show it is a function of the cardinality. Equa-

tion 3 shows this distribution depends on the computing the

maximum of independent random variables.



We use the standard convention of uppercase for random

variables and lowercase for constant values. We also use the

hat notation so that
ˆθ denotes the estimate of θ . Consider in-

dependent random variables X ,Y with cdfs FX (v) := P(X ≤
v) and FY . Since the maximum X ∧Y ≤ v if and only if both

X ≤ v and Y ≤ v , one has the following cdf

p(X ∧ Y ≤ v) = FX (v)FY (v) (4)

In particular, if {Xi } is a collection of i.i.d. random variables

with cdf F , then p(
∧t

i=1Xi ≤ v) = F (v)t .
In the HLL construction for a set with n items, the items

choose bins independently and uniformly at random. The

total number Kb of items assigned to register Cb is multino-

mially distributed, and the register value distribution is given

by the distribution of maximum given above. Succinctly,

K1, . . . ,Km ∼ Multinomial(ntot , 1/d, . . . , 1/d) (5)

Cb |Kb ∼ G
Kb

(6)

whereG is the cdf of aGeometric(1/2) random variable. Here

Cb |Kb ∼ G
Kb

denotes that the conditional distribution of Cb
givenKb = k has cdfGk

. For the special caseKb = 0we have

Cb = 0. This shows that the only unknown parameter in the

random process is the cardinality ntot , since the sketch size

d is known. The distribution of the sketch C can be written

as p(C |n) and derived from the equations above.

3.3 Composite-Likelihood Estimation
Identifying the data generating distribution enables the stan-

dard technique of maximum likelihood estimation to be ap-

plied. However, in this case, it is impractical since the like-

lihood is computationally intractable. The likelihood of the

full HLL sketch is

p(C |n) =
∑
K

p(K)p(C |K)

=
∑

k1+· · ·+kd=n

(
n

k1, . . . ,kd

)
1

d

n ∏
i

(G(Ci )
ki −G(Ci − 1)

ki )

The sum over integer partitions of n makes the likelihood

difficult to compute.

Composite likelihood (cℓ)methods [22, 33] circumvent the

problem by computing only a tractable portion of a full like-

lihood. The advantage of composite-likelihood techniques

is that they remain asymptotically consistent under modest

assumptions since they are still based on a true likelihood.

Specifically, we derive a composite marginal likelihood

estimator. This estimator can be trivially generalized to work

for all our sketch constructions. For the HLL sketch, it has

state-of-the-art performance and improves upon previous

work by providing theoretical consistency guarantees and

tight error estimates for the entire range of cardinalities. Fig-

ure 1 confirms that our asymptotic theory is almost perfectly

predictive even in finite sample settings. Our estimator has

a Relative Root Mean Squared Error (RRMSE) curve that

matches other state-of-the-art estimators [15] and our new

estimated RRMSE almost perfectly matches the true RRMSE.

The marginal likelihood p(Cb |n) is made computationally

tractable by changing the representation so that each sketch

entry is the maximum of a constant number of random vari-

ables. By treating items not hashed to bin b as 0, the register

Cb can be alternatively expressed as

Cb = max{Z̃t : t ∈ 1, . . . ,n}

where Z̃t = Zt if Bt = b else 0 (7)

Applying equation 4 for the distribution of the maximum

gives the cdfs for Z̃t ,Cb and corresponding pmf for Cb .

G̃(v) := p(Zt ≤ v) = 1 −
1

m
+
G(v)

m
= 1 −

1

m2
v (8)

F (v |n) := p(Cb ≤ v |n) = G̃(v)
n

(9)

f (v |n) = G̃(v)n − G̃(v − 1)n (10)

The composite marginal log-likelihood (cℓ) replaces the true
log-likelihood with the sum of logmarginal probabilities, and

the maximum cℓ estimator maximizes this approximation to

the true log-likelihood.

cℓ(n;C) :=
∑
b

log f (Cb |n) (11)

N̂cℓ := argmax

n
cℓ(n;C) (12)

For implementation details, section 5 provides a Newton-

based algorithm for a more general form of the composite

likelihood needed for many distinct count sketches.

3.4 Consistency and error estimates
The cℓ estimator has attractive theoretical properties. The

main property retained by composite likelihood estimates is

consistency. In other words, the estimates converge to the

truth in probability. The notation Xn
p
→ Y for convergence

in probability denotes P(|Xn − Y | < ϵ) → 1 as n → ∞ for

any ϵ > 0. This allows us to state our consistency theorem.

A consistency proof that is typical for cℓ estimators is given

in the appendix.

Theorem 1 (Consistency). Given the standard asymptotic

regime, N̂cℓ/d
p
→ λ is a consistent estimator of λ.

The theory of M-estimators and composite likelihood also

gives that cℓ estimators have an asymptotically normal limit

distribution given by

G(n)1/2(N̂cℓ − n)⇝ N (0, 1) (13)

where G(n) = E cℓ′′(n;C)2/Var cℓ′(n,C) is called the Go-

dambe information at n [22]. The notation Yn ⇝ N (0, 1)



denotes convergence in distribution. Equivalently, the se-

quence of cdfs for Yn converges to the cdf on the right. This

distributional result can be interpreted as the cardinality

estimate N̂cℓ is approximately unbiased and normally dis-

tributed with Var N̂cℓ ≈ G(n)
−1
. Given this general result,

the problem of obtaining an error estimate is reduced to the

exercise of computing the necessary quantities. The primary

challenge in computing them is that cℓ′(n,C) is the sum of

dependent random variables. Consider the variance term in

the Godambe information.

sn(Cb ) =
∂

∂n
log f (Cb |n) =

∂ f (Cb |n)/∂n

f (Cb |n)

Var cℓ′(n;C) = Var

(∑
b

sn(Cb )

)
(14)

= d Esn(C1)
2 + d2(d − 1)Cov(sn(C1), sn(C2))

The first term of the last line is the variance when the reg-

isters are independent and is an easily computed upper

bound. The second term captures the differences from inde-

pendence. Unlike the independent component, one cannot

simply substitute derivatives at the observed sketch values

to compute this. That would lead to a degenerate estimate

V̂ar cℓ′(n;C) = 0 since cℓ′(n̂,C) is always 0 at the maximizer

n̂.
Computing the covariance requires computing the full

bivariate marginal distribution. Consider the bivariate cdf

G̃2(x ,y) := P(Z̃1 ≤ x , Z̃2 ≤ y)where Z̃i is defined in equation
7. Analogous to the derivation of the univariate maximum

of random variables, the cdf and pmf of two registers is

F2(x ,y |n) := P(C1 ≤ x ,C2 ≤ y) = G̃2(x ,y)
n

=

(
1 −

1

d 2x
−

1

d 2y

)n
f2(x ,y |n) = F2(x ,y) − F2(x − 1,y) − F2(x ,y − 1) + F2(x − 1,y − 1)

The covariance can be directly computed from these un-

derlying probabilities. Algorithm 4 provides the complete

procedure for a slightly more general case needed by our

many distinct count sketches. Note that the Godambe error

estimate is an a priori estimate, it can be computed ahead of

time to speed computation or to establish error bounds for a

given sketch size.

4 SKETCH CONSTRUCTION
We now show how to combine HLL sketches for distinct

counting and Count-Min sketches that enable many additive

counters to be stored in a small amount of space. We call

the resulting family of sketches the Count-HLL sketches.

In particular, we propose two new sketches, the pointwise

Count-HLL sketch and the aggregate Count-HLL sketch.

The former only allows for pointwise queries but has the

1.1

1.2

1.3

1.4

1.5

1.6

102 103 104 105 106 107 108 109

n

R
M

S
E

estimator CL HLL estimated.RMSE

Single set estimation

0.85

0.90

0.95

0.99
1.00

102 103 104 105 106 107 108 109

n

co
ve

ra
ge

confidence 90% 95% 99%

Single set CI coverage

Figure 1: Cardinality estimation on a HLL sketch with
4096 bins. Left: Our estimator removes HLL’s bias and
our RMSE estimate matches the truth. Right: The con-
fidence intervals deliver the promised coverage except
for very small cardinalities where undercoverage is
due to discreteness.

strongest theoretical guarantees. The latter also allows for

both types of aggregation queries that form themany distinct

count problem.

A critical idea for designing andmaking use of our sketches

is a decomposition of the sketch register values into a stan-

dard HLL sketch register and an independent noise term that

can be estimated from the sketch itself. This both enables

application of the composite likelihood estimator and rea-

soning about what constitutes a good sketch design. Our

sketches can be seen as a modification of Count-Min but

takes a non-linear projection and has non-additive errors

arising from using the maximum operation.

4.1 Pointwise query construction
Our simplest method uses independent hashes for all the

labels. The main downside of this approach is that full inde-

pendence makes further aggregations over labels impossible.

For this construction, choose independent hash functions

h,h′,h′′ such that for each pair (xt , ℓt ) in the stream

(xt , ℓt )
h
−→ Rt ∼ Uni f orm(d) (15)

(xt , ℓt )
h′
−→ Vt ∼ Geometric(1/2) (16)

(Rt , ℓt )
h′′
−→ Bt ∼ Uni f orm(w) (17)

and {Rt }t , {Bt }t , {Vt }t are all mutually independent. The

sketch then takes the maximum value that each hashed to

each entry. Formally,

Crb := max{Vt : Rt = r ,Bt = b} ∪ {0}. (18)

This construction and others are expressed in pseudocode in

algorithm 1.



4.2 Pointwise Background Distribution
We now show that given a label ℓ, the sketch registers for ℓ
can be decomposed into a HLL sketch register and an inde-

pendent error term. This error distribution Φ is a function of

all the cardinalities other than nℓ . It cannot be described an-

alytically without including them as parameters, and hence

one cannot apply composite-likelihood estimation directly

as there would be more parameters than observations. How-

ever, using the idea of a background distribution introduced

by [31] for the CountMin sketch, we can show that this error

distribution can be empirically estimated from the sketch

itself. This yields a marginal likelihood that is only a func-

tion of the cardinality of interest and allow us to apply our

machinery for estimation.

Denote by C(D) the sketch constructed on the data setD

of item, label pairs. For sketches C and C ′, denote by C ∧C ′

the entrywise maximum of C and C ′. It is easy to see that

one may decompose the sketch as

C(D) = C(Dℓ) ∧ C(D−ℓ) (19)

whereDℓ,D−ℓ are subsets of the dataD that include only el-

ements with label ℓ or only those without label ℓ respectively.
This immediately leads to the independence of the error term

as the variables used to construct C(Dℓ) are independent

from those used to construct C(D−ℓ).

Lemma 2 (Independence of noise). Under the pointwise
query construction, the signal C(Dℓ) is independent from the
noise C(D−ℓ).

Furthermore, by symmetry, all entries of C(D−ℓ) are iden-

tically distributed. We write their common distribution as Φ
and refer to it as the background distribution as it contains

no information about the cardinality of interest.. Thus, the

distribution of any register Crb is given by

ϵrb ∼ Φ (20)

Crb = Crb (Dℓ) ∧ ϵrb (21)

whereΦ is the unknown background distribution andCrb (Dℓ) ⊥

⊥ ϵrb .
We estimate the background distribution Φ by simply tab-

ulating all d(w − 1) values in the sketch that do not contain

signal. Since there are at most 64 possible values for a 6 bit

register, this is trivial to do and results in a consistent esti-

mate of Φ. We will refer to this estimator as the raw empirical
estimator.
Using the distribution of the maximum of random vari-

ables given in equation 4, the resulting cdf for Crb is the

product of the HLL cdf and background cdf:

F̃ (v |nℓ) = G̃(v)
nℓΦ(v). (22)

Substituting the corresponding pmf into the composite mar-

ginal log-likelihood in equation 11 and maximizing it gives

the cℓ estimator for this sketch. The proof of theorem 1 is

easily generalized since a uniform convergence of the back-

ground distribution estimate preserves the uniform conver-

gence of the composite-likelihood in a compact neighbor-

hood of the truth. This gives the following theorem.

Theorem 3 (Pointwise construction consistency).

Suppose for all ℓ, nℓ/d → λℓ as d → ∞. Then the cℓ esti-
mator for the pointwise construction is a consistent estimator
of λℓ .

4.3 Aggregation construction
In the pointwise construction, data points (x , ℓ), (x , ℓ′) shar-
ing the same item x can be hashed to two different bins and

have different values. This makes the sketch duplicate sensi-

tive if an aggregation merges those two bins or if those bins

correspond to separate registers in the merged sketch.

The aggregation construction removes these duplicate

sensitive updates by making the row Rt and value Vt only a

function of the item xt and not the label ℓt . The process for
choosing the bin within a row is identical to the pointwise

construction. The marginal distributions of Rt ,Bt , and Vt
are also remain unchanged. The only difference is that the

random variables are no longer mutually independent.

xt
h
−→ (Rt ,Vt ). (23)

(Rt , ℓt )
h′
−→ Bt (24)

Since the value Vt does not depend on the label, an item

cannot modify the same register twice. Since an item will al-

ways hash to the same row and aggregations merge only bins

within the same row, two labels cannot cause two separate

registers to be modified in a aggregated sketch.

Algorithm 1 Sketch-update(C,x , ℓ)

diдest ←

{
(x , ℓ) if pointwise

x otherwise

z ← TrailingZeros(hash(diдest , seed2))
r0 ← hash(diдest , seed1) mod d

r ←

{
hash(diдest , seed1) mod d if vHLL

r0 otherwise

b ← hash((r , ℓ), seed3) mod w
C[r ,b] ← max(C[r ,b], z)

This construction can also reduce the noise in the sketch.

Unlike the pointwise construction which has as many ran-

dom tuples as there are distinct (item, label) pairs, the aggre-
gation construction only introduces as many random tuples

as there are distinct items. Thus, the background distribution

contains smaller values. Figure 2 shows this for the high

overlap case described in the experiments.
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Figure 2: The aggregate construction has the back-
ground distribution with the smallest magnitudes.

However, estimation under this construction is more chal-

lenging as the background distribution is not directly ob-

served. To see this, further split D−ℓ , containing pairs with

label not equal to ℓ, into D+
−ℓ

:= {(x , ℓ′) ∈ D−ℓ : x ∈ Xℓ}
containing items that also appeared with label ℓ and its com-

plement D−
−ℓ
. This yields a decomposition

C(D) = C(Dℓ) ∧ C(D
+
−ℓ) ∧ C(D

−
−ℓ). (25)

Here, C(D−
−ℓ
) ⊥⊥ C(Dℓ) but C(Dℓ) ⊥̸⊥ C(D

+
−ℓ
) where X ⊥

⊥ Y denotes that X is independent of Y . In other words, the

background distribution consists of two parts, one that is

independent of the signal, and a dependent part induced by

items shared with Dℓ .

4.4 Aggregate Background Distribution
We address the problem of estimating the background dis-

tribution in three ways. First, we show that we can asymp-

totically recover the background distribution. However, the

estimator does not have good finite sample properties. Sec-

ond, we derive some simple bounds on the noise distribution.

This allows us to provide bounds with theoretical guarantees.

Finally, we heuristically derive an estimator with good finite

sample performance.

4.4.1 Asymptotic consistency. We can estimate the back-

ground distribution consistently by identifying a set of rows

that can be identified as draws from the noise distribution.

This exploits the fact that, given a signal register, any regis-

ter in the same row with value greater than it must contain

noise. More precisely, fix a label ℓ. For any row r , let br be
the column that ℓ hashes to in row r . Since the maximum

hash value of items in Dℓ in row r is ≤ Crbr , it follows that

every entry in row r that is > C(D)rbr must be equal to

the entry from the background Crbr (D
−
−ℓ
). This yields the

following theorem.

Theorem 4 (Aggregation construction consistency).

Assume the width increasing asymptotic regime. Let vmin =

minr Crbr be the minimum value among the signal registers

Algorithm 2 Estimate background distribution

function Ecdf(C)
T ← Tabulate(C)
return CumulativeSum(T )/sum(T )

end function
function Estimate-Φraw (C

(siдnal ),C(noise),klabel)
Φ̂← Ecdf(Cnoise )

return x : x → Φ̂klabel
x

end function
function Estimate-Φaдд(C

(siдnal ),C(noise),klabel)
for r = 1→ d do
Kr ← Ecdf(C(noise)[r , :])

F (r )X ← K
klabel
r

F (r )XX ← K
2klabel
r

F (r )XXY [i] ← F (r )X 1(i < C[Ir ]) ∀i = 1, . . . ,w
end for
FXXY ← ERF

(R)
XXY (average over rows R)

FXX ← ERF
(R)
XX

FX ← ERF
(R)
X

FXY ← Ecdf(C(siдnal ))

Φ̂←
F
2

X FXXY

FXX FXY
return x : x → Φ̂x

end function

and R = {r : Crbr = vmin} be the collection of rows equal to
that minimum. The empirical distribution of values in those
rows PR(v) = 1

w |R |
∑

r ∈R
∑w
b′=1 1(Crb′ ≤ v) converges to

the background distribution cdf, the marginal distribution of
C(D−

−ℓ
).

Proof. Suppose there is a row r containing no items with

label ℓ. Then, trivially the row Cr (D) = Cr (D
−
−ℓ
). Further-

more, since C(Dℓ) ⊥⊥ C(D−
−ℓ
), conditioning on Cr (Dℓ) = 0

does not affect the distribution ofC(D−
−ℓ
). IfCrb = 0 then we

have identified a row where there are no items fromDℓ . Fur-

thermore, the unconditional distribution of labels into bins

in a row is given by M̃r ∼ Multinomial(|L|, 1/w, . . . , 1/w).
Conditional on Crbr = 0, the labels in M̃r

br
that have items

in row r are simply reallocated to the other bins. Since

|L|/w → ρ, the proportion of affected bins goes to 0 in

probability. Thus, the empirical distribution of the row con-

ditional onCrbr = 0 converges in probability to the uncondi-

tional distribution. This unconditional distribution Φ̃ satisfies

EΦ̃ = Φ by the definition of Φ. Since P(Crb = 0) → α > 0 in

the asymptotic regime, it follows that as cmin = 0 eventually

and d → ∞, |R | → ∞ as well. By the law of large num-

bers, the empirical distribution of the collection of rows R

converges uniformly in probability to the limit background

distribution. □



4.4.2 Bounds. Although theorem 4 asymptotically recovers

the background distribution, it relies on an extremely low

probability event, namely a signal register having value 0.

Thus, the finite sample performance of the estimate may

be poor. To obtain theoretical guarantees that hold in finite

sample settings, we derive estimates of the noise distribution

which are guaranteed to be either biased upwards every-

where or downwards everywhere. This can be used to derive

practical bounds on the cardinality.

Since C(D−ℓ) ≥ C(D
−
−ℓ
), the sketch entries contain more

noise than the true background distribution. The raw em-
pirical estimator applied to the aggregate construction thus

overestimates the noise and leads to the following lemma.

Lemma 5. LetΦ,Φ0 be the marginal distributions ofC(D−
−ℓ
)

and C(D−ℓ) respectively. Then Φ ≥ Φ0.

When the noise estimate is too large, the cardinality esti-

mates will correspondingly tend to be too low. By applying

the Godambde variance estimate, one obtains an estimated

lower bound for the cardinality.

Likewise, we find an estimate an upper bound on the

cardinality by finding an upper bound on the noise distribu-

tion cdf. To do this, we counter-intuitively add even more

noise to the signal registers and extrapolate the noise from

the resulting change in distribution. We call the resulting

estimator the SIMEX estimator due to its similarity to the

Simulation-Extrapolation (SIMEX) method [10]. The upper

bound is given by the following lemma.

Lemma 6. Let ˜b , br be some bin. Let Q be the cdf of
Crb (D−ℓ) ∧ Cr ˜b (D−ℓ), in other words the noise term if one
added additional noise from another register on the same row.
Then Φ ≤ Q

Φ =
G̃nℓQ
G̃nℓΦ

. In other words, one obtains a lower
bound by taking the ratio of the distribution of the signal
registers after adding more noise with the distribution of the
signal registers.

We prove this by examining the sets that are hashed to row

r . Denote byY the items with label ℓ that are hashed to row r ,

and letX ,X ′ be the items fromD−ℓ hashed to binsb, ˜b in row
r . The noise distribution is given by Φ = EG |X \Y | whereG is

theGeometric(1/2) cdf. The noise distribution of the merged

registers Q = EG |(X∪Y )\Z | . Since |(X ∪ X ′) backslashY | ≤
|X\Y | + |X ′\Y |, it follows that Φ2 ≤ Q .

4.5 Bias corrected background estimator
The aggregation construction produces less noise than the

pointwise construction. Despite this, estimators for the ag-

gregation construction that are based on the bounds or as-

ymptotic consistency result empirically perform worse as

they have significant bias. We now give an estimator that

allows the aggregation construction to beat the pointwise

construction empirically.

Similar to the analysis for the SIMEX estimator, we exam-

ine the distribution after adding more noise. Let X ,X ′,Y be

defined as above in section 4.4.2. The inclusion-exclusion

principle gives

|X ′ ∪ X ∪ Y | = |X ′ | + |X | + |Y | − |X ′ ∩ Y | − |X ∩ Y |

− |X ′ ∩ X | + |X ′ ∩ X ∩ Y |

|X ′ ∪ Y | = |X ′ | + |Y | − |X ′ ∩ Y |

|X ′ ∪ X | = |X ′ | + |X | − |X ′ ∩ X |

The latter two equations can be used to cancel out the un-

wanted pairwise intersection in the first equation to obtain

|X ′ ∪ X ∪ Y | − |X ′ ∪ X | − |X ′ ∪ Y | + |X ′ | + |X |

= |X\Y | − |X ′ ∩ X ∩ Y |

To convert these to observable distributional quantities, we

approximate

Φ = EG |X \Y | = EG |X
′∪X∪Y |− |X ′∪X |− |X ′∪Y |+ |X ′ |+ |X |

(26)

≈
FX∪X ′∪YF

2

X

FX∪X ′FX∪Y
EG |X

′∩X∩Y |
(27)

where FX is the raw empirical estimate of the error, FX∪Y
is the empirical distribution of the signal registers, FX∪X ′

is that of two randomly merged non-signal registers in the

same row, and FX ′∪X∪Y is that of the signal register merged

with a random non-signal register in the same row. All of

these are observable quantities as they are based on either

a set of observed registers or on two merged registers. The

approximation error arises from pulling the expectation into

the product of non-independent random variables and using

the empirical, observed quantities. To generate the estimator,

we drop the last, unobserved quantity EG |X
′∩X∩Y |

which rep-

resents the unremoved bias in the estimator. Dropping this

term results in smaller noise estimates and an approximate

downward bias of E|Y ∩ X ∩ X ′ | in the resulting estimated

cardinalities In comparison, the raw empirical estimator has

approximate bias |X | − |X\Y | = |X ∩ Y |.

4.5.1 Computation. Although FX∪X ′ is described as the em-

pirical distribution obtained by randomly merging two reg-

isters, it is not necessary to perform the random merges to

compute the distribution. Let Kr be the empirical cdf of the

r th row minus the signal register. For two random registers

in row r , the empirical cdf of their maximum is K2

r . When

the sketch widthw →∞, the distributions for two random

register drawn with and without replacement converge, so

it may be replaced by the empirical cdf of the row whenw is

large. Thus, we can compute FX∪X ′
p
→ d−1

∑
r K

2

r under the

uniform norm. Likewise, FX ′∪X∪Y (u)
p
→ d−1

∑
r 1(Crbr ≤

u)Kr (u) uses the empirical cdf 1(Crbr ≤ u) of the solitary
signal register in row r when computing the distribution of

the maximum. This is summarized in algorithm 2.



4.5.2 Impossibility result. Disentangling the dependent and

independent components of the background is not practically

possible in all scenarios. Consider the case where there are

many labels |L| ≫ w logd with each consisting of the same

set of items Xfreq. In this case, for each row, all nonzero

noise entries are equal to to the same value, and with high

probability any collection ofd noise entries are non-zerowith
high probability. If another set Xℓ is added to the sketch, Xℓ
or Xfreq ∪ Xℓ are practically impossible to distinguish. This

is consistent with our inability to remove the three-way

intersection term in the bias corrected estimate of the noise.

4.6 Aggregations and Mergeability
Three types of aggregationmay be performed on the sketches.

First, given two data streams D,D ′, their corresponding
sketches can trivially be merged

C(D ∪ D ′) = C(D) ∧ C(D ′). (28)

This is especially useful in distributed settings or when com-

puting aggregations over time. Sketches for many small time

windows can be merged to generate a sketch for a longer

window.

The other two aggregation types form the many distinct

count problem and merge labels in a single sketch. The query

for the total number of distinct items in a sketch is simple for

the aggregation construction and impossible for the point-

wise and vHLL constructions. The row-wise maximum of the

aggregate construction is the same as a regular HLL sketch

on all the items. For queries that merge a list of labels J , the

aggregate construction can merge them as long as there are

enough remaining registers containing no signal in order to

estimate the background distribution.

Given two labels ℓ, ℓ′with distinct item setsXℓ,X
′
ℓ
, denote

the registers containing signal for ℓ asCℓ = S(Xℓ)∧ϵℓ where
S(Xℓ) is the HLL sketch containing just items inXℓ . Likewise

define Cℓ′ for ℓ
′
. Trivially

Cℓ ∧Cℓ′ = S(Xℓ ∪ Xℓ′) ∧ (ϵℓ ∧ ϵℓ′) (29)

The error cdf for ϵℓ ∧ ϵℓ′ can be computed similarly to the

procedure in section 4.5.1. The only differences are that the

per row empirical cdf Kr is replaced by K2

r and the signal

registerCrb is replaced by the merged valueCrb ∧Crb′ where

b,b ′ are the bins with signal in row r for ℓ and ℓ′.

5 ESTIMATION ALGORITHMS
Here we provide explicit algorithms for estimation of car-

dinalities, errors, and the background distribution. For car-

dinality estimation, we use a Newton-Raphson procedure

for composite likelihood maximization. Lemma 7 derives the

gradient and Hessian for the composite log-likelihood and

shows it is log-concave so that optimization is fast and the

solution is unique. The proof is straightforward differenti-

ation and is given in the appendix. Algorithm 3 gives the

procedure to estimate a count given the background distri-

bution, and algorithm 5 gives the complete procedure given

the sketch and set of labels being queried. From this is it easy

to see that query results are generated by four distinct and

conceptually simple steps.

Lemma 7. The composite marginal log-likelihood is strictly
concave and has first and second derivatives given by

cℓ′(n;X ) =
∑
i

log G̃(Xi ) −
log r (Xi )ϕ(Xi )

(r (Xi )−n − ϕ(Xi ))
(30)

cℓ′′(n;X ) =
∑
i

r (Xi )
−n

log
2 r (Xi )ϕ(Xi )

(r (Xi )−n − ϕ(Xi ))
2

(31)

where r (v) = G̃(v − 1)/G̃(v) and ϕ(v) = Φ(v − 1)/Φ(v).

Algorithm 3Max-cℓ-Estimator(S : signal registers, Φ)

d ← lenдth(S)
for x = 0→ 64 do

G̃x ← 1 − 2−x/d
rx ← G̃x−1/G̃x
ϕx ← Φ(x − 1)/Φ(x)

end for
W← Tabulate(S)
n̂ ← InitialGuess(S)
repeat

cℓ′(n̂) ←
∑

64

x=0W [x]
(
log G̃x −

log rxϕx
r−n̂x −ϕx

)
cℓ′′(n̂) ←

∑
64

x=0W [x]
r−nx log

2 rxϕx
(r−nx −ϕx )2

n̂ = n̂ − cℓ′(n̂)
cℓ′′(n̂)

until Convergence
return n̂

5.1 Error estimates
Similar to estimation, the same error estimator for HLL can

be used for Count-HLL except for a small change to the cdf.

In this case, the bivariate cdf G̃nℓ

2
is replaced by its product

with the error cdf G̃nℓ

2
Φ2. The following lemma shows that

the bivariate error cdf Φ2 can be replaced by the product of

the univariate error cdfs.

Lemma 8. In the width increasing asymptotic regime, the
bivariate error distribution for a label ℓ converges to the product
of the marginal error distributions Φ2(x ,y) → Φ(x)Φ(y).

Proof. Let b1,b2 be two random bins in rows 1 and 2.

The number of labels in each bin converge to independent

Poisson(ρ) random variables by the Poisson limit theorem.

The probability that any of the labels in entry (1,b1) also



hashes to (2,b2) is (L/w)L
−1 = 1/w → 0. Therefore, the

process converges to one where one independently draws

Mi ∼ Poisson(β) labels for each bin and then independently

drawsMi sets for each. Therefore, Φ2(x ,y) → Φ(x)Φ(y) □

Figure 6 shows that the theoretically correct CI’s deliver

almost exactly the right coverage on real datasets whenever

the estimates have RRMSE< 50%. For larger RRMSE, an exact

CI is of little practical use as the interval is larger than the

estimate itself. In difficult synthetic datasets, figure 7 shows

the estimated standard deviations are accurate even when

the estimates are biased and lead to CI’s with undercoverage.

Algorithm 4 GodambeVariance(n̂,Φ,d)

for all x = 0→ 64 and y = 0→ 64 do
Gxy ← (1 − 2

−x/d − 2−y/d)

Fxy ← Gn̂
xyΦ(x)Φ(y)1(x ≥ 0)1(y ≥ 0)

dFxy ← n̂Fxy logGxy
end for
for all x = 0→ 64 and y = 0→ 64 do

fxy ← Fxy − Fx−1,y − Fx,y−1 + Fx−1,y−1
sxy ←

(
dFxy − dFx−1,y − dFx,y−1 + dFx−1,y−1

)
/fxy

end for
E ←

∑
x,y fxysxy

V ←
∑

x,y fxys
2

xx
return E2/V

Algorithm 5 Query(C: sketch, Q: labels)

C(siдnal ) ←
∧

ℓ∈Q C[GetIndices(ℓ)] (vectorwise)

Φ← Estimate-Φ(C(siдnal ),C, |Q|)
n̂ ← Max-cℓ-Estimator(C(siдnal ),Φ)
σ̂ ← GodambeVariance(n̂,Φ,nrow(C))1/2

return (n̂, σ̂ )

5.2 Time complexity
The update cost for both our constructions isO(1). The time

to tabulate the signal registers for any label is O(d). Given
this table T , the number of cdf evaluations needed in each

Newton iteration to compute the composite likelihood or

any of its derivatives is O(|T |). If the initial estimate of the

cardinality is good, then the Newton method has quadratic

convergence and takes O(log log cϵ−1) iterations where ϵ is
the tolerated error [6] and c is some constant depending on

second derivative of the marginal likelihood. The cost of

estimating the background distribution from scratch takes

O(dw). If the values in the sketch are tabulated and main-

tained with the sketch, then the raw empirical estimate of

the background can be computed in O(|M |) time where M
is the maximum register value. Since the maximum register

value is typically stored in 5 or 6 bits, |M | ≤ 2
6 = 64 may be

treated as a constant. For the other background estimators

for the aggregate construction, one must maintain a table

for each row. The time to compute the background distri-

bution is O(d |M |). These tables can be maintained in O(1)
time. Asymptotically, |M | = Op (log logntot ) where ntot is
the total number of unique hash values. Here V = Op (f (n))
is the probabilistic analog of big-O notation and denotes

P(V /f (n) < c) → 1 for some constant c as n →∞.

6 LIMITATIONS OF EXISTING METHODS
Past approaches for the many distinct count problem have

yielded methods that naively combined the two (CM-FM)

[9] or have no correctness guarantees (vHLL) [35]. We prove

both of their constructions and estimators are flawed. They

can have pathological behavior, and even in realistic sce-

narios, the estimators can have large bias. The proofs are

deferred to the appendix.

6.1 CountMin-Flajolet-Martin
The CountMin Flajolet-Martin (CM-FM) sketch is identical

to the CountMin sketch with the exact integer counters re-

placed with approximate distinct counting counters. Since

each counter consists ofm registers, we write the parameters

of the CM-FM sketch as d ×m ×w . An equivalently sized

Count-HLL sketch has parameters dm ×w . The inefficien-

cies in the CM-FM sketch primarily arise from the use of

the minimum to combine counters and the limited collision

resistance offered by the sketch design. While CountMin

ensures errors are one-sided errors so that taking the min-

imum can never increase the error, the CM-FM sketch can

perversely perform worse as more memory is allocated to

the sketch. In particular, it underestimates with estimates

eventually approaching 0 as the sketch depth increases.

Theorem 9 (CM-FM bias). Consider a fixed datasetD. Let
n̂(CMFM )
ℓ

be the cardinality estimate for label ℓ using a CMFM
sketch. If the sketch depth d →∞ while the width and the size
of individual counters stays the same, then p(n̂ℓ ≤ 2) → 1.

For this reason, the theoretical guarantees for the CM-FM

sketch assume that the depth is small. However, the problem

still exists with shallow sketches. For example, in the simple

case when there is no noise from collisions, the CM-FM

estimator is strictly worse than a single HLL estimator.

Theorem 10 (CM-FM inefficiency). In the noiseless set-
ting, ifm →∞ and the cardinality estimates have an asymp-
totically normal distribution centered on the truth, then the
CM-FM estimate is never better than using a single sketch
in expectation. That is limm→∞ P((minj n̂

(j) − n)2 > ϵm) >

limm→∞ P((n̂(i) − n)2 > ϵm) for any sequence ϵm where the
r.h.s. converges to some value p > 0.



These results point out issues in the estimation algorithm.

More fundamentally, the sketch design is inherently less

collision resistant than our Count-HLL designs. A label can

tolerate up to d collisions with the CM-FM sketch while

Count-HLL can tolerate up to d ·m collisions. Figure 3 shows

the performance of the CM-FM sketch degrades quickly once

collisions become frequent. Equal sized Count-HLL sketches,

on the other hand, degrade gracefully.

6.2 Virtual HyperLogLog
The virtual HyperLogLog sketch (vHLL) construction [35]

is similar to our aggregate construction but does not ensure

that the same item with different labels is always hashed to

the same row. This prevents it from being able to aggregate

over all labels or many labels. Like CM-FM, the estimator for

vHLL has poor properties. This estimator is derived under

an incorrect assumption of additive errors and can result in

grossly biased estimates for real data sets. When the esti-

mator is replaced by a composite likelihood estimator, the

construction becomes practically useful even though it still

has several poor theoretical properties. Empirically, we find

the VHLL construction paired with the cℓ estimator performs

similarly to the pointwise construction and estimator but

has the added ability to aggregate over a limited list of labels.

Rather than choosing the d sketch entries for each label

row-wise, vHLL chooses them completely at random. This

is equivalent to choosing a hash h′ : (oriдinal row, label) →
(new row,new bin) that adds another layer of randomization

to the row when compared to the Count-HLL aggregate

construction.

xt
h
−→ (Vt ,R

′
t ) (32)

(R′t , ℓt )
h′
−→ (Rt ,Bt ) (33)

Denote by I(ℓ) the sketch indices that label ℓ hashes to.

For estimation, the vHLL estimator is γ (N̂ (HLL)(CI(ℓ))) −

N̂total/w) where N̂ (HLL)
is a single set HLL estimator, γ =

dw/(dw − d), and N̂total estimates of cardinality of all items.

They suggest using N̂total = N̂ (HLL)(C) where the entire

sketch is treated as a single HLL sketch with dw entries. The

formula treats the bins CI(ℓ) as an HLL sketch whose esti-

mate should be debiased by the average distinct count per

bin ntotal/m. This formula uses an incorrect implicit assump-

tion that adding k items to a single bin will increase the HLL

cardinality estimate by k in expectation.

Theorem 11 proves this incorrect assumption can always

lead to large bias regardless of the bias estimator. For the

specific proposals for a bias estimate used in [35], the bias

can be made arbitrarily large. These proofs themselves sug-

gest that when there are heavy hitters, the vHLL estimator

returns highly biased results unless the sketch is effectively

empty; that is there are few sets with cardinality similar to

or larger than the one being queried. This behavior is con-

firmed empirically in figures 3 on synthetic data and 5 on

real PubMed data. It does not appear in the ad data.

Theorem 11 (Incorrect vHLL linearity assumption).

For any δ > 0 and distinct count nℓ , there exists a size Z such
that for any sketch with size d ×w > Z , the bias of any vHLL
estimator En̂ℓ −nℓ ≥ nℓ(1−δ ) for some data setD containing
nℓ distinct items with label ℓ.

Theorem 12 (vHLL bias and inconsistency). The vHLL
sketch can have arbitrarily large relative bias when applying
the specific proposals to use the HLL estimate on the whole
sketch or the true distinct count to debias the raw HLL estimate.

The bias is a property of the estimator and can be fixed

with a better estimator. However, there remain some funda-

mental issues due to the randomization procedure.

Theorem 13 (vHLL pathological variance). For any
unbiased estimator n̂ on a vHLL sketch, n̂ℓ has infinite variance
for some data set.

The intuition behind this is that when a single item has

a large hash value and is hashed to every register, then the

sketch may contain only information about that item. This

lack of information results in high variance. This may hap-

pen, for example, if there are many labels and every label’s

set contained NULL.

7 EXPERIMENTS
We run experiments on real and synthetic data to demon-

strate (1) the state-of-the-art performance of our sketches

and estimators, (2) the accuracy of our theory and error

estimates even in finite sample regimes, and (3) practical

considerations in implementing and sizing the sketches. We

highlight that the asymptotic theory nearly perfectly predicts

the performance of our sketches. Not only does it perfectly

predict the bias or lack thereof of our sketches, but it also

provides tight confidence intervals and perfectly predicts

the variance of the estimates. It does so under all scenarios.

Thus, practitioners can have confidence that the methods

will generalize well to any scenario, and especially on larger

datasets where the asymptotic theory is even more accurate.

Our primary metric for evaluation is the Relative Root

Mean Squared Error (RRMSE) . For two sketches Ĉ, C̃ with

estimators N̂ℓ, Ñℓ , this is defined by

RRMSE(N̂ℓ) =

√
E

(
N̂ℓ/nℓ − 1

)
2

× 100% (34)

We also consider the relative efficiency (RE), the ratio of rel-

ative MSEs. An estimator with RE 0.5 compared to a another

requires twice the space to achieve the same error when both

estimators are asymptotically normal and unbiased. Because

of this we define the relative size to be the inverse of the RE.



We compare our sketch to vHLL [35] and CM-FM [9] and

two variants vHLL* and CM-FM*. vHLL* uses the exact count

of distinct items in the entire sketch rather than an estimate.

CM-FM* uses d copies of a single HLL sketch to remove the

bias from taking the minimum of independent estimates. For

CM-FM, we use HLL counters instead of inefficient PCSA

ones to make our results more comparable.

Our synthetic experiments cover two scenarios: when a

sketch is "filled" by increasing the number of labels and when

sets have high overlap. The first case is shown in figure 3.

We simulate a datasets with nlabel labels with nlabel ranging
from 100 to 3200. Each sketch contains 1024 × 1000 registers

and is considered "saturated" when it has more labels than it

has columns. The CM-FM sketches have depth d = 4. Each

label contains 10
6
items. The item sets are all disjoint, so the

pointwise and aggregate constructions are the same. We use

the raw empirical background estimate.

Figure 3 shows Count-HLL dominates other methods, typ-

ically by over an order of magnitude. It is the only method

with no detectable bias. It also has the smallest variance,

no extreme estimates, and behavior that smoothly degrades.

Both vHLL’s and CM-FM’s performance degrades badly as

more sets are added. The poor performance of vHLL is due to

bias and manifests even when the sketch is not even close to

capacity. CM-FM degrades when there are collisions in all d
bins. This only happens when the sketch is almost saturated.

In the easy, low noise regime where the number of labels

|L| = 100 ≪ w = 1000, only Count-HLL performs as well

as individual HLL sketches. CM-FM requires roughly d = 4

times the space of Count-HLL as predicted by the theory. We

will omit CM-FM from further comparisons since other ex-

periments yield a high rate of hash collisions where CM-FM

is guaranteed to perform poorly on.

In the second case, figure 4 examines the performance

when there is high overlap among the sets with different

labels. The data is drawn from a universe of 10
6
items. From

these we fix a set of 10% as common items. We draw ksmall =

10
5
or 10

6
sets of size 1000 from the common items and 1000

sets of size nbig from the full universe. We then estimate the

cardinality for each of the large sets.

Our Count-HLL sketches always perform the best. vHLL

typically has high bias. In the casewhere there are amoderate

number ksmall = 10
5
of background labels, the bias and rela-

tive error for vHLL degrades as the true cardinality increases,

despite the signal being better separated from the noise. In

contrast, our methods perform better as one would expect.

The aggregate construction always has the lowest standard

deviation but is biased downwards. The smaller standard

deviation results in improved RRMSE when the variance

dominates the bias, particularly in hard to estimate cases

with smaller cardinalities. The case where ksmall = 10
6 ≫ w

mimics the challenging case where each bin contains almost

all the common items for its row. The bias in this case asymp-

totes at 10%, precisely the proportion of common items and

the amount of bias one would predict for the aggregate con-

struction. When the true cardinalities are large, the point-

wise construction is able to better the aggregate construction

since the bias dominates the variance. The dashed lines in

the rightmost figure show the raw empirical and the SIMEX

estimators which are downwardly and upwardly biased as

suggested by the theory. However, the bounds they produce

can be quite loose.

We consider two real datasets, the PubMed bag of words

dataset [13] and the KASANDR ad impression data set [27],

representing realistic problems in natural language process-

ing and advertiser reporting. For the PubMed dataset we

count the distinct documents each word appears in for the

top 8000 words. For PubMed, there are 141K distinct words

and 8.2M documents with 730M word, document pairs. For

the ad data set, we estimate the number of distinct users

that have seen each of the 1000 most seen ads. The ad data

contains 291K users and 2.2M ads with 15.8M pairs. We im-

plemented sketch updates in C++ using the hash function

Murmurhash3_x64_128. For simplicity, we used 8 bits per

sketch entry. We were able to process 15K items/ms on an

Intel Xeon E5-2430V3 2.4Ghz processor in a single thread.

The estimation algorithms were implemented in R with opti-

mization carried out by nlm.
Figure 5 shows the RRMSE on these real datasets for a

variety of sketch sizes. Our Count-HLL sketches dominate

vHLL. For the PubMed dataset, vHLL’s accuracy does not

significantly improve when increasing the sketch size by

increasing the depth. This is since increasing the depth does

not change the bias of the vHLL estimator. For the ad data,

vHLL is worse, but competitive. In both cases, the aggregate

and pointwise constructions perform extremely similarly

with completely indistinguishable RRMSE curves except at

narrow widths where the aggregate construction holds a

slight edge. The plots also show the number of registers

needed to achieve a given accuracy using individual HLL

sketches and the actual number of registers per label. Our

methods use < 1% and < 10% of the space to achieve the

same error. When examining the effect of sketch parameters,

each curve traces out the RRMSE as the depth and width are

varied for a given space budget. The plots suggest a good

rule of thumb is to choose the widest possible sketch that

still satisfies 1/
√
d < c ϵ where ϵ is the target RRMSE and

c < 1 is some constant fudge factor. In all regimes, increasing

the width does not hurt much unless it causes the depth to

be fundamentally too small to reach the target error, but it

can significantly help when the sketch is too narrow. We

also found that when vHLL is paired with our cℓ estimator
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mates are useful

using the raw empirical background estimator, the RRMSE

closely matches that of the pointwise construction.

8 DISCUSSION
We tackle approximate distinct counting for many datasets

under a strict space budget while retaining many of the

properties of the strategy of storing individual HLL sketches

for each dataset. Much of our work focuses on correct es-

timation of the background distribution and cardinalities.

This allows us to create the aggregate construction which

performs well except in cases of extreme overlap. We note,

however, that applying our estimation methods to the vHLL

construction also yields good empirical results and may be

a good option for those interested in only partially solving

the many distinct count problem without theoretical guaran-

tees. For future work, we believe the design of the aggregate

construction can lead to other interesting designs, such as

cases where there may be a natural hierarchy of aggrega-

tions. Furthermore, it may be possible to estimate an average

bias for the aggregate construction and further improve the

overall RRMSE. One last area of future work is addressing

the question of asymptotic efficiency as it is the one property

of the MLE that is not provably retained by our cℓ estimator.
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A TABLE OF SYMBOLS

h,h′ Hash functions

C Matrix or array of sketch values

d,w Sketch depth and width

(x , ℓ) Item and label

nℓ Cardinality of subset with label ℓ
n̂, n̂ℓ Cardinality estimates

L Universe of labels

λℓ Asymptotic value of nℓ/d
ρ Asymptotic number of labels per column |L|/w
Φ Background error distribution

Kr Empirical distribution for row r in C
D,Dℓ,D−ℓ Data, data with label ℓ, data without ℓ
Xℓ Set of unlabelled items in Dℓ

C(D) Sketch constructed from D

I(ℓ) Indices that items with label ℓ are hashed to

G Geometric(1/2) cdf

G̃ Marginal cdf for one item’s value in fixed bin

Rt ,Bt Row and Bin (column) that (xt , ℓt ) hashes to
Vt Hash value for (xt , ℓt )
cℓ Composite likelihood

h,h′,h′′ Hash functions

C ∧C ′ Entrywise maximum of sketches

Table 1: Table of symbols

B STATISTICAL CONCEPTS
B.1 Maximum likelihood estimation
One of the most common statistical parameter estimation

techniques is maximum likelihood estimation. Under mild

regularity conditions, it has a number of important properties

including consistency and asymptotic efficiency. Given the

true value of a parameter θ0 and data Dt , consistency is

the property that the estimate converges the the truth in

probability,
ˆθ (Dt ))

p
→ θ0, as the number of observations

|Dt | → ∞. Asymptotic efficiency is the property that the

estimator has the lowest asymptotic variance amongst all
estimators. In other words, for any other estimator

˜θ the

limit limt→∞ Var
˜θ (Dt )/Var ˆθ (Dt ) ≥ 1. Thus, not only does

the maximum likelihood estimator achieve the best possible

error rate, it achieves the best possible constant in front of

that rate.

The probability of seeing the data for a parameter θ is

called the likelihoodL(θ ;D) = p(D|θ ). The maximum likeli-

hood estimate (MLE) is simply the parameter that maximizes

the probability of seeing the data.

ˆθMLE = argmax

θ
L(θ ;D). (35)

Due to both numerical issues and for the error estimation pur-

poses described below, the equivalent log-likelihood maxi-

mization problem is solved instead. Here ℓ(θ ;D) = logL(θ ;D)
replaces the likelihood in the maximization and is equivalent

since the log function is strictly increasing.

One of the main challenges with maximum likelihood es-

timation is ensuring that one can derive and compute the

likelihood. We employ a generalization of maximum likeli-

hood that enables easy computation.

B.2 Asymptotic Normality and Error
estimates

In addition to achieving the best possible variance, the distri-

bution of the MLE converges to a normal distribution with

mean equal to the true value and variance given by the in-

verse Fisher information It (θ )
−1
. The Fisher information is

It (θ ) := Eℓ
′′(θ ;Dt ), and can often be replaced by the ob-

served Fisher information Iobs := ℓ
′′( ˆθMLE ;Dt ) [14]. This re-

sults in asymptotically tight confidence intervals (CIs). Since

ˆθt ≈ Normal(θ , It (θ )
−1), the interval ˆθt ± 1.96I

−1/2

obs yields an

asymptotically tight 95% CI.

C PROOFS
Proof of theorem 1.

Proof. Denote fθ = f (·|n = θ ,m). Consider the Kullbeck-
Liebler (KL) divergence KL(fn ∥ fn̂). By the properties of the

KL-divergence,KL(fn | | fn̂) = 0 if and only if fn = fn̂ . Further-
more, this only holds when n = n̂. Since maximizing the ex-

pected log likelihood J (θ ) = E log f (Cb |θ ,d) is equivalent to
minimizing the KL divergence, it follows that the maximizer

of J isn. To complete the proof, onemust show that the empir-

ical estimate
1

d
∑d
b=1 log f (Cb |θ ,d) converges uniformly in

probability to the true expectation for θ/d in a neighborhood

of n/d . We omit the details, but this is easily accomplished re-

placing the underlying multinomial counts of distinct items

per bin with a Poisson processes on d bins with rate n/d in

each bin. The difference in the total count of this Poisson pro-

cess and n isOp (
√
n). Thus, at mostOp (

√
n) = op (d) bins that

can differ in value. Bounding this remainder term and noting

that under the Poisson distribution, the terms are indepen-

dent and the limit converges uniformly by Glivenko-Cantelli

completes the proof. □

Proof of theorem 9

Proof. Each row in the CM-FM sketch is independent

identically distributed by the same argument in [31] for

the CountMin sketch. Let C(true)r j be the true count of dis-

tinct items hashed to entry (i, j). If br is the bin in row r

corresponding to ℓ, then C(true)rbr
= nℓ + ϵr for i.i.d. errors

ϵr . Let nupper > nℓ be some value such that P(C(true)rbr
<



nupper ) > 1/2 and let N̂ (n) be a random variable denoting an

estimated cardinality when the true cardinality is n. Write

δ := P(N̂ (C(true)rbr
) ≤ 2) ≥ P(N̂ (nupper ) ≤ 2)/2 > 0. Since the

expected number of times d sketches return an estimate ≤

is dδ → ∞, it follows from the law of large numbers that

p(n̂ℓ ≤ 2) → 1. □

Lemma 14. Let {n̂(i)}di=1 be a collection of i.i.d. cardinality
estimates on a set of n distinct elements. If the distribution
n̂(i) − n is symmetric about 0 and not degenerate, then for any
i , MSE(minj n̂

(j)) > MSE(n̂(i)) and P((minj n̂
(j) − n)2 > ϵ) >

P((n̂(i) − n)2 > ϵ) for any ϵ where the probability on the right
is non-zero.

Proof. Let D− be the number of estimates less than the

truthn. Let δi = (n̂
(i)−n)2 and δ(j) be the j

th
smallest value of

the squared errors amongst the D− estimates less than n. In
other words, δ(j) denotes the j

th
order statistic. Let Ψ denote

the cumulative distribution function of δi . By symmetry of

the distribution, Ψ is also the conditional cdf given n̂i ≤ n. By

the inverse cdf transform, the distribution of δ(i)
d
= Ψ−1(U(i))

where {U(i)} denote the order statistics forD− uniform draws.

Since Ψ−1 is monotone, the smallest estimate corresponding

to UD− has the largest error, and hence larger error than

the expectation E(Ψ−1(U ) − n)2 = E(δi ). The exact same

argument holds with expectations replaced with probability

statements. □

Proof of theorem 10

Proof. This follows immediately from lemma 14 in the

appendix and symmetry of the normal distribution. □

Proof of theorem 11.

Proof. Consider the case where a stream consisting of

|L| ≥ w log 2 extremely large sets of size T plus one large

set and one moderately large set of interest. [29] showed that

the raw HLL estimator can be expressed simply as ρ/Pupdate
where Pupdate is the probability a new distinct item updates

the sketch. Following the same argument used for Bloom

filters, the fraction of cells containing a large count concen-

trates on 1/2. TakingT sufficiently large, the probability of a

given cell being updated can be made arbitrarily small. Thus,

the probability of update is essentially halved for any set

of interest. Specifically, Pupdate = PHLL
update/2 + op (1) where

PHLL
update is the probability that a single set HLL estimator is

updated.

This makes it impossible to provide good estimates for

two different cardinalities. If m̂u = N̂HLL(C ·) is the estimated

bias term and Clarдe ,Cmid denote collections of bins for a

large set and the moderately sized set with sizes nlarдe ,nmid

respectively, then one cannot solve

nlarдe = 2nlarдe (1 + o(1)) − En̂bias (36)

nmid = 2nmid (1 + o(1)) − En̂bias . (37)

To ensure the bias of n̂larдe is less than nlarдe , one must take

En̂bias > nlarдe . In this case, the absolute bias of n̂mid is

> nlarдe −nmid (1+o(1))which is > nmid (1+o(1))whenever
nlarдe > 2nmid (1 + o(1)). Therefore, one of the two must

have relative bias exceeding 1 − δ . □

Proof of theorem 12.

Proof. For the specific proposal of using the true distinct

count or the entire sketch to debias the estimate, we can

precisely compute the bias. Suppose the sets are all disjoint.

There are thus ≈ Tw log 2 distinct items and a true bias of

T log 2. This leads to estimates n̂larдe ≈ 2nlarдe −T log 2 ≈

1.3T and n̂mid ≈ 2nmid − T log 2 < 0 when the true total

cardinality is used. One may hope that the problem may

be mitigated when using the suggested estimator based off

the entire sketch. We show that this does not help. When

the sketch is wide, approximately half of the bins contain

exactly 0, and the other half have nearly 0 probability of

being updated. The raw HLL estimator will thus return an

estimate of ≈ 1.5dw . Since this falls into the small estimate

regime for the HLL estimator, the estimate based on Linear

Probabilistic Counting [34] will returndw log 2. In both cases

the □

Proof of theorem 13.

Proof. Consider the stream consisting of a single item x
and dw log 2 unique labels. Again, in expectation, half the en-

tries in the sketch are filled. Furthermore, all entries contain

the exact same value V . There is some non-zero probability

δ for a given label ℓ, that all registersCI(ℓ) containV . In this

case, any estimator must be purely a function f of V . An
unbiased estimator then satisfies f (V )2−V δ + (1 − δ )c = 1

where c is the expectation of the estimator given not all reg-

isters contain V . Solving for f (V ) gives that f (V ) = α2V

for some constant α > 0. Since V ∼ Geometric(1/2), the
expectation is

∑∞
v=1 α2

v
2
−v = ∞. Thus conditional on all

registers for ℓ being non-zero, the estimator has infinite first

moment as well as variance. By the law of total variance, the

unconditional variance is infinite. □

Proof of theorem 7.

Proof. The log-marginal probability and its first and sec-

ond derivatives with respect to n are given by

log f (v |n) = n log G̃(v) + logΦ(v) + log

(
1 −

G̃(v − 1)nΦ(v − 1)

G̃(v)nΦ(v)

)
= n log G̃(v) + log (1 − r (v)nϕ(v))



∂

∂n
log f (v |n) = log G̃(v) −

r (v)n log r (v)ϕ(v)

(1 − r (v)nϕ(v))

= log G̃(v) −
log r (v)ϕ(v)

(r (v)−n − ϕ(v))
(38)

∂2

∂n2
log f (v |n) =

r (v)−n log2 r (v)ϕ(v)

(r (v)−n − ϕ(v))2
.

The first derivative in equation 38 is often referred to as the

score and denoted by sn(v). Since 0 < r (v) < 1 and ϕ(v) > 0,

it is easy to verify that the composite log-marginal likelihood

is strictly concave. □
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Figure 7: In the case with high overlap and ksmall = 10
6,

the std dev is correctly predicted despite bias in the
estimates for the aggregate construction

E STREAMING AND COUNT-HLL-HIP
ESTIMATORS

In streaming settings, the Historic Inverse Probability (HIP)

estimator [7], [29] yields improved cardinality estimates by

exploiting information available during sketch construction

that are no longer available once the stream is completed.

The HIP estimator augments a distinct count sketch with an

additional counter. The counter is incremented by 1/pt if the
t th distinct item actually changes the values in sketch. Here,

pt is the probability that the t th item will update the value

of the sketch given the sketch after time t − 1.
We may augment the Count-HLL sketch in multiple ways.

If there is a particular collection of labels of interest, then

one may instantiate a counter for each of these labels. If the

Count-HLL sketch is updated at time t by an item with a

label ℓ of interest, then update the counter by 1/pt (ℓ) where
pt (ℓ) is the probability a random item added to label ℓ’s
registers will change the sketch at time t . If one wishes to
estimate the variance as well, add additional counters which

are incremented by (1 − pt (ℓ))/pt (ℓ)
2
whenever the counts

are incremented. These cardinality estimates are always un-

biased, and the variance estimates are unbiased at the times

where there is an increment [29]. Thus, the theoretical guar-

antees are also stronger than asymptotic guarantees.

If one is only interested in heavy hitters, that is the sets

with exceptionally large cardinalities, then one can maintain

a list of k counters corresponding to heavy hitters. For each

item, label pair (xt , ℓt ), if the label corresponds to one of the

heavy hitter counters, then update the counter as above in

the fixed counter case. If the label does not correspond to

an existing counter and the item changes the sketch, then

estimate the cardinality from the sketch and compare it to

the smallest heavy hitters counter. The new set replaces it if

the estimated count is greater. This approach is similar how

heavy hitters are maintained using the Count-Min sketch.

If one is interested in all counts, then one can store a sepa-

rate CountMin sketch. The Count-HLL sketch produces a se-

quence of sets and increments (ℓ, 1/pt (ℓ)). This (label , count)
sequence can be stored in a Count-Min sketch in the usual

way.

Updates for Count-HLL-HIP sketches takeO(d) time com-

pared toO(1) for non-HIP sketches. When all sets have large

cardinalities or when all entries in the sketch have many

items hashed to them, this may not be problematic as there

are logarithmically many updates.
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