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(a) Input scatterplot
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(b) Output small multiple display partitioned on admit ACT scores

Fig. 1: On the left is an input plot showing the complex relationship between admission and graduation rates at US universities. On
the right is the top ranked small multiple display automatically picked by our algorithm to help explain this data. It partitions the
data on aggregate admit ACT scores, revealing that for universities with very high ACT scores, there is a strong linear relationship
between selectivity and graduation, while for other universities, there is no clear relationship.

Abstract— Effective small multiple displays are created by partitioning a visualization on variables that reveal interesting conditional
structure in the data. We propose a method that automatically ranks partitioning variables, allowing analysts to focus on the most
promising small multiple displays. Our approach is based on a randomized, non-parametric permutation test, which allows us to
handle a wide range of quality measures for visual patterns defined on many different visualization types, while discounting spurious
patterns. We demonstrate the effectiveness of our approach on scatterplots of real-world, multidimensional datasets.

Index Terms—Small multiple displays, Visualization selection, Multidimensional data.

1 INTRODUCTION

Understanding multidimensional data sets is a common challenge in
Exploratory Data Analysis [39]. Many techniques have been pro-
posed for visualizing multidimensional data in 2D. Perhaps the two
most common techniques are projective displays, such as scatterplot
matrices (SPLOMs), which consist of a set of 2D projections of the
data, and small multiple displays (also called collections or trellis dis-
plays) [5, 38, 4], which show 2D slices of the data created by parti-
tioning on one or more variables.

Unfortunately, as the number of variables in the data set grows, nei-
ther approach scales well since the number of plots that must be dis-
played increases quickly. This problem can be addressed by showing
only the subset of “interesting” variables. However, if the user does
not know a priori which variables might be of interest, finding them
can be time-consuming since the user must manually iterate through
all the variables to find views that help explain their data.

In the context of projective displays, there has been substantial work
in automating this process. John and Paul Tukey suggested cognostics,
visualization metrics that permit computers to “judge the relative in-
terest of different displays” [41]. Perhaps the best known of these
are scagnostics, cognostics designed to help find interesting scatter-
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plots in a SPLOM. However, there has been little corresponding work
in the automatic selection of interesting partitioning dimensions for
small multiple displays. In this paper, we address this problem.

To motivate our work, consider the scatterplot in Figure 1(a) which
shows the surprisingly complex relationship between acceptance and
graduation rates at US universities [28]. In Figure 1(b), a small mul-
tiple display partitioned on aggregate ACT scores for admits at each
university helps explain this pattern. For universities with low ACT
scores (in the range 10-20), the graduation rate is low regardless of the
admission rate. For universities with mid-range ACT scores (20-30),
there is no clear correlation. And for universities with very high ACT
scores (30-36), there is a nearly linear relationship between the ac-
ceptance rate and the graduation rate. Thus, the relationship between
acceptance and graduation rates is strongly mediated by admit ACT
scores. Our goal is to devise a method that examines the variables in
a data set and automatically recommends ones, such as the ACT score
in this example, that create effective small multiple displays.

In this paper, we:

• describe a set of goodness criteria for evaluating small multiple
displays,

• develop a method for measuring the quality of partitioning vari-
ables based on a randomized, non-parametric permutation test
which allows us to incorporate a wide range of existing cognos-
tics for single visualizations, while adjusting for their pattern de-
tection sensitivities, and

• demonstrate that our method selects small multiple displays that
meet our goodness criteria.



We focus in this paper on small multiples based on scatterplots and
use scagnostics as our cognostics, but our method could be applied to
other view types by using corresponding cognostics.

The next section summarizes related work on small multiples, cog-
nostics, and non-parametric approaches in visualization. Then we de-
scribe our criteria and our method for ranking small multiple displays.
We then validate our method against our criteria. We conclude with a
discussion of challenges and future work.

2 PREVIOUS WORK

Our work draws on previous work in three areas of visualization—
small multiple displays, cognostics, and the use of non-parametric
statistics to improve visual analytics.

2.1 Small Multiple Displays

Small multiple displays are tables of similar visualizations, where each
cell visualizes a subset of the data. Such displays allow viewers to
make visual inferences about the conditional impact of the partitioning
variable(s). Use of small multiples dates back to the work of economist
W. S. Jevons in the 19th century [21] who used them to transform
tables of time series data into rich graphical displays.

Today, many popular visual analysis tools can generate small mul-
tiple displays, such as the Trellis package in S-Plus [3], the ggplot2
library for the R language [43], based on Wilkinson’s Grammar of
Graphics [46], and the Polaris system (now Tableau) [36]. These sys-
tems allow users to rapidly generate small multiple displays to explore
their data. Mackinlay’s APT system [23] and Tableau’s Show Me sys-
tem [24] implement heuristics for automatically laying out effective
small multiple displays based on the data types and functional depen-
dencies in a data set. These tools all require users to manually select
the partitioning variables.

Small multiples can also be employed as a visual layout metaphor
in user interfaces for exploring the input space of encoding parameters
as in Design Galleries [26]. The alternating use of small multiples
together with a large single view has also been used an an interaction
device for data exploration [42].

2.2 Cognostics

Cognostics and scagnostics were first proposed by Tukey and
Tukey [40, 41]. More computationally efficient scagnostics were pro-
posed by Wilkinson et al. [46, 47]. Other scagnostics have been devel-
oped to capture properties such as cluster separation [33, 37], class
consistency and separation [35, 30], or statistically-motivated mea-
sures [20, 34, 29].

Cognostics have also been developed for other plot types. Many au-
thors have suggested quality measures for parallel coordinate plots [2,
12, 19, 49]. Albuquerque et al. [1] offer measures for radial visu-
alizations, pixel-oriented displays, and table lenses. Schneidewind et
al. [31] propose Pixnostics, a cognostic based directly on the pixel rep-
resentation of a visualization. Some measures [6, 10, 49] focus on the
level of abstraction, including aggregation, clustering, and sampling
in various chart types. For more information on quality measures for
visualization, consult the survey by Bertini et al. [7].

Some visual analytic systems leverage these measures to recom-
mend visualizations to their users. For example, ScagExplorer [11]
applies scagnostics to cluster and filter through large collections of
bivariate relationships automatically. EvoGraphDice [8] uses evolu-
tionary algorithms and a scagnostics-based fitness function to select
interesting linear and non-linear 2D projections. AutoVis [48] uses
scagnostics to provide users with effective summaries of their data,
tuned to highlight patterns that professional statisticians would also
identify. MacEachren et al. [22] use conditional entropy to identify
pairs of variables in a high-dimensional dataset that are likely to dis-
play interesting relationships. These variables are displayed in a ma-
trix of view types. Trelliscope [17] uses scagnostics to organize and
filter the large number of panels that result from using a trellis display
on complex data.

2.3 Non-parametric statistics in visual analytics
Graphical inference [9, 44, 25] asks viewers to judge whether a visu-
alization of the actual dataset is visually distinguishable from random
bootstrapped samples. The result is a non-parametric significance test
of a visual pattern. Conversely, Menjoge [27] uses bootstrapping to
generate a 95% visual confidence interval that can correctly commu-
nicate the sampling variability in a visual pattern.

3 METHOD

Our algorithm takes three inputs from the analyst:

1. a scatterplot which the analyst wants to partition into a small
multiple display,

2. a scagnostic that measures the presence or absence of a visual
pattern of interest to the analyst, and

3. a list of potential partitioning variables.

The output is a scoring of the small multiple displays produced by each
partitioning variable.

To motivate our algorithm, we first describe four intuitive criteria
for effective small multiple displays. We then describe an algorithm
that incorporates these criteria to automatically score potential parti-
tioning variables.

3.1 Goodness-of-Split Criteria
We hypothesize that effective small multiple displays conform to the
following four criteria:

• Visually rich: Effective small multiple displays should leverage
the capabilities of the human visual system by conveying rich
visual patterns. This visual richness is unlikely to be captured by
the relatively simple summary statistics used in common analytic
methods such as ANOVA.

• Informative: Small multiple displays should be more informative
than the input visualization, allowing the analyst to deepen their
understanding of the data. Small multiple displays that randomly
partition the input data are not useful since they contain no more
information than the original plot.

• Well-supported: For some data sets, particularly those with out-
liers or with a small number of data points, strong visual patterns
can occur by chance. These spurious patterns are misleading;
they appear informative, but are not. Good small multiple dis-
plays should convey robust patterns, guiding analysts to reliable
results.

• Parsimonious: A small multiple display with many partitions can
be very difficult to read and understand. All things being equal,
we should favor fewer partitions.

3.2 Algorithm
The key insight of this paper is that these four criteria can be achieved
using a simple heuristic: select small multiple displays that have cog-
nostic values that are unlikely to be due to chance. Using a cognostic
to evaluate the small multiple displays ensures that we can find visu-
ally rich patterns. If the cognostic values are different from that of the
input plot, then the small multiple is informative. If those differences
are unlikely to be due to chance, then it is well-supported. And if there
are redundant partitioning variables, this heuristic will lead to picking
the most parsimonious.

The key challenge in our approach is determining the likelihood of
a small multiple display’s cognostic value. This is difficult because
the underlying distribution of the cognostic score depends on both the
cognostic algorithm itself and on the dataset, so we cannot evaluate the
likelihood with a closed form formula. Instead, we propose comput-
ing this likelihood using a randomized permutation test [16], which is
a non-parametric statistical significance test. This procedure builds an
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(a) Input scatterplot
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(b) Partitioned by distance to an
employment center
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(c) Partitioned by random permutation
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(d) Distribution of Skewed scagnostics

Fig. 2: Illustration of our method of evaluating small multiple displays. (a) The input scatterplot of interest. (b) Partitions determined by the
mean distance to Boston’s five employment centers. (c) Randomly permuted partitions of the data. (d) Distribution of Skewed scagnostics for
the randomly permuted partitions. The overlaid blue lines are the corresponding true scores of the partitions in (b). The blue lines are outliers,
indicating that they likely did not arise due to chance. Our algorithm will score the small multiple display in (b) highly.

empirical approximation of the underlying cognostic distribution by
repeatedly permuting the partitioning variable randomly and comput-
ing cognostic values for these random partitions.

To demonstrate how this approach works, consider Figure 2(a)
which shows the relationship between the median value of owner-
occupied houses (in thousands of US dollars) and the proportion of
such houses built prior to 1940 for census tracts in the area of Boston,
Massachusetts [18]. We see that as the proportion of older houses
increases, the median value decreases. However, the distribution is
skewed and an analyst may wonder if partitioning this scatterplot by
another variable in the dataset that might reveal more about this re-
lationship. To do so, they run our algorithm using Wilkinson et al.’s
Skewed scagnostic which can detect a wide range of skewed patterns
in scatterplots.

For each possible partitioning variable, we need to compute how
unlikely it is that the resulting Skewed values are due to chance. For
example, consider the “distance to employment center” variable shown
in Figure 2(b). This variable produces a small multiple display with
four plots, one for each quartile of the distance from the census tract
to the nearest employment center. Visually we can see that the top
two plots are quite skewed and this is verifed by the Skewed scagnos-
tic which produces values of 0.864 and 0.856 for the top two plots,
but only 0.676 and 0.646 for the bottom two plots. These values are
indicated with blue lines in Figure 2(d).

Next, to evaluate how unlikely it is that these scores arose due to
chance, we randomly permute the assignment of data points to par-
titions, resulting in Figure 2(c). Visually the strong skewness of the
top two plots has decreased. This indicates that the true scores are
probably not just due to chance. If we randomly permute the data set
1000 times, computing the Skewed values for each permutation, we
can construct the histograms shown in Figure 2(d) which show the
likelihood that a particular Skewed score will occur by chance for each
component plot of the small multiple.

By comparing the true Skewed values (blue lines) to the random
results (black histograms), we can see that the top two plots are in
fact more skewed than nearly all the random permutations. Further-
more, the bottom two plots are less skewed than many random permu-
tations. This provides strong evidence that the visual patterns seen in
Figure 2(b) are not just due to chance, but are rich, informative, and
well-supported patterns. In this case, the small multiple display offers
a visual explanation of the relationship between employment center
locations to the neighborhoods in Boston—areas with older, lower-
valued homes are close to employment centers while newer, higher-
valued homes tend to be further away.

To compare this partitioning variable to others, we have to sum-
marize this information into a single score. We first need to sum-
marize how unlikely each component plot is. A straightforward non-
parametric way to do this would be with order statistics (a count of



how many of the random Skewed values were more extreme than the
true values). However, in practice we found that often the true value
would lay well outside the range of the empirical random distribution.
To generate useful likelihood values in these cases would require fit-
ting an analytic distribution to the data. But we also want our approach
to work with any cognostic measure, thus we have no a priori infor-
mation about what analytic distribution we should use. So, instead
we use Chebyshev’s inequality which can give us a very conservative
bound on the likelihood with only weak assumptions about the under-
lying distribution. This bound is inversely proportional to the standard
z-score, so minimizing the likelihood is equivalent to maximizing the
absolute z-score:

|zi|=
����
(Xi �µi)

si

����

where Xi is the true cognostic value of the i-th partition and µi and si
are the mean and standard deviation of the cognostic measures over
the repeated random permutations of the i-th partition.

Finally, to get a score for the whole small multiple display, we use
the maximum absolute z-score across all component plots:

z = max
i

|zi|

Using the maximum will result in high scores for small multiple dis-
plays that have strong, interesting patterns in at least one component
plot. This worked well in our experiments.

4 VALIDATION

In this section, we demonstrate by example that our algorithm satisfies
our goodness-of-split criteria for effective small multiple displays.

4.1 Visually Rich
Our first criterion is to prefer small multiple displays that have visu-
ally salient patterns. Our algorithm achieves this by using the input
cognostic to measure the presence and extent of a visual pattern in the
component plots of a candidate small multiple display. This approach
works for arbitrary cognostic measures on any type of visualization,
allowing us to create small multiple displays targeted at the interests
of the analyst.

Consider Figure 3(a), which shows the relationship between
linolenic and linoleic in the olive oils dataset [14], which includes eight
chemical measurements on different specimens of olive oil produced
in various regions in Italy. There are visually striking clumps and stri-
ation patterns in the data. An analyst might wonder whether these
patterns can be isolated and explained by any of the other variables in
the dataset.

To do so, the analyst can use our approach with Wilkinson et al.’s
Striated scagnostic which detects banding of points in a scatterplot.
With this cognostic, our approach ranks the Region variable as the
best partitioning variable for isolating striated patterns from the six
remaining variables in the data set. This is the partitioning shown
in the left half of Figure 3(b), which reveals the clean isolation of the
striated pattern for olive oils from the Liguria region and the distinctive
measurement structure of linoleic values for the Umbria region.

As before, the right side of Figure 3(b) shows the true Striated
scores for this partitioning in blue and the randomized permutation
scores in the black histogram. We can see that our algorithm has iden-
tified the striated pattern in Liguria west as being very unlikely to have
arisen due to chance, leading to the top ranking for this small multiple
display. Note, however, that the striation in Liguria east is not identi-
fied as being an outlier. This is because the Striated scagnostic itself
fails to catch this case. Thus, the visual richness of the small multi-
ples our approach selects depends on the quality of input cognostic, an
issue we revisit in the discussion (Section 5).

The highest ranked partitioning variable changes with the choice of
scagnostic. For the Boston dataset, the example in Section 3 shows
the highest ranked variable (“distance to an employment center”) on
the Skewed scagnostic. Wilkinson et al.’s Outlying scagnostic detects
the presence of shapes with a high number of outlier points. We see
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(b) Highest-ranked small multiple display, partitioned by region

Fig. 3: The highest ranked small multiple display of the olive oils
data set using the Striated scagnostic. Our algorithm detects that the
striation pattern in Liguria west is very unlikely to be due to chance
and recommends this small multiple display.

evidence of this in the highest ranked Outlying small multiple seen
in Figure 4(a) based on the variable, “% of the population with low
status”. The Clumpy scagnostic detects shapes with multiple dense
regions or clumps of points. The most ”clumpy” small multiple dis-
play is determined by the boolean variable “close to the Chas river”
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(b) Partitioned by whether the home
is close to the Chas river

Fig. 4: The choice of scagnostic changes the ranking of the partition-
ing variables. Above are the highest ranked small multiple displays
for the Boston housing dataset on: (a) The Outlying scagnostic which
detects shapes with many outlier points. (b) The Clumpy scagnostic
which detects shapes with multiple dense regions of points.

seen in Figure 4(b) – these component plots do not quite have mul-
tiple clumps, but rather, a single clump in the overall shapes. These
partitioned views reveal different slices of the original view with vi-
sually salient features that align with the scagnostics selected and the
analyst’s task.

4.2 Informative
Our second criterion is that we want small multiple displays that reveal
informative structures when compared to the original view. This cri-
terion is incorporated in our algorithm by the comparison between the
true cognostic score and that of the randomized permutations. Ran-
domly permuting the partitioning variable results in partitions that are
random subsets of the data in the original plot. Visual patterns in these
random subsets are likely to be similar to those in the original plot,
and thus, not informative. Thus, a high absolute z-score for the true
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(b) Partitioned by GDP category
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(c) Partitioned by the dominant religion

Fig. 5: Our algorithm picks informative small multiple displays that
diverge from the user-selected input plot. (a) User-selected relation-
ship between birth and death rates for countries around the world. (b)
The highest ranked small multiple display shows partitions that re-
veal strong opposite trends that were not seen in the original view. (c)
The lowest ranked small multiple display that has more partitions with
fewer points that look like random subsets of the input plot.

cognostic value is associated with a small multiple display that shows
a pattern different from the original plot.

An illustration of this behavior involves the Ourworld dataset of
six UN statistics on world countries [45]. We want to determine how
to partition the scatterplot showing the relationship between birth rate
and death rate seen in Figure 5(a) to isolate the increasing and decreas-
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Fig. 6: The effect of support on the combined z-scores ranking of par-
titioning variables for the data about US universities. As the number
of points in the dataset increases, the importance of the variable deter-
mined by the z-scores increases too.

ing trends that seem to be overlaid. So we use the Monotonic scagnos-
tic [46] to find informative small multiples. The highest ranked small
multiple is partitioned into two GDP categories, “Developed” with 30
points and “Emerging” with 27 points, as seen in Figure 5(b). This
partitioning reveals that GDP is a confounding covariate. While the
main view shows an overall positive trend between the birth and death
rates, the small multiple display shows that in developed regions there
is only a strong negative relationship as expected for countries in that
category. As shown by the histograms on the right, this informative
display arises because the patterns in the small multiple display have
true Monotonic scores, seen in blue lines, that are substantially out-
side the black histogram of scores for random subsets of the original
plot. Therefore, the monotonic patterns are significantly different from
those seen in the original plot.

Figure 5(c) shows the lowest ranked partitioning variable which cat-
egorizes countries by its dominant religion. This variable produces
twice as many partitions with less visually salient monotonicity, par-
ticularly in those determined by “Protestant” and “Marxist” countries.
For those two categories, the blue lines of true Monotonic scores fall
within the wide black distributions making the patterns seem more
likely due to chance. The other two partitions (“Catholic” and “Is-
lamic” countries) have true Monotonic scores that do not fall far out-
side the black histogram, making the whole small multiple display not
as informative as the top ranked GDP small multiple.

4.3 Support
Our third criterion for good small multiple displays is that they have
patterns that are well-supported by the data. This property is incorpo-
rated into our approach through the use of the z-score normalization
which adjusts for the variability in the simulated null distributions of
the randomized cognostic scores. If the data set is small or there are
outliers in the data set, this distribution will have high variance, which
will downweight the resulting z-scores.

To examine how our algorithm behaves with different amounts of
support, we experiment by varying the size of the input data set. Using
the US university data set discussed in the introduction and the Mono-
tonic scagnostic, we compute the z-scores for all 19 partitioning vari-
ables in the dataset. Figure 6 shows these rankings for different data
set sizes, generated by randomly subsetting the full data set. As can
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(a) Random 10% of the full dataset partitioned by admit ACT scores.
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(b) Full dataset partitioned by admit ACT scores.

Fig. 7: The highest ranked small multiple display with random subsets
of the full US university dataset show the effect of lower support on the
simulated null distributions. (a) A random 10% of the full dataset has
a combined z-score of 3.6. The true Monotonic scores fall within the
wider null distributions. (b) The full dataset has a combined z-score
of 16.4 as we get more confident with more data about the monotonic
pattern in the 30 bin.

be seen, for small data sets, the scores are small and there is no clear
ranking. The patterns in these small multiple displays are weaker and
we correctly require more data to be confident in their ranking. As the
data set grows, we become more confident in the rankings, with “ACT
75th Percentile Scores” and “Carnegie Classification” separating from
the other variables. We can see the effect of the smaller number of data
points in the component plots of the small multiple display produced
by the binned ACT scores in Figure 7(a). This shows a 10% random
subset (150 points) of the full dataset (1500 points). An analyst should
be skeptical about the reliability of any visual pattern in these parti-
tions with small data sizes. The simulated null distributions, seen as
the black histograms, have large variance and the true scores, seen as
blue overlaid lines, fall within them making it likely these visual pat-
terns look similar to those in random subsets of the input scatterplot.
The small multiple on the full dataset, seen in Figure 7(b), reveals a
strong monotonic pattern in the partition determined by the 30–36 bin.
The analyst should be more confident that this pattern is informative as
the true scores, seen as blue lines, fall far outside the black histogram
of Monotonic scores from random subsets of the input scatterplot.



(a) Input bullseye scatterplot

1

2

(b) Bullseye split into 2 partitions

1a

1b

2a

2b

(c) Bullseye split into 4 partitions

1a

1b

1c

1d

2a

2b

2c

2d

(d) Bullseye split into 8 partitions

Fig. 8: Our ranking of small multiple displays of an artificially gener-
ated data pattern respects the parsimony criterion. (a) The input bulls-
eye pattern. (b) The best small multiple display determined by the
clumpy scagnostic. (c) The second best partitioning variable redun-
dantly halves the two partitions from (b). (d) The lowest ranked small
multiple display with eight partitions.

4.4 Parsimonious
Our final criterion is parsimony. This criterion is indirectly included
in our approach. High-cardinality variables create a large number of
partitions, which are likely to have low support as the observations get
distributed among more partitions. Thus, we will tend to reject such
partitionings if more parsimonious options are available.

We illustrate this behavior using an artificially generated dataset so
we can hold the visual patterns across partitioning variables equal as
far as possible. The input visualization is the bullseye pattern shown
in Figure 8(a). This artificial data set includes a partitioning variable
that cleanly separates the ring from the core as seen in Figure 8(b). It
also includes two other partitioning variables that separate the ring and
core, but they further split them into two and four random partitions
(Figures 8(c) and 8(d)). The separation between the core and ring
are equally visible in all three variants, however the first is the most
parsimonious—it shows the ring/core separation in the fewest number
of component plots. To discover such partitionings of the visual pat-
tern, we could use Wilkinson et al.’s clumpy scagnostic that has high
values for scatterplots with multiple tight clumps of points. Plots of
random samples of the bullseye pattern should produce a distribution

of clumpy scores that are high, while the plots that split out the core
and the ring will have clumpy scores that are much lower.

In the histograms, we can see that the width of the simulated null
distributions increases as the number of partitions increases. Thus,
the computed z-score will be highest for the first partitioning variable.
The actual z-scores are 19.507, 9.274 and 5.129 for Figures 8(b), 8(c)
and 8(d) respectively. Thus, our approach does prefer more parsimo-
nious partitioning variables.

5 DISCUSSION AND FUTURE WORK

We have presented a method for selecting good partitioning variables
for small multiple displays. An advantage of combining cognostics
with non-parametric statistical approaches is that they can easily be
extended to solve a variety of visual analytic problems. For example,
we have described our algorithm in terms of a permutation test, which
ignores sampling error in the data set. This is correct in many com-
mon analytic scenarios where the data set contains the entire popula-
tion. If, however, the user wants to account for possible sampling error
when scoring small multiple displays, they could instead use boot-
strapping [13] to build the simulated null distributions. The structure
of the approach would be unchanged.

Another natural extension of our method would be to handle con-
tinuous variables. Our method works in a straightforward manner on
discrete partitioning variables. For continuous variables, discrete par-
titions can be created through disjoint binning techniques [15, 32], or,
overlapping bins (shingles) [4]. In either case, our approach can be
extended to handle binning by first permuting the continuous variable
and then applying the binning algorithm to partition the data. We used
the equal count binning algorithm for non-overlapping shingles in the
example described in Section 3. Future work could investigate the use
of this process to find interesting bins for continuous variables given
a particular partitioning variable. The parameters to the binning algo-
rithm could be varied while the partitioning variable was held constant.
This would allow us to pick out the setting of bins that maximize the
cognostic for that partitioning variable.

While we frame our algorithm in terms of scoring single variables,
it is trivial to combine two discrete variables into a new discrete vari-
able by crossing or nesting the levels of each variables [45, 36]. Doing
so would allow our algorithm to consider combinations of variables.
Another common use case is creating small multiples by drilling down
into aggregated data. A variation of our approach could be used to de-
tect if potentially interesting visual information would be revealed by
a change in level of detail. Visualization tools could use this to rec-
ommend a drill down or roll up dimension. We could also extend
our approach to consider sequences of partitionings. This could be
used to develop a decision tree based exploratory data analysis inter-
action mechanism guided by our algorithm. At each decision level, we
could apply our algorithm to select a partitioning variable given a sin-
gle view of the data at that level. This would produce a small multiple
display where each component plot could be further partitioned to re-
veal interesting structure. Considering the tree structure, each choice
of a partitioning variable would be conditional on the other previously
used variables, as in model selection methods.

One weakness with our approach is that we do not correct for pos-
sible correlation between the patterns in the input visualization and
partitioning variables. As a result, we may redundantly choose a small
multiple display that shows a pattern that was already clearly visible
in the original plot. While exposing highly correlated variables can be
useful, it is likely not what the user wants in an effective small mul-
tiple display. Statistical methods for variable selection, such as ridge
or lasso regression, can downweight highly correlated variables. Our
approach would be improved by incorporating similar behavior.

Our use of Chebyshev’s inequality produces a very conservative
bound on the likelihood of a cognostic. Better results might be
achieved if more information is available about the underlying distri-
bution of the cognostic. For example, Wilkinson and Wills have sug-
gested that the distributions of their graph-theoretic scagnostics are
well-modeled by a beta distribution [47]. Fitting a beta distribution
would capture the skew and truncation visible in some of our empirical



cognostic distributions. We also suggest using the maximum absolute
z-score across all component plots to score the overall small multiple
display. This allows us to pick up single partitions with strong pat-
terns. However, it may discount small multiples with weaker patterns
in many or all the component plots. Averaging the z-scores across
component plots might help address this, but may miss strong individ-
ual plots. Our choice of the maximum has worked well in practice, but
more exploration is needed.

Both cognostics and non-parametric methods are computationally
demanding. In our approach we compute the scagnostics for each par-
tition of each variable and then for the randomly permuted partitions
for each variable. For a moderate sized dataset with thousands of rows,
our R implementation takes about ten seconds on average to evaluate
each partitioning variable. More work on computationally efficient
cognostics is needed. Also, in our work with Scagnostics, we have
found that they sometimes miss very obvious visual patterns. More
work is needed to develop cognostics that are robust to properties such
as sample size, the amount of noise in the data set, and the location
and scale of the axes.

6 CONCLUSION

Small multiple displays are a powerful mechanism to analyze a visual
relationship conditioned on other variables. Multidimensional datasets
offer a challenge due to the combinatorics in the choice of partitioning
variables. In this paper, made a first step in addressing this problem
by describing a method for automatically ranking the small multiple
displays created by the partitioning variables in a data set. Our use of a
randomized permutation test allows our method to detect and discount
non-informative or spurious patterns in small multiple displays. We
also described a set of goodness criteria for small multiple displays that
favors fewer partitions, visually rich patterns that are well-supported
by data observations and are different from the patterns seen in the
unpartitioned view of the same data.

The basis of our approach—the combination of cognostics and non-
parametric tests—is very general and, as we have outlined, there is
much more work to be done exploring this area. We focused on scat-
terplots, as the primary data view, and scagnostics, as measures of
visual patterns, to illustrate our method of evaluating small multiple
displays. But, our method can incorporate a wide range of quality
measures allowing it to be used on different visualization type and to
address different analytic goals. We believe that the development of
new cognostics and the application of them to visual analytics using
non-parameteric approaches will provide analysts with a new gener-
ation of tools that will help them explore their data faster and more
accurately.
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