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ABSTRACT
We introduce and study a new data sketch for processing massive

datasets. It addresses two common problems: 1) computing a sum

given arbitrary filter conditions and 2) identifying the frequent

items or heavy hitters in a data set. For the former, the sketch

provides unbiased estimates with state of the art accuracy. It handles

the challenging scenario when the data is disaggregated so that

computing the per unit metric of interest requires an expensive

aggregation. For example, the metric of interest may be total clicks

per user while the raw data is a click stream with multiple rows

per user. Thus the sketch is suitable for use in a wide range of

applications including computing historical click through rates

for ad prediction, reporting user metrics from event streams, and

measuring network traffic for IP flows.

We prove and empirically show the sketch has good properties

for both the disaggregated subset sum estimation and frequent

item problems. On i.i.d. data, it not only picks out the frequent

items but gives strongly consistent estimates for the proportion of

each frequent item. The resulting sketch asymptotically draws a

probability proportional to size sample that is optimal for estimating

sums over the data. For non i.i.d. data, we show that it typically does

much better than random sampling for the frequent item problem

and never does worse. For subset sum estimation, we show that

even for pathological sequences, the variance is close to that of

an optimal sampling design. Empirically, despite the disadvantage

of operating on disaggregated data, our method matches or bests

priority sampling, a state of the art method for pre-aggregated data

and performs orders of magnitude better on skewed data compared

to uniform sampling. We propose extensions to the sketch that

allow it to be used in combining multiple data sets, in distributed

systems, and for time decayed aggregation.
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1 INTRODUCTION
When analyzing massive data sets, even simple operations such as

computing a sum or mean are costly and time consuming. These

simple operations are frequently performed both by people investi-

gating the data interactively as well as in automated systems which

must monitor or collect a multitude of statistics.

Data sketching algorithms enable the information in these mas-

sive datasets to be efficiently processed, stored, and queried. This

allows them to be applied, for example, in real-time systems, both

for ingesting massive data streams or for interactive analyses.

In order to achieve this efficiency, sketches are designed to only

answer a specific class of question, and there is typically error

in the answer. In other words, it is a form of lossy compression

on the original data where one must choose what to lose in the

original data. A good sketch makes the most efficient use of the

data so that the errors are minimized while having the flexibility to

answer a broad range of questions of interest. Some sketches, such

as HyperLogLog, are constrained to answer very specific questions

with extremely little memory. On the other end of the spectrum,

sampling based methods such as coordinated sampling [3], [8] are

able to answer almost any question on the original data but at the

cost of far more space to achieve the same approximation error.

We introduce a sketch, Unbiased Space Saving, that simulta-

neously addresses two common data analysis problems: the dis-

aggregated subset sum problem and the frequent item problem.

This makes the sketch more flexible than previous sketches that

address one problem or the other. Furthermore, it is efficient as it

provides state of the art performance on the disaggregated subset

sum problem. On i.i.d. streams it has a stronger provable consis-

tency guarantee for frequent item count estimation than previous

results, and on non-i.i.d. streams it performs well both theoretically

and empirically. In addition, we derive an error estimator with good

coverage properties that allows a user to assess the quality of a

disaggregated subset sum result.

The disaggregated subset sum estimation is a more challenging

variant of the subset sum estimation problem [14], the extremely

common problem of computing a sum or mean over a dataset with

arbitrary filtering conditions. In the disaggregated subset sum prob-

lem [6], [18] the data is "disaggregated" so that a per item metric

of interest is split across multiple rows. For example in an ad click

stream, the data arrives as a stream of single clicks that are iden-

tified with each ad while the metric of interest may be the total
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number of clicks per ad. The frequent item problem is the prob-

lem of identifying the heavy hitters or most frequent items in a

dataset. Several sketches exist for both these individual problems.

In particular, the Sample and Hold methods of [6], [? ], [18] address
the disaggregated subset sum estimation problem. Frequent item

sketches include the Space Saving sketch [24], Misra-Gries sketch

[25], and Lossy Counting sketch [23].

Our sketch is an extension of the Space Saving frequent item

sketch, and as such, has stronger frequent item estimation proper-

ties than Sample and Hold. In particular, unlike Sample and Hold,

theorem 3 gives both that a frequent item will eventually be in-

cluded in the sketch with probability 1, and that the proportion of

times it appears will be consistently estimated for i.i.d. streams. In

contrast to frequent item sketches which are biased, our Unbiased

Space Saving sketch gives unbiased estimates for any subset sum,

including subsets containing no frequent items.

Our contributions are in three parts: 1) the development of the

Unbiased Space Saving sketch, 2) the generalizations obtained from

understanding the properties of the sketch and the mechanisms by

which it works, and 3) the theoretical and empirical results estab-

lishing the correctness and efficiency of the sketch for answering

the problems of interest. In particular, the generalizations allow

multiple sketches to be merged so that information from multiple

data sets may be combined as well as allowing it to be applied

in distributed system. Other generalizations include the ability to

handle signed and real-valued updates as well as time-decayed ag-

gregation. We empirically test the sketch on both synthetic and real

ad prediction data. Surprisingly, we find that it even outperforms

priority sampling, a method that requires pre-aggregated data.

This paper is structured as follows. First, we describe the disag-

gregated subset sum problem, some of its applications, and related

sketching problems. We then introduce our sketch, Unbiased Space

Saving, as a small but significant modification of the Space Saving

sketch. We examine its relation to other frequent item sketches, and

show that they differ only in a "reduction" operation. This is used

to show that any unbiased reduction operation yields an unbiased

sketch for the disaggregated subset sum estimation problem. The

theoretical properties of the sketch are then examined. We prove

its consistency for the frequent item problem and for drawing a

probability proportional to size sample. We derive a variance esti-

mator and show that it can be used to generate good confidence

intervals for estimates. Finally, we present experiments using real

and synthetic data.

2 TWO SKETCHING PROBLEMS
2.1 Disaggregated subset sum problem
Many data analysis problems consist of a simple aggregation over

some filtering and group by conditions.

SELECT sum(metric), dimensions
FROM table
WHERE filters
GROUP BY dimensions

This problem has several variations that depend on what is

known about the possible queries and about the data before the

sketch is constructed. For problems in which there is no group by

clause and the set of possible filter conditions are known before

the sketch is constructed, counting sketches such as the Count-

Min sketch [10] and the AMS, or Count, sketch [2] are appropriate.

When the filters and group by dimensions are not known and arbi-

trary, the problem is the subset sum estimation problem. Sampling

methods such as priority sampling [14] can be used to solve it.

These work by exploiting a measure of importance for each row

and sampling important rows with high probability. For example,

when computing a sum, the rows containing large values contribute

more to the sum and should be retained in the sample.

The disaggregated subset sum estimation problem is a more

difficult variant where there is little to no information about row

importance and only a small amount of information about the

queries. For example, many user metrics, such as number of clicks,

are computed as aggregations over some event stream where each

event has the same weight 1 and hence, the same importance. Filters

and group by conditions can be arbitrary except for a small restric-

tion that one cannot query at a granularity finer than a specified

unit of analysis. In the click example, the finest granularity may

be at the user level. One is allowed to query over arbitrary subsets

of users but cannot query a subset of a single user’s clicks. The

data is "disaggregated" since the relevant per unit metric is split

across multiple rows. We refer to something at the smallest unit of

analysis as an item to distinguish it from one row of data.

More formally, the disaggregated subset sum problem answers

arbitrary queries of the form

SELECT sum(metric), dimensions
FROM (SELECT sum(raw_metric) as metric,

unit_dimensions
FROM table
GROUP BY unit_dimensions

) preaggregation
WHERE filters
GROUP BY dimensions

given only the unaggregated table and a fixed unit of analysis.

Since pre-aggregating to compute per unit metrics does not

reduce the amount of relevant information, it follows that the best

accuracy one can achieve is to first pre-aggregate and then apply

a sketch for subset sum estimation. This operation, however, is

extremely expensive, especially as the number of units is often

large. Examples of units include users and ad id pairs for ad click

prediction, source and destination IP pairs for IP flow metrics, and

distinct search queries or terms. Each of these have trillions or more

possible units generating quadrillions or more rows of data.

Several sketches based on sampling have been proposed that

address the disaggregated subset sum problem. These include the

bottom-k sketch [7] which samples items uniformly at random, the

class of "NetFlow" sketches [15], and the Sample and Hold sketches

[6], [? ], [18]. Of these, the Sample-and-Hold sketches are superior

as they use strictly more information than the other methods to

construct samples and maintain aggregate statistics. We describe

them in more depth in section 4.4.

The Unbiased Space Saving sketch we propose throws away

even less information than previous sketches. Despite being com-

puted on disaggregated data, this surprisingly allows it to match or

slightly outperform priority sampling, a nearly optimal subset sum

estimation algorithm [30], which uses pre-aggregated data.



2.2 Applications
The disaggregated subset sum problem has many applications.

These include machine learning and ad prediction [29], analyz-

ing network data [15], [6], detecting distributed denial of service

attacks [28], database query optimization and join size estimation

[31], as well as analyzing web users’ activity logs or other business

intelligence applications.

For example, in ad prediction the historical click-through rate

and other historical data are among the most powerful features

for future ad clicks [19]. Since there is no historical data for newly

created ads, one may use historical click or impression data for

previous ads with similar attributes such as the same advertiser

or product category [27]. In join size estimation, the sketch may

be used to estimate the size under the nearly arbitrary filtering

conditions that a user might impose.

It also can be naturally applied to hierarchical aggregation prob-

lems. For network traffic data, IP addresses are arranged hierarchi-

cally. A network administrator may both be interested in individual

nodes that receive or generate an excess of traffic or aggregated

traffic statistics on a subnet. Several sketches have been developed

to exploit hierarchical aggregations including [9], [26], and [32].

Since a disaggregated subset sum sketch can handle arbitrary group

by conditions, it can compute the next level in a hierarchy.

2.3 Frequent item problem
The frequent item or heavy hitter problem is related to the disag-

gregated subset sum problem. Like the disaggregated subset sum

problem, frequent item sketches are computed with respect to a

unit of analysis which defines a partial aggregation of the data.

Rather than allowing for arbitrary subset queries, the problem is

more simple as only the most frequent items are of interest. Indeed,

if pre-aggregated data were available, the frequent item problem

can be solved exactly by using a max priority queue.

Most frequent item sketches are deterministic and have deter-

ministic guarantees on both the identification of frequent items and

the error in the counts of individual items. However, since counts

in frequent item sketches are biased, further aggregation on the

sketch can lead to large errors when bias accumulates, as shown in

section 5.3.

Our sketch is based on a deterministic frequent item sketch, but

applies randomization to generate unbiased count estimates. This

allows it to be used in subset sum queries. Furthermore, theorems

3 and 10 show it retains good frequent item estimation properties.

3 UNBIASED SPACE-SAVING
Our sketch is based on the Space Saving sketch [24] used in fre-

quent item estimation. We refer to it as Deterministic Space Saving

to differentiate it from our randomized sketch. For simplicity, we

consider the case where the metric of interest is the count for each

item. The Deterministic Space Saving sketch works by maintaining

a list ofm bins labeled by distinct items. A new row with item i
increments i’s counter if it is in the sketch. Otherwise, the smallest

bin is incremented, and its label is changed to i . Our sketch intro-

duces one small modification. If N̂min is the count for the smallest

bin, then only change the label with probability 1/(N̂min + 1). This

Algorithm 1 Space-Saving algorithms

• Maintain anm list of (item, count ) pairs initialized to have

count 0.

• For each new row in the stream, let xnew be its item and

increment the corresponding counter if the item is in the

list. Otherwise, find the pair (xmin , N̂min ) with the smallest

count. Increment the counter and replace the item label with

xnew with probability p.
• For the original Space Saving algorithm p = 1. For unbiased

count estimates p = 1/(N̂min + 1).

Notation Definition

t Number of rows encountered or time

N̂i (t ) Estimate for item i at time t

N̂min (t ) Count in the smallest bin at time t
ni ,ntot True count for item i and total over all items

N̂S ,nS Estimated and true total count of items in S
N,n Vector of estimated and true counts

pi Relative frequency ni/ntot of item i
m Number of bins in sketch

Zi Binary indicator if item i is a label in the sketch

πi Probability of inclusion P (Zi = 1)
CS Number of items from set S in the sketch

Table 1: Table of symbols

change provably yields unbiased counts as shown in theorem 1.

Algorithm 1 describes these Space Saving sketches more formally.

Theorem 1. For any item x , randomized Space-Saving given in
algorithm 1 gives an unbiased estimate of the count of x .

Proof. Let N̂x (t ) denote the estimate for the count of x at time

t and N̂min (t ) be the count in the smallest bin. We show that the

expected increment toNx (t ) is 1 ifx is the next item and 0 otherwise.

Suppose x is the next item. If it is in the list of counters, then it is

incremented by exactly 1. Otherwise, it incremented by N̂min (t )+1
with probability 1/(N̂min (t ) + 1) for an expected increment of 1.

Now suppose x is not the next item. The estimated count N̂x (t )
can only be modified if x is the label for the smallest count. It is

incremented with probability N̂x (t )/(N̂x (t ) + 1). Otherwise N̂x (t +
1) is updated to 0. This gives the update an expected increment of

EN̂x (t + 1) − N̂x (t ) = (N̂x (t ) + 1)N̂x (t )/(N̂x (t ) + 1) − N̂x (t ) = 0

when the new item is not x . □

We note that although given any fixed item x , the estimate of its

count is unbiased, each stored pair often contains an overestimate

of the item’s count. This occurs since any item with a positive count

will receive a downward biased estimate of 0 conditional on it not

being in the sketch. Thus, conditional on an item appearing in the

list, the count must be biased upwards.

4 RELATED SKETCHES AND FURTHER
GENERALIZATIONS

Although our primary goal is to demonstrate the usefulness of

the Unbiased Space-Saving sketch, we also try to understand the



mechanisms by which it works and use this understanding to find

extensions and generalizations. Readers only interested in the prop-

erties of Unbiased Space Saving may skip to the next section.

In particular, we examine the relationships between Unbiased

Space Saving and existing deterministic frequent items sketches

as well as its relationship with probability proportional to size

sampling. We show that existing frequent item sketches all share

the same structure as an exact increment of the count followed by

a size reduction. Existing methods implement this size reduction

as an adaptive sequential thresholding operation that biases the

counts. Our modification replaces the thresholding operation with

an unbiased subsampling operation. This also allows us to extend

the sketch, such as endowing it with an merge operation that can be

used to combine datasets or in distributed computing environments.

The sampling design in the reduction step may also be chosen

to give the sketch different properties. For example, time-decayed

sampling methods may be used to weight recently occurring items

more heavily. If multiple metrics are being tracked, multi-objective

sampling [5] may be used.

4.1 Probability proportional to size sampling
Our key observation in generalizing Unbiased Space Saving is that

the choice of label is a sampling operation. In particular, this sam-

pling operation chooses the item with probability proportional to

its size. We briefly review probability proportional to size sampling

and priority sampling as well as the Horvitz-Thompson estimator

which unbiases the sum estimate from any biased sampling scheme.

Probability proportional to size sampling (PPS) is of special impor-

tance for sampling for subset sum estimation as it is essentially

optimal. Any good sampling procedure mimics PPS sampling.

For unequal probability samples, an unbiased estimator for the

sum over the true population {xi } is given by the Horvitz-Thomson

estimator Ŝ =
∑
i
xiZi
πi whereZi denotes whether xi is in the sample

and πi = P (Zi = 1) is the inclusion probability.

When drawing a sample of fixed sizem, it is trivial to see that an

optimal set of inclusion probabilities is given by πi ∝ xi when this

is possible. In other words, it generates a probability proportional

to size (PPS) sample. In this case, each of the m non-zero terms

in the sum is constant, and the estimator is exact and has zero

variance. When the data is skewed, drawing a truly probability

proportional size sample may be impossible for sample sizes greater

than 1. For example, given values 1, 1, and 10, any scheme to draw

2 items with probabilities exactly proportional to size has inclusion

probabilities bounded by 1/10, 1/10, and 1. The expected sample

size is at most 12/10 < 2. In this case, one often chooses inclusion

probabilities πi = min{αxi , 1} for some constant α . The inclusion
probabilities are proportional to the size if the size is not too large

and 1 otherwise.

Many algorithms exist for generating PPS samples. We briefly

describe two as they are necessary for the merge operation given in

section 4.5. The splitting procedure of [13] provides a class of meth-

ods to generate a fixed size PPS sample with the desired inclusion

probabilities. Another method which approximately generates a

PPS sample is priority sampling. Instead of exact inclusion probabil-

ities which are typically intractable to compute, priority sampling

generates a set of pseudo-inclusion probabilities.

Priority sampling is a method that approximately draws a PPS

sample. It generates a random priority Ri = Ui/ni for an item i
with value ni . The values corresponding to them smallest priorities

form the sample. Surprisingly, by defining the threshold τ be the

(m + 1)th smallest priority, it can be shown that for almost any

function of just the samples, the expected value under this sam-

pling scheme is the same as the expected value under independent

Bernoulli (min{1,niτi }) sampling.

4.2 Misra-Gries and frequent item sketches
The Misra-Gries sketch [25], [12], [21] is a frequent item sketch

and is isomorphic to the Deterministic Space Saving sketch [1].

The only difference is that it decrements all counters rather than

incrementing the smallest bin when processing an item that is not in

the sketch. Thus, the count in the smallest bin for the Deterministic

Space Saving sketch is equal to the total number of decrements in

the Misra-Gries sketch. Given estimates N̂ from a Deterministic

Space Saving sketch, the corresponding estimated item counts for

theMisra-Gries sketch are N̂MG
i = (N̂i−N̂min )+ where N̂min is the

count for the smallest bin and the operation (x )+ truncates negative
values to be 0. In other words, the Misra-Gries estimate is the same

as the Deterministic Space Saving estimate soft thresholded by

N̂min . Equivalently, the Deterministic Space Saving estimates are

obtained by adding back the total number of decrements N̂min to

any nonzero counter in the Misra-Gries sketch.

The sketch has a deterministic error guarantee. When the total

number of items is ntot then the error for any item is at most

ntot /m.

Other frequent item sketches include the deterministic lossy

counting and randomized sticky sampling sketches [23]. We de-

scribe only lossy counting as sticky sampling has both worse prac-

tical performance and weaker guarantees than other sketches.

A simplified version of Lossy counting applies the same decre-

ment reduction as the Misra-Gries sketch but decrements occur at a

fixed schedule rather than one which depends on the data itself. To

count items with frequency > N /m, all counters are decremented

after everym rows. Lossy counting does not provide a guarantee

that the number of counters can be bounded bym. In the worst

case, the size can grow to m log(N /m) counters. Similar to the

isomorphism between the Misra-Gries and Space-saving sketches,

the original Lossy counting algorithm is recovered by adding the

number of decrements back to any nonzero counter.

4.3 Reduction operations
Existing deterministic frequent item sketches differ in only the

operation to reduce the number of nonzero counters. They all have

the form described in algorithm 2 and have reduction operations

that can be expressed as a thresholding operation. Although it is

isomorphic to the Misra-Gries sketch, Deterministic Space Saving’s

reduction operation can also be described as collapsing the two

smallest bins by adding the larger bin’s count to the smaller one’s.

Modifying the reduction operation provides the sketch with dif-

ferent properties.We highlight several uses for alternative reduction

operations.

The reduction operation for Unbiased Space Saving can be seen

as a PPS sample on the two smallest bins. A natural generalization is



Algorithm 2 General frequent item sketching

• Maintain current estimates of counts N̂(t )
• Increment N̂ ′xt+1 (t + 1) ← N̂xt+1 (t ) + 1.

• N̂(t + 1) ← ReduceBins ( ˆN′(t + 1), t + 1)

to consider a PPS sample on all the bins. We highlight three benefits

of such a scheme. First, items can be added with arbitrary counts

or weights. Second, the sketch size can be reduced by multiple

bins in one step. Third, there is less quadratic variation added by

one sampling step, so error can be reduced. The first two benefits

are obvious consequences of the generalization. To see the third,

consider when a new row contains an item not in the sketch, and

let J be the set of bins equal to N̂min . When using the thresh-

olded PPS inclusion probabilities from section 4.1, the resulting PPS

sample has inclusion probability α = |J |/(1 + |J |N̂min ) for the
new row’s item and α N̂min for bins in J . Other bins have inclu-

sion probability 1. After sampling, the Horvitz-Thompson adjusted

counts are 1/|J | + N̂min . Unbiased Space Saving is thus a further

randomization to convert the real valued increment 1/|J | over |J |

bins to an integer update on a single bin. Since Unbiased Space

Saving adds an additional randomization step, the PPS sample has

smaller variance. The downside of the more general PPS reduction,

however, is that it requires real valued counters that require more

space per bin. The update cost when using the stream summary

data structure [24] remains O (1).
Changing the sampling procedure can also provide other desir-

able behaviors. Applying forward decay sampling [11] allows one

to obtain estimates that weight recent items more heavily. Other

possible operations include adaptively varying the sketch size in

order to only remove items with small estimated frequency.

Furthermore, the reduction step does not need to be limited

strictly to subsampling. Theorem 2 gives that any unbiased reduc-

tion operation yields unbiased estimates. This generalization allows

us to analyze Sample-and-Hold sketches.

Theorem 2. Any reduction operation where the expected post-
reduction estimates are equal to the pre-reduction estimates yields
an unbiased sketch for the disaggregated subset estimation problem.
More formally, if E(N̂(t ) |Spre (t )) = N̂pre (t ) where Spre (t ), N̂pre (t )
are the sketch and estimated counts before reduction at time step t
and N̂(t ) is the post reduction estimate, then N̂(t ) is an unbiased
estimator.

Proof. Since N̂pre (t ) = N̂post (t−1)+ (n(t )−n(t−1)), it follows
that N̂(t )−n(t ) is a martingale with respect to the filtration adapted

to S (t ). Thus, EN̂(t ) = n(t ), and the sketch gives unbiased estimates

for the disaggregated subset sum problem. □

We also note that reduction operations can be biased. The merge

operation on the Misra-Gries sketch given by [1] performs a soft-

thresholding by the size of the (m + 1)th counter rather than by 1.

This also allows it to reduce the size of the sketch by more than 1

bin at a time. It can be modified to handle deletions and arbitrary

numeric aggregations by making the thresholding operation two-

sided so that negative values are shrunk toward 0 as well. In this

case, we do not provide a theoretical analysis of the properties.

Modifying the reduction operation also yields interesting appli-

cations outside of counting. In particular, a reduction operation on

matrices can yield accurate low rank decompositions [22], [17].

4.4 Sample and Hold
To our best knowledge, the current state of the art sketches designed

to answer disaggregated subset sum estimation problems are the

family of sample and hold sketches [18], [16], [6]. These methods

can also be described with a randomized reduction operation.

For adaptive sample and hold [6], the sketch maintains an auxil-

iary variable p which represents the sampling rate. Each point in

the stream is assigned a Ui ∼ Uni f orm(0, 1) random variable, and

the items in the sketch are those withUi < p. If an item remains in

the sketch starting from time t0, then the counter stores the number

of times it appears in the stream after the initial time. Every time

the sketch becomes too large, the sampling rate is decreased so that

under the new rate p′, one item is no longer in the sketch.

It can be shown that unbiased estimates can be obtained by

keeping a counter value the same with probability p′/p and decre-

menting the counter by a random Geometric (p′) random variable

otherwise. If a counter becomes negative, then it is set to 0 and

dropped. Adding back the mean (1 − p′)/p′ of the Geometric ran-
dom variable to the nonzero counters gives an unbiased estimator.

Effectively, the sketch replaces the first time an item enters the

sketch with the expected Geometric (p′) number of failed tries to

enter the sketch. Subsequently, it adds the actual number ot times an

item appears. Using the memoryless property ofGeometric random
variables, it is easy to show that the sketch satisfies the conditions

of theorem 2. It is also clear that one update step adds more error

than Unbiased Space Saving as it potentially adds Geometric (p′)
noise with variance (1 − p′)/p′2 to every bin. Furthermore, the

eliminated bin may not even be the smallest bin. Since p′ is the
sampling rate, it is expected to be close to 0. By contrast, Unbiased

Space Saving has bounded increments of 1 for bins other than the

smallest bin, and the only bin that can be removed is the current

smallest bin.

The discrepancy is especially prominent for frequent items. A

frequent item in an i.i.d. stream for Unbiased Space Saving enters

the sketch almost immediately, and the count for the item is nearly

exact as shown in theorem 3. For adaptive sample and hold, the

first ni (1 − p
′) occurrences of item i are expected to be discarded

and replaced with a high variance Geometric (p′) random variable.

Since p′ is typically small in order to keep the number of counters

low, most of the information about the count is discarded.

Another sketch, step sample-and-hold, avoids the problem by

maintaining counts for each "step" when the sampling rate changes.

However, this is more costly both from storage perspective as well

as a computational one. For each item in the sketch, computing

the expected count takes time quadratic in the number of steps Ji
in which the step’s counter for the item is nonzero, and storage is

linear in Ji .

4.5 Merging and Distributed counting
The more generalized reduction operations allow for merge opera-

tions on the sketches. Merge operations and mergeable sketches

[1] are important since they allow a collection of sketches, each
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Figure 1: In a merge operation, the Misra-Gries sketch sim-
ply removes mass from the extra bins with small count. Un-
biased Space Saving moves the mass from infrequent items
to moderately frequent items. It loses the ability to pick
those items as frequent items in order to provide unbiased
estimates for the counts in the tail.

answering questions about the subset of data it was constructed on,

to be combined to answer a question over all the data. For example,

a set of frequent item sketches that give trending news for each

country can be combined to give trending news for Europe as well

as a multitude of other possible combinations. Another common

scenario arises when sketches are aggregated across time. Sketches

for clicks may be computed per day, but the final machine learning

feature may combine the last 7 days.

Furthermore, merges make sketches more practical to use in

real world systems. In particular, they allow for simple distributed

computation. In a map-reduce framework, each mapper can quickly

compute a sketch, and only a set of small sketches needs to be sent

over the network to perform an aggregation at the reducer.

As noted in the previous section, the Misra-Gries sketch has

a simple merge operation which preserves its deterministic error

guarantee. It simply soft thresholds by the (m+1)th largest counter

so that at mostm nonzero counters are left. Mathematically, this is

expressed as N̂new
i =

(
N̂

(1)
i + N̂

(2)
i − N̂ combined

(m+1)

)
+
where N̂

(s )
i is

the estimated count from sketch s and N̂ combined
(m+1) is the (m + 1)th

smallest nonzero value obtained by summing the estimated counts

from the two sketches. Previously, the only merge operations [1],

[4] for Deterministic Space Saving were equivalent to first con-

verting it a Misra-Gries sketch to perform a merge, and optionally

adding back the threshold value. Theorem 2 shows that by replacing

the pairwise randomization with priority sampling or some other

sampling procedure still allows one to obtain an Unbiased Space

Saving merge that can preserve the expected count in the sketch

rather than biasing it downward.

The trade-off required for such an unbiased merge operation

is that the sketch may detect fewer of the top items by frequency

than the biased Misra-Gries merge. Rather than truncating and

preserving more of the "head" of the distribution, it must move

mass from the tail closer to the head. This is illustrated in figure 1.

We note that this trade-off is not evident in theoretical results.

5 SKETCH PROPERTIES
We study the properties of the space saving sketches here. These

include provable asymptotic properties, variance estimates, heuris-

tically and empirically derived properties, behavior on pathological

and adversarial sequences, and costs in time and space. In particular,

we prove that when the data is i.i.d., the sketch eventually includes

all frequent items with probability 1 and that the estimated propor-

tions for these frequent items is consistent. Furthermore, we prove

there is a sharp transition between frequent items with consistent

estimated proportions and infrequent items which are sampled

with probability proportional to their sizes and whose bins contain

little to no item specific count information. This is also borne out

in the experimental results where the observed inclusion proba-

bilities match the theoretical ones and in estimation error where

Unbiased Space Saving matches or even exceeds the accuracy of

priority sampling. In pathological cases, we demonstrate that De-

terministic Space Saving completely fails at the subset estimation

problem. Furthermore, these pathological sequences arise naturally.

Any sequence where items’ arrival rates change significantly over

time forms a pathological sequence. We show that we can derive

a variance estimator as well. Since it works under pathological

scenarios, the estimator is upward biased. However, we heuristi-

cally show that it is close to the variance for a PPS sample. This is

confirmed in experiments as well. For both i.i.d. and pathological

cases, we examine the resulting empirical inclusion probabilities.

Likewise, they behave similarly to a probability proportional to size

or priority sample.

5.1 Asymptotic consistency
Our main theoretical result for frequent item estimation states that

the sketch contains all frequent items eventually on i.i.d. streams.

Thus it does no worse than Deterministic Space Saving asymptoti-

cally. We also derive a finite sample bound in section 5.3. Further-

more, the guarantee states that the estimated proportion of times

the item appears is strongly consistent and goes to 0. This is better

than deterministic guarantees which only ensure that the error is

within some constant.

Assume that items are drawn from a possibly infinite, discrete

distribution with probabilities p1 ≥ p2 ≥ . . . and, without loss of
generality, assume they are labeled by their index into this sequence

of probabilities. Letm be the number of bins and t be the number

of items processed by the sketch. We will also refer to t as time.

Let I (t ) be the set of items that are in the sketch at time t and
Zi (t ) = 1(i ∈ I (t )). To simplify the analysis, we will give a small

further randomization by randomly choosing the smallest bin to

increment whenmultiple bins share the same smallest count. Define

an absolutely frequent item to be an item drawn with probability

> 1/m wherem is the number of bins in the sketch. By removing

absolutely frequent items and decrementing the sketch size by 1

each time, the set of frequent item can be defined by the condition in

corollary 4 which depends only on the tail probability. We first state

the theorem and a corollary that immediately follows by induction.

Theorem 3. If p1 > 1/m, then as the number of items t → ∞,
Z1 (t ) = 1 eventually.

Corollary 4. If pi/
∑
j≥i pj > 1/(m − i + 1) for all i < κ and for

some κ < m, then Zi (t ) = 1 for all i < κ eventually.



Corollary 5. Given the conditions of corollary 4, the estimate
p̂i (t ) = N̂i (t )/t is strongly consistent for all i < κ as t → ∞.

Proof. Suppose item i becomes sticky after t0 items are pro-

cessed. After t0, the number of times i appears is counted exactly

correctly. As t → ∞, the number of times i appears after t0 will
dominate the number of times it appears before t0. By the strong

law of large numbers, the estimate is strongly consistent. □

Lemma 6. Let α =
∑
j>m pj . For any α ′ < α , Nmin (t ) > α ′t/m

eventually as t → ∞.

Proof. Note that any item not in the sketch is added to the

smallest bin. The probability of encountering an item not in the

sketch is lower bounded by α . Furthermore, by the strong law of

large numbers, the actual number of items encountered that are not

in the sketch must be > α ′t+m eventually. If there are α ′t+m items

added to the smallest bin, then withm bins, N̂min (t ) > α ′t/m. □

We now give the proof of theorem 3. The outline of the proof is

as follows. We first show that item 1 will always reappear in the

sketch if it is replaced. When it reappears, its bin will accumulate

increments faster than the average bin, and as long as it is not

replaced during this processes, it will escape and never return to

being the smallest bin. Since the number of items that can be added

before the label on the minimum bin is changed is linear in the size

of the minimum bin, there is enough time for item 1 to "escape"

from the minimum bin with some constant probability. If it fails to

escape on a given try, it will have infinitely many tries, so eventually

it will escape.

Proof. Trivially, N̂min (t ) ≤ t/m since there arem bins, and the

minimum is less than the average number of items in each bin. If

item 1 is not in the sketch, then the smallest bin will take on 1 as

its label with probability p1/(1 + N̂min (t )) ≥ mp1/(m + t ). Since
conditional on item 1 not being in the sketch, these are independent

events, the second Borel-Cantelli lemma gives that item 1 is in the

sketch infinitely often.Whenever item 1 is in the sketch, N̂1 (t )−t/m
is a submartingale with bounded increments. Furthermore, it can

be lower bounded by an asymmetric random walk Ñ1 (t ) − t/m
where the expected increment is ≥ p1 − 1/m. Let ϵ = p1 − 1/m. Let

t0 be the time item 1 flips the label of the smallest bin. Lemma 6

gives that the difference t0/m − N̂1 (t0) < t0 (1−α
′)/m for any α ′ <∑

j>m pj If item 1 is not displaced, then after d = 2t0 (1 − α
′)/mϵ

additional rows, Azuma’s inequality gives after rearrangement,

P (N̂i (t0+d )− (t0+d )/m < 0) ≤ P (N̂i (t0+d )− N̂i (t0)−d/m−dϵ <
−dϵ/2) < exp (−dϵ2/8) < exp (−ϵ (1−α ′)/4m). The probability that
item 1 is instead displaced during this time is < d/(d + α ′t0) which
can be simplified to some positive constant that does not depend

on t0. In other words, there is some constant probability γ such

that item 1 will go from being in the smallest bin to a value greater

than the mean. From there, there is a constant probability that the

bounded sub-martingle N̂i (t0+d+∆)− (t0+d+∆)/m never crosses

back to zero or below. Since item 1 appears infinitely often, it must

either become sticky or there are infinitely many 0 upcrossing for

N̂1 (t ) − t/m. In the latter case, there is a constant probability ρ > 0

that lower bounds the probability the item becomes sticky. Thus a

geometric random variable lower bounds the number of tries before

item i "sticks," and it must eventually be sticky. □

5.2 Approximate PPS Sample
We prove that for i.i.d. streams, Unbiased Space Saving approxi-

mates a PPS sample and does sowithout the expensive pre-aggregation

step. This is born out by simulations as, surprisingly, it often empir-

ically outperforms priority sampling from computationally expen-

sive, pre-aggregated data. Since frequent items are included with

probability 1, we consider only the remaining bins and the items in

the tail.

Lemma 7. Let Bi denote the count in the ith bin. If p1 < 1/m then
Bi (t ) − t/m < (log t )2 + 1 eventually.

Proof. If Bi (t ) > t/m then Bi (t ) is not the smallest bin. In this

case, the expected difference after 1 time step is bounded above by

δ := p1−1/m < 0. Consider a randomwalkW (t ) with an increment

of 1 − 1/m with probability p1 and −1/m otherwise. By Azuma’s

inequality, if it is started at time t − s at value 1 then the probability

it exceeds (log t )2 is bounded by P (W (t ) − s/m − 1 > c (t ) + δs ) <
exp (−(c (t ) + δs )2/2s ). Since for Bi (t ) − t/m to be > c (t ), it must

upcross 0 at some time t − s , maximizing over s gives an upper

bound on the probability Bi (t ) − t/m > c (t ). It is easy to derive

that s = c (t )/δ is the maximizer and the probability is bounded by

exp (−δc (t )). When c (t ) = (log t )2,
∑∞
t=1 exp (−δc (t )) < ∞, and the

conclusion holds by the Borel-Cantelli lemma. □

Lemma 8. If p1 < 1/m then 0 ≤ t/m − N̂min ≤ m(log t )2 +m
and 0 ≤ N̂max − t/m ≤ (log t )2 + 1 eventually

Proof. Since there are finitely many bins, by the lemma 7, 0 ≤

N̂max − t/m ≤ (log t )2 + 1 eventually. The other inequality holds

since t/m − N̂min < m(N̂max − t/m) □

Theorem 9. If p1 < 1/m, then the items in the sketch converge in
distribution to a PPS sample.

Proof. The label in each bin is obtained by reservoir sampling.

Thus it is a uniform sample on the rows that go into that bin. Since

all bins have almost exactly the same size t/m + O ((log t )2), it
follows that item i is a label with probability pi +O ((log t )2/t ). □

The asymptotic analysis of Unbiased Space Saving splits items

into two regimes. Frequent items are in the sketch with probability

1 and the associated counts are nearly exact. The threshold at which

frequent and infrequent items are divided is given by corollary 4 and

is the same as the threshold in the merge operation shown in figure

1. The counts for infrequent items in the tail are all N̂min (t ) (1+o(1)).
The actual probability for the item in the bin is irrelevant since

items not in the sketch will force the bin’s rate to catch up to the

rate for other bins in the tail. Since an item changes the label of

a bin with probability 1/B where B is the size of the bin, the bin

label is a reservoir sample of size 1 for the items added to the bin.

Thus, the labels for bins in the tail are approximately proportional

to their frequency. Figure 2 illustrates that the empirical inclusion

probabilities match the theoretical ones for a PPS sample. The

item counts are chosen to approximate a rounded Weibull (5 ×
10

5, 0.15) distribution. This is a skewed distribution where the

standard deviation is roughly 30 times the mean.
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Figure 2: The inclusion probability for each item empirically
behaves like the inclusion probability for a probability pro-
portional to size sample. This is also nearly equivalent to the
inclusion probabilities for a priority sample.

We note, however, that the resulting PPS sample has limita-

tions not present in PPS samples on pre-aggregated data. For pre-

aggregated data, one has both the original value xi and the Horvitz-
Thompson adjusted value xi/πi where πi is the inclusion probabil-

ity. This allows the sample to compute non-linear statistics such

as the variance which is a quadratic function

∑
i x

2

i Zi/πi . With the

PPS samples from disaggregated subset sum sketching, only the

adjusted values are observed.

5.3 Pathological sequences
Deterministic Space Saving has remarkably low error when estimat-

ing the counts of frequent items [9]. However, we will show that it

fails badly when estimating subset sums when the data stream is

not i.i.d.. Unbiased Space Saving performs well on both i.i.d. and

on pathological sequences.

Pathological cases arise when an item’s arrival rate changes over

time rather than staying constant. Consider a sketch with 2 bins.

For a sequence of c 1’s and c 2’s followed by a single 3 and 4, the

Deterministic Space Saving algorithm will always return 3 and 4,

each with count c + 1. By contrast, Unbiased Space Saving will

return 1 and 2 with probability (1 − 1/c )2 ≈ 1 when c is large. Note
that in this case, the count for each frequent item is slightly below

the threshold that guarantees inclusion in the sketch, c < n/2. This
example illustrates the behavior for the deterministic algorithm.

When an item is not in the "frequent item head" of the distribution

then the bins that represent the tail pick the labels of the most

recent items without regard to the frequency of older items.

We note that natural pathological sequences can easily occur.

For instance, partially sorted data can naturally lead to such patho-

logical sequences. This can occur from sketching the output of

some join. Data partitioned by some key where the partitions are

processed in order is another case. We explore this case empirically

in section 6. Periodic bursts of an item followed by periods in which

its frequency drops below the threshold of guaranteed inclusion are

another example. The most obvious pathological sequence is the

case where every row is unique. The Deterministic Space Saving

sketch always consists of the lastm items rather than a random

sample, and no meaningful subset sum estimate can be derived.

For Unbiased Space Saving, we show that even for non-i.i.d.

sequences, it essentially never has an inclusion probability worse

than simple random sampling which has inclusion probability 1 −

(ntot − ni )m/(ntot )m ≈ 1 − (1 − ni/ntot )
m

where (x )m denotes

themth
falling factorial.

Theorem 10. An item i occurring ni times has worst case inclu-
sion probability πi ≥ 1 − (1 − ni/ntot )

m . An item with asymp-
totic frequency ni = αn/m + o(n/m) has an inclusion probability
πi ≥ 1 − e−α + o(1) as n,m → ∞.

Proof. Whether an item is in the sketch depends only on the

sequence of additions to the minimum sized bin. LetTb be last time

an item is added to bin b while it is the minimum bin. Let Ci,b be

the number of times item i is added to bin b by time Tb and Lb be

the count of bin b at time Tb . Item i is not the label of bin b with

probability 1 −Ci,b/Lb , and it is not in the sketch with probability∏
b (1 −Ci,b/Lb ). Note that for item i to not be in the sketch, the

last occurrence of i must have been added to the minimum sized

bin. Thus, maximizing this probability under the constraints that∑
b Lb ≤ n and

∑
b Ci,b = ni gives an upper bound on 1 − πi and

yields the stated result. □

Wenote that the bound is often quite loose. It assumes a patholog-

ical sequence where the minimum sized bin is as large as possible,

namely Lb = ntot /m. If Lb ≤ γntot /m, the asymptotic bound

would be πi ≥ 1 − e−α /γ + o(1).
At the same time, we note that the bound is tight in the sense

that one can construct a pathological sequence that achieves the

upper bound. Consider the sequence consisting of ntot −ni distinct
items followed by item i for ni times with ni and ntot both being

multiples ofm. It is easy to see that the only way that item i is not
in the sketch is for it no bin to ever take on label i and for the bins

to all be equal in size to the minimum sized bin. The probability of

this event is equal to the given upper bound.

Although Deterministic Space Saving is poor on pathological se-

quences, we note that if data arrives in uniformly random order or if

the data stream consists of i.i.d. data, one expects the Deterministic

Space Saving algorithm to share similar unbiasedness properties

as the randomized version as in both cases the label for a bin can

be treated roughly as a uniform random choice out of the items in

that bin.

5.4 Variance
In addition to the count estimate, one may also want an estimate

of the variance. In the case of i.i.d. streams, this is simple since it

forms an approximate PPS sample. Since the inclusion of items is

negatively correlated, a fixed size PPS sample of sizem has variance

upper bounded by

VarPPS (N̂i ) ≤ αini (1 − πi ). (1)

When the marginal sampling probabilities πi = min{1,αni } are
small, this upper bound is nearly exact. For the non-i.i.d. case, we

provide a coarse upper bound. Since N̂i (t ) − ni (t ) is a martingale

as shown in theorem 2, the quadratic variation process taking the

squares of the increments

∑
t (N̂i (t + 1) − N̂i (t ) −ni (t + 1) +ni (t ))

2

yields an unbiased estimate of the variance. There are only two

cases where the martingale increment is non-zero: the new item



is i and i is not in the sketch or the new item is not i and item i is
in the smallest bin. In each case the expected squared increment

is N̂min (t ) − 1 since the updated value is 1 + N̂min (t )Z̃t where

Z̃t ∼ Bernoulli (Nmin (t )
−1). Let τi be the time when item i becomes

"sticky." That is the time at which a bin acquires label i and never

changes afterwards. If item i does not become sticky, then τi = n.
Define κi = ni (τi ). It is the number of times item i is added until

it becomes sticky. This leads to the following upper bound on the

variance

Var(N̂i ) ≤

κi∑
j=0
E
[(
N̂min −

⌊ j
m

⌋)
+
− 1

]
(2)

≤ E(N̂minκi ). (3)

We note that the same variance argument holds when computing a

further aggregation to estimate nS =
∑
i ∈S ni for a set of items S .

In this case κS is the total number of times items in S are added to

the sketch excluding the deterministic additions to the final set of

"sticky" bins.

To obtain a variance estimate for a count, we plug in an estimate

for κ̂i into equation 3. We use the following estimate

κ̂S = N̂minCS (4)

V̂ar(N̂S ) = N̂ 2

minCS (5)

where CS is the greater of 1 and the number of bins labeled with

an item in S .
The estimate κ̂S is an upward biased estimate for κS . For items

with count ≤ N̂min , one has no information about their relative

frequency compared to other infrequent items. Thus, we choose

the worst case as our estimate κ̂S = N̂min . For items with count

> N̂min , we also take a worst case approach for estimating κ.
Consider a bin with size ≤ V − 1. The probability that an addi-

tional item will cause a change in the label is 1/V . Since N̂min is

the largest possible "non-sticky" bin, it follows κi − 1 < Y where

Y ∼ Geometric (1/N̂min ). Taking the expectation given N̂min gives

the upward biased estimate κ̂i = N̂min + 1. In this case, we drop

the 1 for simplicity and because it is an overestimate.

We compare this variance estimate with the variance of a Poisson

PPS sample and show that they are similar. They are nearly identical

for infrequent items, but Unbiased Space Saving adds an additional

term to the variance for frequent items. In the i.i.d. scenario for

Unbiased Space-Saving, ECi = πi → ni/α and N̂min converges to

α for some α > 0. Plugging these into equation 5 gives a variance

estimate of αni which differs only by a factor of 1 − πi from the

variance of a Poisson PPS sample given in equation 1. For infrequent

items, πi is typically small. For frequent items, a Poisson PPS sample

has inclusion probability 1 and zero variance. In this case, the worst

case behavior for Unbiased Space Saving contributes the same

variance as an infrequent item. The similar behavior to PPS samples

is also borne out by experimental results. Figure 9 shows that the

variance estimate is often very accurate and close to the variance

of a true PPS sample.

While the empirical variance estimate in equation 5 provides

more accurate results, note that N̂min ≤ ntot /m and κS ≤ nS , so
that Var(N̂S ) ≤ ntotnS /m provides a trivial but loose upper bound

on the variance that scales inversely with the number of samples

m as expected.

5.5 Confidence Intervals
As the inclusion of a specific item is a binary outcome, confidence

intervals for individual counts are meaningless. However, the vari-

ance estimate allows one to compute Normal confidence intervals

when computing sufficiently large subset sums. Thus, a system

employing the sketch can provide estimates for the error along

with the count estimate itself. These estimates are valid even when

the input stream is a worst case non-i.i.d. stream. Experiments in

section 6 shows that these Normal confidence intervals have close

to or better than advertised coverage whenever the central limit

theorem applies, even for pathological streams.

5.6 Robustness
For the same reasons it has much better behavior under pathological

sequences, Unbiased Space Saving is also more robust to adversarial

sequences than Deterministic Space Saving. Theorem 11 shows that

by inserting an additional ntot items, one can force all estimated

counts to 0, including estimates for frequent items, as long as they

are not too frequent. This complete loss of useful information is a

strong contrast to the theoretical and empirical results for Unbiased

Space Saving which suggest that polluting a dataset with ntot noise
items will simply halve the sample size, since it will still return a

sample that approximates a PPS sample.

Theorem 11. Let n be a vector of v counts with ntot =
∑v
i=1 ni

and ni < 2ntot /m for all i ≤ v . There is a sequence of 2ntot rows
such that item i appears exactly ni times, but the Deterministic Space
Saving sketch returns an estimate of 0 for all items i ≤ v .

Proof. Sort the items from most frequent to least frequent. This

ensures no frequent item will have an estimated count greater than

its true count. Add ntot additional distinct items. The resulting

deterministic sketch will consist only of the additional distinct

items and each bin will have count 2ntot /m ± 1. □

5.7 Running time and space complexity
The update operation is identical to the Deterministic Space Saving

update except that it changes the label of a bin less frequently.

Thus, each update can be performed in O (1) time when the stream

summary data structure [24] is used. In this case the space usage is

O (m) wherem is the number of bins.

6 EXPERIMENTS
We perform experiments with both simulations and real ad predic-

tion data. For synthetic data, we consider three cases: randomly

permuted sequences, realistic pathological sequences for Deter-

ministic Space Saving, and "pathological" sequences for Unbiased

Space Saving. For each we draw the count for each item using

a Weibull distribution that is discretized to integer values. That

is ni ∼ Round (Weibull (k,α )) for item i . The discretized Weibull

distribution is a generalization of the geometric distribution that

allows us to adjust the tail of the distribution to be more heavy

tailed. We choose it over the Zipfian or other truly heavy tailed

distributions as few real data distributions have infinite variance.

Furthermore, we expect our methods to perform better under heavy

tailed distributions with greater data skew as shown in figure 6.



For more easily reproducible behavior we applied the inverse cdf

method ni = F−1 (Ui ) where the Ui are on a regular grid of 1000

values rather than independent Uni f orm(0, 1) random variables.

Randomly permuting the order in which individual rows arrive

yields an exchangeable sequence which we note is identical to an

i.i.d. sequence in the limit by de Finetti’s theorem. In each case, we

draw at least 10, 000 samples to estimate the error.

For real data, we use a Criteo ad click prediction dataset
1
. This

dataset provides a sample of 45 million ad impressions. Each sample

includes the outcome of whether or not the ad was clicked as well

as multiple integer valued and categorical features. We did not

randomize the order in which data arrives. We pick a subset of 9 of

these features. There are over 500 million possible tuples on these

features and many more possible filtering conditions.

The Criteo dataset provides a natural application of the disaggre-

gated subset sum problem. Historical clicks are a powerful feature

in click prediction [27], [20]. While the smallest unit of analysis

is the ad or the (user ,ad ) pair, the data is in a disaggregated form

with one row per impression. Furthermore, since there may not be

enough data for a particular ad, the relevant click prediction feature

may be the historical click through rate for the advertiser or some

other higher level aggregation. Past work using sketches to estimate

these historical counts [29] include the CountMin counting sketch

as well as the Lossy Counting frequent item sketch.

To simulate a variety of possible filtering conditions, we draw

random subsets of 100 items to evaluate the randomly permuted

case. As expected, subsets which mostly pick items in the tail of

the distribution and have small counts also have estimates with

higher relative root mean squared error. The relative root mean

squared error (RRMSE) is defined as

√
MSE/nS where nS is the true

subset sum. For unbiased estimators this is equivalent to σS /nS
where σS is the standard deviation of the estimator. Note that an

algorithm with c times the root mean squared error of a baseline

algorithm typically requires c2 times the space as the variance, not

the standard deviation, scales linearly with size.

We compare out method to uniform sampling of items using

the bottom-k sketch, priority sampling, and Deterministic Space

Saving. Although we do not directly compare with sample and hold

methods, we note that figure 2 in [6] shows that sample and hold

performs significantly worse than priority sampling.

Surprisingly, figure 5 shows Unbiased Space Saving performs

slightly better than priority sampling even though priority sampling

is applied on pre-aggregated data. We are unsure as to the exact

reason for this. However, note that, unlike Unbiased Space Saving,

priority sampling does not ensure the total count is exactly correct.

A priority sample of size 100 when all items have the same count

will have relative error of ≈ 10% when estimating the total count.

This added variability in the threshold and the relatively small

sketch sizes for the simulations on i.i.d. streams may explain why

Unbiased Space Saving performs even better than what could be

considered close to a "gold standard" on pre-aggregated data.

6.1 Pathological cases and variance
For pathological sequences we find that Unbiased Space Saving

performs well in all cases while Deterministic Space Saving has

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

Weibull(500k, 0.32) Geometric(0.03) Weibull(500k, 0.15)

0.001

0.100

0e+00 1e+05 2e+05 0e+00 1e+05 2e+05 0e+00 1e+05 2e+05
True count

R
el

at
iv

e 
E

rr
or

 (
lo

g)

Unbiased Space Saving

Priority Sampling

Figure 3: The sketch accuracy improves when the skew is
higher and when more and larger bins are contained in the
subset. The number of bins is 200.
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Figure 4: Unbiased Space Saving performs orders of magni-
tude better than uniform sampling of items (Bottom-k) in
the smoothed plot of relative error versus the true count.
With 100 bins, the error is higher than with 200 bins given
in figure 6 but the curve is qualitatively similar.
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Figure 5: Unbiased Space Saving performs slightly better
than priority sampling on the synthetic data despite prior-
ity sampling using pre-aggregated data rather than the raw
unaggregated data stream.

unacceptably large errors even for reasonable non-i.i.d. sequences.

First we consider a pathological sequence for Deterministic Space

Saving. This sequence consists of two halves. Each half is an in-

dependent i.i.d. stream from a discretized Weibull frequency dis-

tribution. This is a natural scenario as the data may be randomly

partitioned into blocks, for example, by hashed user id, and each

block is fed into the sketch for summarization. As shown in figure 7,

Deterministic Space Saving completely ignores infrequent items in

the first half of the stream, resulting in large bias and error. In this

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
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Figure 6: The Unbiased Space Saving sketch is able to accu-
rately compute 1 and 2 way marginals. The average relative
mse for a marginal count that is between 100k and 200k is
< 5% and for marginals containing more than half the data,
themean squared error drops to under 0.5%. It performs sim-
ilarly to priority sampling.
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Figure 7: Left: Items 1 to 1,000 only appear in the first half
of the stream. The inclusion probabilities for a pathological
sequence still behave like a PPS sample for Unbiased Space
Saving, but only the frequent items in the first half are sam-
pled under Deterministic Space Saving. Right: As a result,
Deterministic Space Saving is highly inaccuratewhen query-
ing items in the first half of the stream.

case, the simulations use small sketches with only 100 bins. The

disparity would increase with larger sketches and streams where

the bias of Deterministic Space Saving remains the same but the

variance decreases for Unbiased Space Saving.

The types of streams that induce worst case behavior for De-

terministic and Unbiased Space Saving are different. For Unbiased

Space Saving, we consider a sorted stream arranged in ascending

order by frequency. Note that the reverse order where the largest

items occur first gives an optimally favorable stream for Unbiased

Space Saving. Every frequent item is deterministically included

in the sketch, and the count is exact. The sequence consists of

10
5
distinct items and 10

9
rows where the item counts are from a

discretized Weibull distribution. We use 10, 000 bins in these exper-

iments. To evaluate our method, we partition the sequence into 10

epochs containing an equal number of distinct items and estimate

the counts of items from each epoch. We find in this case our vari-

ance estimate given in equation 5 yields an upward biased estimate

of the variance as expected. Furthermore, it is accurate except for

very small counts and the last items in a stream. Figure 8 shows the

● ●
●

●

●

●

●

●

●

●

2 4 6 8 10

1e
+0

3
1e

+0
7

True Counts with CI width

Epoch

C
ou

nt
 (l

og
 s

ca
le

)

● ● ●

●

●
● ●

●

●

●

2 4 6 8 10

0.
85

0.
90

0.
95

1.
00

Confidence Intervals

Epoch

C
ov

er
ag

e

Figure 8: Left: For a pathological sorted sequence, the true
counts are given with bars indicating the average 95% con-
fidence interval width. For epochs 1 to 4, the intervals are
truncated below as they extend past 0. Right: Normal confi-
dence intervals generally deliver higher than advertised cov-
erage. The exceptions lie in a regime where the variance es-
timate is accurate as shown in figure 9, but the sample con-
tains too few items from the epoch to apply the central limit
theorem.

true counts and the corresponding 95% confidence intervals com-

puted as N̂S ± 1.96V̂ar(N̂S ). In epochs 4 and 5, there are on average

roughly 3 and 13 items in the sample, and the asymptotic properties

from the central limit theorem needed for accurate normal confi-

dence intervals have not or are not fully manifested. For epochs 1

and 2, the upward bias of the variance estimate gives 100% coverage

despite the central limit theorem not being applicable. The coverage

of a confidence interval is defined to the the probability the interval

includes the true value. A 95% confidence interval should have

almost exactly 95% coverage. Lower coverage represents an under-

estimation of variability or risk. Less harmful is higher coverage,

which represents an overly conservative estimation of variability.

We note that the behavior of Deterministic Space Saving is easy

to derive in this case. The first 9 epochs have estimated count of 0

and the last epoch has estimated count ntot = 10
9
. Figure 10 shows

that except for small counts, Unbiased Space Saving performs an

order of magnitude better than Deterministic Space Saving.

7 CONCLUSION
We have introduced a novel sketch, Unbiased Space Saving, that

answers both the disaggregated subset sum and frequent item prob-

lems and gives state of the art performance under all scenarios.

Surprisingly, for the disaggregated subset sum problem, the sketch

can outperform even methods that run on pre-aggregated data.

We prove that asymptotically, it can answer the frequent item

problem for i.i.d. sequences with probability 1 eventually. Further-

more, it gives stronger probabilistic consistency guarantees on the

accuracy of the count than previous results for Deterministic Space

Saving. For non-i.i.d. streams, we show that Unbiased Space Saving

still has attractive frequent item estimation properties and expo-

nential concentration of inclusion probabilities to 1.

For the disaggregated subset sum problem, we prove that the

sketch provides unbiased results. For i.i.d. stream, we show that

items selected for the sketch are sampled approximately according
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Figure 10: Deterministic Space Saving gives grossly incorrect
answers on all epochs. For epochs 9 and 10, the error is 50x
that of Unbiased Space Saving. For extremely small counts
constituting < 0.002% of the total, the possibility of overes-
timation causes Unbiased Space Saving to have worse error
compared to Deterministic Space Saving which always esti-
mates 0.

to an optimal PPS sample. For non-i.i.d. streams we show that it

empirically performs well and is close to a PPS sample even if given

a pathological stream for which Deterministic Space Saving fails

badly on. We derive a variance estimator for subset sum estimation

and show that it is nearly equivalent to the estimator for a PPS

sample. It is shown to be accurate on pathological sequences and

yields confidence intervals with good coverage.

We study Unbiased Space Saving’s behavior and connections to

other data sketches. In particular, we identify the primary difference

between many of the frequent item sketches is a slightly different

operation to reduce the number of bins. We use that understanding

to provide multiple generalizations to the sketch which allow it to

be applied in distributed settings, handle weight decay over time,

and adaptively change its size over time. This also allows us to

compare Unbiased Space Saving to the family of sample and hold

sketches that are also designed to answer the disaggregated subset

sum problem. This allows us to also mathematically show that

Unbiased Space Saving is superior.
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