
E = MC3: Managing Uncertain Enterprise Data in a
Cluster-Computing Environment

Fei Xu∗ Kevin Beyer† Vuk Ercegovac† Peter J. Haas† Eugene J. Shekita†

∗ University of Florida † IBM Almaden Research Center
Gainesville, FL, USA San Jose, CA, USA
feixu@cise.ufl.edu {kbeyer,vercego,phaas,shekita}@us.ibm.com

ABSTRACT
Modern enterprises must manage uncertain data for pur-
poses of risk assessment and decisionmaking under uncer-
tainty. The Monte Carlo approach embodied in the MCDB
system of Jampani et al. is well suited for such a task.
MCDB can support industrial strength business-intelligence
queries over uncertain warehouse data. Moreover, MCDB’s
extensible approach to specifying uncertainty can also cap-
ture complex stochastic prediction models, allowing sophis-
ticated “what-if” analyses within the DBMS. The MCDB
computations can be highly CPU intensive, but offer the po-
tential for massive parallelization. To realize this potential,
we provide a new system, called MC3 (Monte Carlo Com-
putation on a Cluster), that extends the MCDB approach
to the map-reduce processing framework. MC3 can exploit
the robustness and scalability of map-reduce, and can han-
dle data stored in non-relational formats. We show how
MCDB query plans over “tuple bundles” can be translated
to sequences of map-reduce operations over nested data, and
describe different parallelization schemes. We also provide
and analyze several novel distributed algorithms for adding
pseudorandom number seeds to tuple bundles. These al-
gorithms ensure statistical correctness of the Monte-Carlo
computations while minimizing the seed length. Our ex-
periments show that MC3 can scale well for a variety of
workloads.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

General Terms
Algorithms, Design, Languages, Performance

Keywords
Uncertain Data, Map-Reduce, Monte Carlo, JSON, JAQL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

1. INTRODUCTION
There is an increasing need for tools that facilitate en-

terprise risk assessment and decision making in the face
of uncertain data. The problem of data uncertainty is be-
coming acute, due to the increasing use of data integration,
automated information extraction, and data anonymization
for privacy protection, as well as the growing prevalence of
RFID and sensor data. Database researchers have therefore
developed a variety of prototype systems [1, 2, 3, 16, 26, 28,
32] for managing uncertain data. Among these prototypes,
the Monte Carlo relational Database System (MCDB) [16]
seems especially promising for general decision-support ap-
plications.

MCDB’s Monte Carlo approach permits processing of in-
dustrial strength Business Intelligence (BI) queries — e.g.,
complex SQL aggregation queries — over warehouses where
the data is uncertain and has complex statistical depen-
dencies between attributes and tuples. Perhaps more im-
portantly, the MCDB uncertainty model is completely ex-
tensible: uncertainty is specified via user-defined Variable
Generation (VG) functions, which are used to pseudoran-
domly generate realized values for uncertain attributes. As
a consequence, the MCDB model subsumes the uncertainty
models used in current prototype systems. For example,
MCDB can capture discrete models of uncertainty such as
the attribute-value and tuple-inclusion uncertainty models
used in systems such as MayBMS, Trio, and Mystiq [1, 2,
3]. Moreover, MCDB is well suited to a very important
class of scenarios in which uncertainty arises due to the
need to extrapolate missing data using probabilistic mod-
els, as is often the case with financial, banking, marketing,
fraud-detection, and decision-support applications. In this
latter setting, MCDB permits sophisticated, data-intensive
stochastic modeling and prediction without the need to con-
tinually move data back and forth between the DBMS and a
statistical or simulation package such as R or ARENA. Thus
the user can assess not only the uncertainty in the results
of BI queries over uncertain data, but can also ask what-if
questions such as “What will be the mean effect on my prof-
its next quarter if I increase my prices by 5%?” or “What is
the probability that the average value of my New York cus-
tomers’ portfolios will drop by more than 10% over the next
month?” To achieve the foregoing new functionality without
unacceptably increasing processing overhead, MCDB uses a
novel processing technique in which a query plan is executed
exactly once, but over “tuple bundles” rather than ordinary

441

tuples. A tuple bundle represents the values of a tuple over
all Monte Carlo replications — equivalently, over all sampled
“possible worlds” — see Section 2.1.

In this paper, we provide a new system, called MC3 (Monte
Carlo Computation on a Cluster), that extends the MCDB
approach to a map-reduce framework. Our motivation for
this work is threefold:

• As the amount of data continues to increase expo-
nentially, massively-parallel processing techniques are
becoming increasingly important. Especially in more
complex settings — see the finance and marketing ex-
amples in the following sections — our new uncertainty-
handling technology can exacerbate this problem of
handling massive data, because MCDB’s Monte Carlo
computations can be highly CPU-intensive. For wide
adoption of the MCDB approach to uncertainty, it is
therefore very desirable to provide the MCDB func-
tionality on an affordable, massively parallel platform.

• The MCDB prototype incorporates a major rework-
ing of the standard relational query-processing engine.
Because of the effort required, it is unlikely that this
technology will be directly incorporated into commer-
cial relational database products; an alternative path
to market is needed.

• Since most real-world data is not stored in relational
databases, it is important to be able to deal with data
in a wide variety of formats.

To address the first issue, we note that Monte Carlo com-
putations can be performed independently for each tuple
bundle, and Monte Carlo replications for a given tuple bun-
dle can be executed independently of each other. Thus the
MCDB computations have the potential to be massively par-
allelized. MC3 realizes this potential: the excellent scalabil-
ity and ease of parallel programming made possible by the
map-reduce approach are ideal for our purposes. Our MC3

prototype uses Hadoop, an open-source implementation of
Google’s map-reduce processing framework. Hadoop’s map-
reduce has been shown to be highly scalable, as demon-
strated by Yahoo’s recent Daytona Terabyte sort record of
209 seconds using 910 servers.1 Preliminary results from
Google (68 seconds using 1000 servers) provide additional
evidence.2

Our choice of Hadoop — as well as our choice of Javascript
Object Notation (JSON) as the MC3 internal data model —
addresses the second issue raised above. The Hadoop infras-
tructure and JSON data format are becoming increasingly
popular. Appealing features of Hadoop include fault toler-
ance and the capability to allocate and reallocate resources
(CPU, memory, storage) as needed; this functionality al-
lows massive parallelism to be achieved using commodity
hardware, further increasing the appeal of the map-reduce
approach. Although it appears hard to precisely delineate
the class of queries that can be processed by MC3, we be-
lieve that it is quite large: MCDB can handle virtually any
BI SQL query, it appears that virtually any such query can
be rewritten as a directed acyclic graph of operators (i.e., a
query plan) that can be processed by MC3. We speculate

1www.hpl.hp.com/hosted/sortbenchmark
2http://googleblog.blogspot.com/2008/11/sorting-1pb-
with-mapreduce.html

that many probabilistic XML queries can also be handled
by MC3. As a consequence of these considerations, tech-
niques for managing uncertain data in this setting have the
potential to be widely used.

With respect to the third issue, the use of JSON means
that MC3 can gracefully deal with data provided in non-
relational formats, without any need to reformat the data
prior to processing. Indeed, we obtain this functionality “for
free” from the Hadoop platform. In this paper, we primar-
ily deal with JSON data that can be viewed as reformatted
probabilistic relational data. However, work on probabilis-
tic XML data [19] leads us to believe that extensions to
full-fledged probabilistic JSON data should be achievable.
Such extensions would then permit MC3 to interact with
many recently developed repositories for scaled-out cluster
environments, in which data attributes may be multi-valued
and records in the same table may differ in their number of
attributes [4, 7, 27, 29].

Extending the MCDB functionality to the map-reduce set-
ting raises a number of challenging questions. How exactly
do we map MCDB’s tuple-bundle processing methods to
Hadoop and JSON? Must we directly generate a query plan
as a sequence of map-reduce operations, or can we facili-
tate this process via use of a higher level query language?
What are the different ways in which MCDB queries can
be parallelized, and for which scenarios are these various
parallelization schemes effective? A key technical challenge
is how to “seed” tuple bundles so as to generate streams
of the pseudorandom numbers that form the basis of the
Monte Carlo computations. For statistical correctness, the
streams used by the various tuple bundles must be mutually
disjoint. Seeding is challenging because it must be done in
a highly parallel and distributed fashion, over an enormous
number of tuple bundles, and without requiring storage of
too much seeding information in each tuple bundle.

Our Contributions. The paper’s contributions are as fol-
lows:

• We provide the first system for managing uncertain
data in a map-reduce environment, showing how to
represent MCDB tuple bundles as JSON arrays and
how to translate an MCDB query plan to map-reduce.

• We show how query-plan generation can be facilitated
by use of JAQL, an open-source language for querying
JSON data.

• We identify two MCDB-specific parallelization schemes
called inter-tuple and intra-tuple parallelism, show how
to implement these schemes using map-reduce, and
identify scenarios under which each scheme is effective.

• We develop and analyze an efficient distributed-seed-
ing method called SeedSkip that is based on a ran-
dom number generator with skip-ahead functionality,
as well as a “fallback” method called SeedMult that is
based on multiple pseudorandom number generators
and can be used when SeedSkip does not apply.

• We show, via a set of experiments, that our paralleliza-
tion techniques can yield linear scaleup when process-
ing uncertain data, and that intra-tuple parallelism
can provide linear speedup for certain very expensive
VG functions.

442

We note that other parallel-processing platforms, data for-
mats, and query languages can potentially be used to ex-
tend MCDB. Our goal was proof-of-concept, and our plat-
form choices were partially made as a matter of convenience.
We believe, however, that at least some of our techniques,
and the lessons learned, are applicable to other possible
extensions of the MCDB methodology to forward-looking
information-management architectures.

Paper Organization. The remainder of the paper is orga-
nized as follows. Section 2 gives some background informa-
tion. Section 3 gives an overview of how MCDB function-
ality is realized using map-reduce, JSON, and JAQL. Sec-
tion 4 considers the distributed-seeding problem, and Sec-
tion 5 presents our experimental study. We conclude the
paper in Section 6.

2. BACKGROUND AND RELATED WORK
In this section, we review some basic facts about the

MCDB system, the map-reduce parallel programming frame-
work, and pseudorandom number generation.

2.1 The Monte Carlo Database System
MCDB [16], like most probabilistic-database prototypes,

is based on possible worlds semantics for uncertain data.
Each possible world corresponds to a possible concrete real-
ization of all uncertain values in the database, and there is a
probability distribution over the set of possible worlds, i.e.,
over the set of possible database instances.3 Usually, this
possible-worlds distribution is implicitly determined by ex-
plicit probability distributions that are associated with indi-
vidual (sets of) uncertain attributes; in general, there can be
statistical dependencies among attributes both within and
between tuples. In this setting, a given SQL query over an
uncertain database does not have a single, deterministic re-
sult, but rather there exists a probability distribution over
the set of possible query results. This query-result distribu-
tion is jointly determined — usually in a very complicated
fashion — by the possible-worlds distribution together with
the query itself. The goal of querying over uncertain data is
to compute or estimate interesting properties of the query-
result distribution.

For example, consider a SQL query such as

SELECT SUM(AMOUNT) AS totSales FROM SALES

where SALES(CID, AMOUNT) is an uncertain table in which
the AMOUNT attribute for each row, i.e., each customer, has a
gamma distribution (values are rounded to the nearest dol-
lar), with parameters that can depend on attributes such as
customer ID or location. Then the result of this query is
not a deterministic number that represents total sales, but
rather a probability distribution over the possible values of
total sales. We might be interested in features of this distri-
bution such as its mean (“expected total sales”), standard
deviation (“variability in total sales”), or 0.01-quantile (“ap-
proximate worst-case total sales”), or we may simply wish
to plot the probability distribution. For set-valued queries,
we might be interested in quantities such as the probability
that a specified tuple appears in the query answer.

3When one or more of the uncertain attributes are real-
valued, with uncertainty specified by a probability density
function, the set of possible worlds can be uncountably infi-
nite.

Q(D) =
Select SUM(Amount)

AS totSales …

Schema
VG Functions

Parameter
Tables

Random DB = D

Monte Carlo
Generator

d1

d2

:
dn

Estimator

i.i.d. samples from
possible-worlds

dist’n

E [totSales]
Var [totSales]
q.01 [totSales]

Histogram
Error bounds

Inference

ˆ
ˆ

ˆ

Q(d1)
Q(d2)

:
Q(dn)

i.i.d. samples from
query-result

dist’n

Figure 1: Query evaluation in MCDB.

MCDB does not try to compute characteristics of the
query-result distribution exactly, but rather estimates these
characteristics using a Monte Carlo approach. Figure 1
shows, conceptually, how MCDB evaluates a query. Each
random table in an uncertain database is represented on
disk by its schema, together with a set of VG functions that
are used to generate realizations of uncertain attribute val-
ues, and an optional set of parameter tables (ordinary SQL
tables) that are used to parameterize the VG function. Con-
ceptually, when a query is issued, the MCDB system invokes
the VG functions to generate a set of N (≥ 1) independent
and identically distributed (i.i.d) samples from the possible-
worlds distribution. We often paraphrase this process by
saying that the system performs N Monte Carlo replica-
tions to produce N sampled possible worlds, which are also
called realizations or instantiations of the database. The
query is then evaluated over each of the sampled possible
worlds, thereby generating a set of i.i.d. samples from the
query-result distribution. These latter samples can be used
to estimate characteristics of interest for this distribution.

E.g., consider the foregoing sum-of-sales scenario with
1000 Monte Carlo replications (i.e., with 1000 sampled possi-
ble worlds). Suppose that we have stored on disk a param-
eter table CUST ATTRS(CID, REGION), which lists the cus-
tomers and the regions in which they live, as well as param-
eter tables AMT SCALE(REGION, SCALE) and AMT SHAPE(CID,

SHAPE), which store the scale and shape parameters for the
gamma distributions. Observe that the scale parameter is
the same for all customers within a given region, whereas the
shape parameter varies between customers; thus there is an
implicit statistical dependency between customers living in
the same region. This simple gamma model might describe
uncertainty associated with sales data currently stored in
the database, or it might represent a predictive stochastic
model that is extrapolating sales data into the future. The
MCDB schema for the random table SALES essentially gives
a recipe for assembling a sample realization of the table,
specifying which VG function to invoke and how to glue the
outputs of the VG function invocations together:

CREATE TABLE SALES(CID, AMOUNT) AS
FOR EACH d in CUST ATTRS
WITH MONEY AS Gamma(
(SELECT n.SHAPE FROM AMT SHAPE n
WHERE n.CID = d.CID),

(SELECT sc.SCALE FROM AMT SCALE sc

443

WHERE sc.REGION = d.REGION))
SELECT d.CID, m.VALUE FROM MONEY m

We use the Gamma VG function from the MCDB library.
This function takes as input two 1 × 1 tables that spec-
ify shape and scale parameters, and returns a 1 × 1 table
(here named MONEY) that contains a pseudorandom sample
from the corresponding gamma distribution. The FOR EACH

clause instructs MCDB to loop over the list of customers
stored in the CUST ATTRS table. For each customer, a realiza-
tion of the AMOUNT attribute is generated via a call to Gamma,
which is first parameterized by executing the two SQL sub-
queries that extract the appropriate shape and scale param-
eters from the AMT SHAPE and AMT SCALE parameter tables.
The final SELECT clause specifies how to assemble the row of
the SALES table corresponding to the current customer from
the outer loop.

Then (conceptually), MCDB will follow the above recipe
to generate 1000 realizations of the SALES table and apply
the SUM query to each realization to obtain 1000 values of
total sales. The expected value and standard deviation of
total sales can then be estimated as the average and sample
standard deviation of these 1000 numbers. We can also use
standard Monte Carlo techniques to characterize the pre-
cision of these estimates, e.g., by computing confidence in-
tervals. Alternatively, we may simply want to create a his-
togram of the 1000 numbers in order to get an approximate
picture of the total-sales density function.

The VG function given above simply generates samples
from a standard probability distribution. MCDB offers a
built-in library of such standard distributions, both contin-
uous and discrete. For example, the DiscreteChoice func-
tion takes as input a parameter table containing a column
of values and a column that gives a selection probability for
each value; a call to DiscreteChoice then returns a value,
randomly chosen according to its associated selection prob-
ability. (In this manner, MCDB, and by extension MC3,
can capture both “attribute-value uncertainty” and “tuple-
inclusion uncertainty” as in systems like Trio, MayBMS, and
Mystiq.) In general, user-defined VG functions can encap-
sulate highly complex stochastic models that represent ex-
trapolated uncertain data that is not actually stored in the
database. E.g., we give an example in Section 5 of a VG
function that generates a sample from the probability dis-
tribution for the value of a European call option at its time
of exercise. In this case, there is no closed form for this dis-
tribution, and samples are generated by executing a small
dynamic simulation of the underlying stock. Even though a
statistical expert may be needed to write the VG function,
no special expertise is needed to run queries that use the VG
function; in this manner, MCDB can encapsulate statistical
complexity.

As mentioned previously, MCDB does not actually instan-
tiate the database multiple times; the costs for such a naive
approach would be exorbitant. Instead, MCDB executes a
single query plan over a set of tuple bundles. Formally, a
tuple bundle corresponding to N Monte Carlo replications
is simply a set of N tuples having a common schema. A tu-
ple bundle is usually represented as a vector in which each
deterministic attribute appears once, and each uncertain at-
tribute is represented by a nested vector of length N that
records the value of the attribute in each of the Monte Carlo
replications. The representation of a tuple bundle may con-
tain additional attributes that facilitate query processing. In

our running example, the tuple bundle t in table SALES corre-
sponding to the customer with CID equal to 105 might have
the form t = (105,(123.50,274.00,...,180.76), seed).
Here the second component is a vector that contains the
1000 realized values of the AMOUNT attribute for customer
105. The final component seed is the pseudorandom number
seed used by the VG function to generate the sale amounts.
More generally, if customer 105 appeared in some, but not
all, of the 1000 possible worlds, the tuple bundle would be
augmented by a special random vector called isPresent.
For 1 ≤ i ≤ 1000, the ith component value of this vector is
true if and only if customer 105 appears in the ith sampled
possible world. Because pseudorandom number generation
is a deterministic process when started from a fixed seed,
the foregoing tuple bundle can often be stored in compressed
form as t = (105, seed, isPresent). The AMOUNT values
can be regenerated in a consistent manner whenever they
are needed. Moreover, a predicate such as CID < 105 can
be applied to the compressed version of the tuple bundle; if
such predicates filter out most tuple bundles and can be ap-
plied early in the query plan, then most of the Monte Carlo
computations can be avoided. MCDB exploits these ideas
to achieve acceptable processing overheads.

MCDB extends the classical database operations of select,
project, join, duplicate removal, and aggregation to handle
tuple bundles; these extensions typically involve manipula-
tion of the isPresent vector. Several new MCDB operators
that are pertinent to our discussion include the Instantiate
and Seed operators. The Instantiate operator invokes the
VG functions to transform a tuple bundle from compressed
to expanded form. The Seed operator attaches one or more
seeds to a tuple bundle, one per VG function. Each seed is
unique to the (tuple bundle, VG function) pair, and is used
by the VG function to generate a stream of pseudorandom
numbers during instantiation.

The current MCDB prototype returns the answer to a
query in the form of a table consisting of one or more “value”
columns that jointly record all of the distinct result tu-
ples produced during the Monte Carlo replications. For
each such tuple, a Fraction column records the fraction
of replications in which the tuple appeared at least once.
For the sum-of-sales example, the result table is a two-
column table where the first column contains all of the dis-
tinct total-sales values; for each such value, the Fraction

attribute is the fraction of replications having that value for
the query answer. E.g., the tuples in the table might be
($100, 0.2), ($150, 0.5), ($200, 0.3) if 20% of the replications
resulted in a query answer of $100, and so forth. Then the
expected total sales can be computed as $100×0.2+$150×
0.5 + $200 × 0.3 = $155. Other features of the query-result
distribution, such as the variance or 0.9-quantile of total
sales, can also be computed from the MCDB result table;
the table values can also be plotted as a histogram. In gen-
eral, the error of such estimates decreases (in an appropriate

probabilistic sense) at rate O(N−1/2), where N is the num-
ber of Monte Carlo replications. Depending on the specific
type of estimation involved, however, slower or faster rates
of decrease can be observed; see [11] for a broad discussion
of these and other issues related to simulation efficiency.

2.2 Map-reduce
MC3 evaluates queries using Hadoop’s [12] map-reduce

infrastructure, an open source implementation of Google’s

444

parallel programming framework [8]. Using map-reduce,
MC3 queries can be evaluated using large clusters compris-
ing thousands of commodity servers. Map-reduce was in-
spired by the map and reduce functions commonly found in
functional programming languages. The programmer need
only specify a map and reduce function, and the infrastruc-
ture then takes care of parallelization, fault-tolerance, re-
source allocation, and distributed synchronization.

A map-reduce job takes as input a collection of key-value
records and produces a collection of output values. To spec-
ify the desired data processing, the user defines a map func-
tion and a reduce function, whose operation is described
below. In the first step of map-reduce processing, the input
records are partitioned among one or more mapper tasks.
Each mapper applies map to the input records in its parti-
tion, one record at a time. The map function takes as input
a key-value record (k, v) and produces a collection of inter-
mediate key-value records, [(k′

1, v
′
1), . . . , (k

′
n, v′

n)]. For each
distinct intermediate key k, all intermediate records having
this key are collected to form a group (k, [v′′

1 , . . . , v′′
m]), and

the groups are partitioned among a set of reducer tasks.
This processing is accomplished by taking each intermedi-
ate key-value record produced by a mapper and routing to
a reducer (often over a network) according to the key value;
the reducer then sorts incoming pairs by key value to form
the groups. Each reducer applies reduce to the groups in its
partition, one group at a time. The reduce function takes a
group as input and returns a final value for the group, often
using an aggregation operation on the values in the group.
The set of values returned by the calls to reduce is written
out and comprises the output of the map-reduce job. Both
mapper and reducer tasks operate in parallel. Thus the
map-reduce framework evaluates a job in a manner similar
to the way a query is processed in a shared-nothing parallel
DBMS [10].

As a simple example, consider the problem of counting
the frequency of each distinct word in a document. Here
an input record to a mapper is a line of text. (This is the
“value” part of the input key-value pair; for this example
no input key is needed or used.) The mapper task tokenizes
the line of text into words, and creates an intermediate key-
value pair for each word, where the key is the word itself,
and the value is equal to 1. Thus, all pairs corresponding
to a given distinct word, say “jump,” are sent to the same
reducer to create a group of the form (“jump”, [1, 1, . . . , 1]).
The reducer task simply adds up the values (i.e., the 1’s) to
determine the word frequency.

To avoid network bottlenecks, map-reduce provides com-
biners that allow a mapper to perform aggregation opera-
tions that would otherwise be performed by a (possibly re-
mote) reducer. The partially aggregated data is then fetched
by the reducers, which complete the aggregation. In our ex-
ample, a given mapper’s combiner function might aggregate
all of the mapper’s intermediate key-value records that cor-
respond to a given word, creating a new key-value record
whose key is the word and whose value is the number of
local copies of the word. These partially aggregated results
would then be sent to reducers, which would then add up
the values as before. Thus the desired word frequencies are
produced, but fewer pairs need to be sent from mappers to
reducers. This feature is similar to the partial aggregation
functionality in a parallel relational DBMS.

2.3 Pseudorandom Number Generation
In general, a pseudorandom number generator (PRNG) is

initiated with a starting seed s0, and then generates a se-
quence of seeds s1, s2, . . . by using a deterministic recursion
of the form si+1 = T1(si). At each step, the generator typi-
cally uses a second transformation to create a 32-bit integer
ri = T2(si) ∈ { 1, 2, . . . , 232 − 1 }, which is further trans-
formed to a pseudorandom uniform number ui on [0, 1] via
normalization: ui = ri/2

32. The transformations T1 and T2

depend on the specific generator, as do the number of bits
in each si (typically a multiple of 32). For a good generator,
the sequence u1, u2, . . . is statistically indistinguishable from
a sequence of “true” i.i.d. samples from the uniform[0, 1] dis-
tribution, in the sense that the sequence will pass statisti-
cal tests for uniformity and randomness [15, Ch. 3]. The
uniform pseudorandom numbers can then be transformed
into pseudorandom numbers having a user-specified distri-
bution [9]. The sequence of seeds produced by a PRNG
eventually loops back on itself — that is, sC = s0 for some
integer C with si �= sj for 0 ≤ i < j < C — thus forming
a cycle of seeds. The number C is called the cycle length
of the PRNG. Typically, the cycle contains all possible seed
values, although some generators have multiple cycles that
are sometimes exploited for parallel pseudorandom number
generation [23, 31].

When a VG function is invoked in order to instantiate a
tuple bundle, the function is “fed” an initial seed si that was
originally attached to the bundle by the Seed operator. The
VG function then calls a PRNG multiple times to consume
a sequence of k seeds si, si+1, . . . , si+k during the course of
the instantiation operation. Depending on the VG function,
the number k of seeds consumed might or might not be
easily predictable in advance. It is necessary that the seed
sequences for the tuple bundles be mutually disjoint, since
overlaps cause unintended statistical dependencies between
bundles, which can lead to incorrect query results. Since the
number of tuple bundles can run to the billions, and each
bundle can consume millions of seeds, the cycle length of the
underlying PRNG must be very long. Fortunately, state-of-
the-art PRNGs can achieve cycle lengths of 2500 and longer,
while retaining good statistical properties; see Section 4. A
key challenge is that these long cycle lengths are achieved
by using very long seeds, which can greatly inflate the size
of the tuple bundles. Such inflation can significantly slow
down query processing by inducing large processing over-
heads when moving the data around.

As discussed in Section 4 below, MC3 needs even more
random number streams than MCDB when the intra-tuple
parallelism scheme is used, and both seeding and subse-
quent stream generation must be done in a highly paralleliz-
able manner. A substantial literature has developed around
the problem of generating pseudorandom number streams
in parallel [6, 23, 30, 31], largely motivated by scientific ap-
plications. Unfortunately, none of the previously proposed
methods is directly applicable to our problem. For many
prior algorithms, the number of streams needed coincides
with the number of processors, and hence is on the order
of 101 to 103; our setting can require on the order of 106

to 109 streams. “Leapfrog” methods — in which successive
seeds from a base generator are dealt out to the streams
like playing cards from a deck — are simple but can suffer
from statistical anomalies [6]. A number of methods use a
simple linear congruential generator as the base generator,

445

which yields an inadequate cycle length for our purpose. The
most promising parallel PRNGs appear to be the SPRNG
generator of Mascagni et al. [23], and the PLFG generator
of Tan [31], each of which uses a lagged Fibonacci genera-
tor as the base generator and exploits special properties of
this class of generators. A key drawback of such generators
is that the seed corresponds to a “lag table” that typically
comprises tens of thousands of 32 bit integers and will not fit
into a tuple bundle. As indicated in the previous paragraph,
we take the classical “cycle splitting” and “independent se-
quences” approaches using huge-period generators, and limit
the amount of seeding information in a tuple bundle by em-
ploying novel techniques for combining generators and for
skipping ahead on a cycle.

3. SYSTEM OVERVIEW
MC3 uses JSON for its data model and JAQL for query

specification. JSON is a simple self-describing data format
for semi-structured data [18], and JAQL is a high-level query
language designed for JSON data [17]. The key appeal of
JAQL is its ability to automatically generate a query plan
of map-reduce jobs from a high level query specification.
MC3 makes extensive use of JAQL’s user-defined functions
to specify VG functions, distributed seeding, and tuple bun-
dle operations. Since JAQL is designed for JSON, it is natu-
ral for MC3 to store input and output data in JSON format,
as well as using JSON during query processing to repre-
sent MCDB tuple bundles. As indicated previously, other
data models, storage formats, and query languages can po-
tentially be used to implement MCDB in the map-reduce
setting. We hope to study the various trade-offs in future
work.

MCDB JAQL queries

Hadoop

Distributed
Filesystem

Map-Reduce JAQL

Input Output

JSON JSON

Figure 2: High-level architecture for MC3.

The MC3 architecture is illustrated in Figure 2. Data is
assumed to be stored in files in the Hadoop Distributed File
System (HDFS) and formatted using JAQL’s binary JSON
format. Note that data can be stored using other formats
such as text-based JSON and XML. So long as the data can
be converted on-the-fly to or from a JSON representation
(see the bottom two arrows in the figure), it can be pro-
cessed by JAQL. MCDB queries are specified using JAQL
and automatically translated into a directed acyclic graph
of map-reduce jobs. Hadoop’s map-reduce is then used to
evaluate query plans in parallel.

In the following sections, we show in detail how JSON is
used during processing of the sum-of-sales query discussed
in Section 2.1, how the query is specified using JAQL, and

finally how the query is evaluated in parallel using map-
reduce.

3.1 JSON
JSON was designed to be a simple, self-describing data

format for representing commonly used programming lan-
guage data structures. It consists of two complex types,
arrays and records, and atomic types, i.e., number, string,
boolean, and null. An array is a list of JSON values and is
used to represent programming language arrays or lists. A
record associates a set of field names with JSON values and
is used to represent structs, dictionaries, or hash-tables.

Consider the sum-of-sales example from Section 2.1. The
input data comprises the datasets cust attrs, amt shape,
and amt scale. This data is essentially relational, and we
assume that each dataset is represented in JSON by an ar-
ray (delimited by brackets) of records (delimited by braces).
E.g., cust attrs is represented as the array[{cid: 102, region: NewEngland},

{cid: 226, region: Midwest}, . . .].
Figure 3 shows examples of in-process JSON data after the
Seed and Instantiate stages. Prior to the Seed stage, the
three input files have been joined to associate VG parame-
ters (shape and scale) with each customer. The output of
Seed is an array of JSON records in which a seed value has
been added to each record. The Instantiate operator uses
the seed value to initialize its PRNG and simulate possi-
ble worlds using a VG function. After Instantiate, each
record corresponds to an expanded tuple bundle; e.g., in this
example, the amount field has been instantiated.

[{cid: 235, shape: 0.5, scale: 0.1,
seed: 34590802},
{cid: 725, shape: 0.2, scale: 0.4,
seed: 89763676}, …]

[{cid: 235, shape: 0.5, scale: 0.1,
amount: {seed: 34590802,

samples: [45, 36, 41, …]},
isPresent: [true, true, true, …]},
{cid: 725, shape: 0.2, scale: 0.4,
amount: {seed: 89763676,

samples: [52, 49, 51, …]},
isPresent: [true, true, true, …]}, …]

Seed

Instantiate

[{cid: 235, shape: 0.5, scale: 0.1},
{cid: 725, shape: 0.2, scale: 0.4}, …]

Figure 3: Example JSON data transformed by MC3.

As mentioned previously, the current paper focuses on un-
certain data that can be viewed as probabilistic relational
data. This translates into a class of JSON data for which
the uncertainty resides in the leaf data, e.g., in the atomic
values. In general, uncertainty may exist in the structure,
rather than just leaf data. For example, there may be uncer-
tainty in the number of fields or types per record, resulting
in complex probabilistic tree structures. A complete formal
definition and set of processing methods for uncertain JSON
data remains as future work.

That said, we note that, within the class of uncertain data
that MC3 can process — which subsumes the general MCDB

446

uncertainty model — MC3 can easily handle a variety of
non-relational input-data formats. As indicated above, MC3

does not require data to be converted and stored prior to
query execution, or to be loaded into a separate HDFS sys-
tem for parallel processing. As long as a repository can
partition data and provide an iterator that produces key-
value pairs for each partition, the repository can be used
by map-reduce, and consequently MC3, to evaluate MCDB
queries in parallel.

While some data organizations may lead to more efficient
queries, the perspective taken by MC3 is to favor flexibil-
ity in processing data. As a proof-of-concept, we reorga-
nized TPC-H benchmark data to nest lineitems under or-
ders. Then, we took Query Q4 from the original MCDB pa-
per [16] and modified the JAQL query to process the nested
data design. The key observation was that MC3 was easily
able to evaluate Q4 on nested data. However, performance
was slightly worse when compared to the equivalent query
that used the original, normalized TPC-H design. On the
other hand, when nesting lineitems under partsupp, Q4 ran
faster than with the normalized design.

3.2 JAQL
We illustrate the key features of JAQL using our run-

ning example. Specifically, the JAQL statements in Figure 4
specify the sum-of-sales query.

At line 1, the read operations for the inputs are assigned
to variables. Starting at line 2, the records flow through
a pipeline, are transformed by various operators, and are
finally written to result. This part of JAQL’s syntax has
been influenced by UNIX pipes: instead of flowing bytes,
a JAQL pipe flows JSON. The three input collections (i.e.,
JSON arrays) cust attrs, amt shape, and amt scale are
joined at line 2 using the join operator.

Seeding is implemented at line 3 by a transform operator
that transforms each input customer record (as at the top
of Figure 3) by invoking the user-defined GetSeed function
and appending the result to the record as a seed field. The
methods used to implement GetSeed are discussed in detail
in Section 4. The transform operator simply describes the
desired result of a transformation of a JSON input data ob-
ject (such as a JSON array representing a tuple bundle); the
$ variable refers to the incoming JSON data object, allowing
references to the object’s components.
Instantiate is implemented at line 4 by invoking the

GenAmounts VG function to simulate the possible worlds.
This VG function is parameterized by scale and shape pa-
rameters associated with each customer, as well as the pa-
rameter 1000, which specifies the number of samples (i.e.,
sale amounts) to produce, and the pseudo-random number
seed. The output of this VG function — and the result of
the JAQL transform operation — is simply a JSON array
of 1000 samples, one for the customer’s sale amount in each
sampled possible world; call such an array a “sale array.”

To compute the final answer, we must first sum the sale
arrays over all customers to obtain an array of 1000 numbers
that represents the total sum of sales in each of the 1000
sampled possible worlds; call this the “total-sales array.”
To this end, we employ the ArraySum function in line 5,
which is a user-defined aggregate that sums multiple arrays
and outputs a single array. The group operator invokes the
ArraySum operator once on the entire input. (As discussed
below, the ArraySum function is typically invoked within the

context of the partial aggregation mechanism described in
Section 2.2.)

At line 6, we have obtained the total-sales array, and we
feed this array into the Distribution user-defined aggre-
gation function. This function produces a JSON array of
(Value, Fraction) pairs that represents for each unique
total-sales value the fraction of sampled possible worlds in
which the value appears. The array corresponds exactly to
the MCDB result table discussed at the end of Section 2.1,
and might have the form[{Value: 100, Fraction: 0.20},

{Value: 150, Fraction: 0.50}, . . .].
As discussed in Section 2.1, this empirical distribution can
be used to estimate quantities such as the mean value, vari-
ance, or quantiles of the total-sales distribution. Finally, in
line 7, the distribution is written to result.

1. $cust = read(hdfs('cust_attr'));
$shape = read(hdfs('amt_shape'));
$scale = read(hdfs('amt_scale'));

2. join $shape, $cust, $scale
where $shape.cid == $cust.cid
and $cust.region == $scale.region

into { $shape, $scale }
// Seed

3. transform { $.*, seed: GetSeed() }
// Instantiate: generate an array of 1000 samples

4. transform GenAmounts($.seed, $.shape, $.scale, 1000)
// Sum all sales tuple bundles

5. group into ArraySum($)
// Compute the distribution

6. transform Distribution($)
7. write(hdfs('result'));

Figure 4: JAQL for sum-of-sales example.

3.3 Using Map-Reduce for Parallelism
In this section, we discuss two parallelization schemes that

are applicable to MCDB workloads: inter-tuple and intra-
tuple parallelism. Inter-tuple parallelism is obtained by eval-
uating multiple tuple bundles in parallel; all of the possible
worlds for a tuple bundle are generated by a single CPU
core. Inter-tuple parallelism is naturally supported by map-
reduce’s partitioned parallelism. When there are fewer tu-
ple bundles than cores, however, some cores will be idle.
This problem becomes particularly acute when the Monte
Carlo replications are computationally expensive — as in
the European call-option example of Section 5 — or many
replications are needed per tuple bundle. In such cases,
use of intra-tuple parallelism allows Monte Carlo replicates
for a single tuple bundle to be evaluated by multiple cores.
We first illustrate inter-tuple parallelism via the sum-of-sales
query, and then discuss intra-tuple parallelism.

3.3.1 Inter-Tuple Parallelism
The map-reduce plan for the sum-of-sales query is shown

in Figure 5; recall that each map or reduce box in the plan
may correspond to multiple actual mappers or reducers that
are invoked in parallel during query processing. Job 1 joins
cust attr with amt shape using cid as the join key. Sim-
ilarly, Job 2 joins the output of Job 1 with the amt scale

using region as the join key. Joins are implemented with
map-reduce by repartitioning the input files on the join key
(a map operation) and joining records that have the same
join key (a reduce operation). See [5] for a discussion of al-

447

ternative join techniques using map-reduce. Each mapper in
Job 3 seeds its input tuple bundles, instantiates each tuple
bundle by using the GenAmounts function, and invokes the
ArraySum combiner interface (see Section 2.2) to compute
one or more arrays. Each such array — which we call a
“partial-sales array” — corresponds to aggregated sales val-
ues over a subset of the customers processed by the mapper,
with one entry per sampled possible world. A single reducer
for Job 3 fetches the partial-sales arrays from the Job 3 map-
pers and invokes ArraySum to aggregate the partial-sales ar-
rays into the total-sales array. The reducer then computes
the final empirical distribution (set of Value-Fraction pairs)
and writes out the result.

read
‘cust_attr’

read
‘amt_shape’

read
‘amt_scale’

1. GetSeed
2. GenAmounts
3. Partial ArraySum

join (cid)

join (region)

1. Final ArraySum
2. Distribution
3. write ‘result’

Map

Reduce

Job 3

Job 2

Job 1

read

Figure 5: Map-reduce jobs for sum-of-sales example.

Just as in relational query optimization, there are usually
multiple equivalent plans for a given JAQL query. E.g.,
in the plan of Figure 5, seeding and instantiation occur in
the map stage of Job 3. However, instantiation can just as
easily be scheduled to occur in the reduce stage. Currently,
deciding which query plan to use is largely determined by the
JAQL user; a focus of future work is to automate such tasks.

3.3.2 Intra-Tuple Parallelism
The map-reduce framework provides several possibilities

for implementing intra-tuple parallelism. One approach is
to use multiple threads per process; each thread is respon-
sible for computing a chunk of sampled possible worlds for
each tuple bundle. Using this approach, multiple processes
are able to simulate a single tuple bundle’s possible worlds.
However, the degree of parallelism is limited by the num-
ber of CPU cores available at each server. An alternative
approach, used by MC3, is to slice each tuple bundle into
multiple bundles, where each bundle represents the tuple’s
value in a chunk of sampled possible worlds. With a slight
abuse of terminology, we also call these multiple tuple bun-
dles “chunks.” A chunk ID and seed are stored with each
chunk. We then apply the inter-tuple parallelism processing
method, but on the chunks rather than on the original tuple
bundles. By using this latter approach, the degree of paral-
lelism for a single tuple bundle can be as high as the total
number of cores in the cluster, rather than the number at a
single node.

The number of chunks per bundle depends on the avail-
able system resources. Outside of some minor modifications,
seeding and instantiation use map-reduce in the same man-
ner as with the inter-tuple parallelism approach. After the
multiple chunks of a single tuple bundle are all instantiated,
they are merged back into a single instantiated tuple bun-
dle. If, for efficiency reasons, the deterministic attributes
(e.g., CID) are not copied into each chunk during slicing,
then these attributes must be merged as well.

4. DISTRIBUTED SEEDING
This section describes methods for seeding tuple bundles

and for subsequently using the seeding information for pur-
poses of tuple-bundle instantiation. We first give an algo-
rithm, called SeedSkip, that is based on recent skip-ahead
methods for huge-period PRNGs. SeedSkip guarantees that
there will be no overlaps between streams of PRNG seeds
and requires only a small amount of seeding information
per tuple. Because the skip-ahead functionality is rather
complex and has not yet been widely adopted, and because
the method requires knowledge about VG-function proper-
ties that may not be readily available, we provide a fall-
back algorithm, called SeedMult, that uses multiple PRNGs
and requires neither skip-ahead methods nor detailed knowl-
edge about the VG functions. The SeedMult method does
not completely rule out the possibility of overlaps between
streams, but we show that the probability of such overlaps
is vanishingly small.

For simplicity, we first assume that each tuple bundle
needs to invoke only a single VG function during instantia-
tion. We assume as in Section 3.3 that seeding corresponds
to a mapper task in the map-reduce framework, and we as-
sume that there are exactly J (≥ 1) logical processes, i.e.,
mappers, available to execute, in parallel, the seeding oper-
ation. We denote these mappers by P0, P1, . . . , PJ−1. Also
for simplicity, we initially assume that the inter-tuple par-
allel processing scheme is used for the instantiation step, so
that a single mapper generates all of the Monte-Carlo real-
izations of a tuple bundle. Under the foregoing assumptions,
each tuple bundle needs to be seeded with exactly one seed.

4.1 The SeedSkip Method
We first give a brief overview of skip-ahead techniques,

and then illustrate how we can exploit these techniques for
seeding.

4.1.1 Skip-Ahead Techniques for PRNGs
A PRNG with seed cycle s0, s1, . . . , sC−1 supports skipping-

ahead if for one or more values of ν > 1 it implements
an efficient transformation T (ν) such that T (ν)(si) = si+ν

for all i. I.e., the generator can skip ν positions forward
on the cycle without having to generate the intermediate
seeds si+1, si+2, . . . , si+ν−1. Typically, one must predeter-
mine a desired skip length ν and then precompute a set
of generator-dependent “skip parameters” that support the
desired skip length. This precomputation is usually expen-
sive and can be quite complicated for modern huge-period
generators but, once the parameters are computed, skips of
length ν can be performed very efficiently, so that the pre-
computation cost is amortized over many skips.

For example, many popular types of PRNGs belong to the
family of “combined multiple recursive generators” (CM-
RGs). An individual multiple recursive generator (MRG)

448

has a linear transformation function T . Specifically, for
a seed s that is a vector of k 32-bit integers, an MRG
recursively sets sn = Asn−1 mod m for a k × k matrix
A and large integer m. A CMRG maintains k MRGs in
parallel, where typically k ≤ 4, and produces the over-
all random integer rn at the nth step by combining the k
seeds s1

n, s2
n, . . . , sk

n, e.g., by setting rn = (s1
n + s2

n + · · · +
sk

n) mod m′ for an appropriate value of m′. L’Ecuyer [20]
has developed an efficient technique for skipping ahead by
a fixed number of steps ν in a CMRG. The idea is to pre-
compute the matrix Aν mod m using a “divide and con-
quer” algorithm, and then exploit the fact that, for an MRG,
sn+ν = (Aνsn) mod m = (Aν mod m)(sn) mod m. As an-
other example, consider the recent WELL512 generator of
Panneton et al. [24]. WELL512 is our huge-period generator
of choice, because it has a period of 2512 and improves on the
statistical properties of the Mersenne Twister, a well known
huge-period PRNG. WELL512 is also based on a linear re-
currence, but with the modulus equal to 2, so that bits are
manipulated individually. Efficient skip-ahead techniques
for such generators have very recently been proposed in [13,
14]; these techniques are nontrivial to implement, involving
the representation of the linear transformation s �→ As as
a formal series, appropriately manipulating the series coef-
ficients to represent the skip, and then effecting the actual
skips using the modified series. In this case, for a given skip
length, one precomputes and stores the modified coefficients
that correspond to the skip.

4.1.2 Seeding with SeedSkip
The SeedSkip method uses a single PRNG for both seed-

ing and instantiation — denoted by G and chosen as the
WELL512 generator in our implementation — and requires
that we can upper bound by k∗ the number of bundles
seeded per mapper and, most importantly, by ρ∗ the num-
ber of G seeds used up during any single invocation of any
VG function. (Recall that each tuple bundle invokes the
VG function ω = N times, where N is the number of Monte
Carlo replications.) For example, in the call-option exam-
ples of Section 5, if we use a bounded-seed algorithm for
generating normal variates, such as the polar method [9],
then we know exactly how many seeds are required to gen-
erate a value for an option, and can set ρ∗ equal to this
number.

SeedSkip trivially “seeds” a tuple bundle with its mapper
number and intra-mapper tuple-bundle identifier. Call these
quantities np and ni, and note that np ∈ [0, J − 1] and ni ∈
[0, k∗ − 1]. To naively instantiate a bundle, we would then
generate npk∗ + ni skips of length γ = ωρ∗, which will get
us to the starting point on the G cycle for the instantiation.
(To actually do the instantiation, we then use up at most
γ seeds for the bundle.) In fact, we can vastly reduce the
number of required skips by storing a carefully selected set
of skip parameters, using O

(
log2(C/γ)

)
storage, where C is

the cycle length of G.
Specifically, suppose that C/γ = 2j for some integer j.

Compute skip parameters that correspond to skip lengths
ν = γ, 2γ, . . . , 2j−1γ. Then O

(
log2(npk∗ + ni)

)
skips along

the G cycle are required for each tuple bundle to get to the
starting point for the bundle’s instantiation. I.e., denoting
by b1b2 · · · bj the binary representation of npk∗ +ni, execute
a skip of length 2b1γ if and only if b1 = 1, then execute a
skip of length 2b2γ if and only if b2 = 1, and so forth.

4.2 The SeedMult Method
The SeedSkip method cannot be used if a good imple-

mentation of the advanced skip-ahead technology for huge-
period generators is not readily available or, more impor-
tantly, if the VG functions are so complicated that it is im-
possible to obtain a reasonable upper bound on the number
of seeds consumed during a VG function call. In this case,
the SeedMult seeding method can be used instead. In the
following, denote by kj the number of tuple bundles that
mapper Pj is assigned to seed, and by li the number (typi-
cally unknown to the user) of successive seeds consumed by
tuple bundle ti during instantiation.

The SeedMult method uses four PRNGs, denoted G1–G4;
generators G1 and G2 are used for seeding, and generators
G3 and G4 are used for instantiation; we assume that G4 is
a huge-period generator. We use generators having different
internal structure, so that the pseudorandom number se-
quences generated by the different generators can be viewed
as statistically independent for purposes of random number
quality and analysis; this “independent sequences” approach
is common in the literature; see, e.g., [23]. A seed si

j for

generator Gi (i = 1, 2, 3, 4) is an array (si
j,1, s

i
j,2, . . . , s

i
j,mi

)

of mi 32-bit integers. The jth execution of Gi updates
the current seed si

j−1 via a transformation si
j = T i

1(s
i
j−1)

and, using a second transformation, creates a 32-bit integer
ri

j = T i
2(s

i
j) ∈

{
1, 2, . . . , 232 − 1

}
, which is normalized to a

pseudorandom uniform number uj on [0, 1] via ui
j = ri

j/2
32.

PRNG Gi has cycle length Ni.
Each mapper Pj (0 ≤ j ≤ J − 1) executes the following

procedure for seeding its local tuple bundles.

1. Initialize generator G1 with a fixed seed s1
0. (The same

seed is used by all mappers.)

2. Generate m2(j + 1) successive random integers r1
0 , r1

1,
. . . , r1

m2(j+1)−1 from G1, and use the last m2 of these

integers to form an initial seed s2
0(j) to use with G2.

I.e., s2
0(j) =

(
r1

jm2 , r1
jm2+1, . . . , r

1
(j+1)m2−1

)
.

3. Use G2 to generate a sequence of kjm3 random inte-
gers r2

0(j), r
2
1(j), . . . , r

2
kjm3−1(j), and use the ith sub-

sequence of length m3 to seed the ith local tuple bun-
dle. More specifically, setting K0 = 0 and Kl =
k1+k2+· · ·+kl for l ≥ 1, seed tuple bundle tKj+i with

s3
0(Kj + i) =

(
r2

im3(j), r2
im3+1(j), . . . , r

2
(i+1)m3−1(j)

)
for 0 ≤ j ≤ J − 1 and 0 ≤ i ≤ kj − 1.

Later, at instantiation time, the following procedure is
used to instantiate tuple bundle ti, which has previously
been seeded with seed s3

0(i) as computed above.

1. Initialize G3 with seed s3
0(i), and use G3 to generate

m4 successive random integers to form a seed s4
0(i).

2. Initialize G4 with s4
0(i), and use G4 to generate the li

random numbers needed by the Instantiate opera-
tion for ti.

4.2.1 Analysis
The following result is key to our analysis of the SeedMult

algorithm.

Lemma 1. Consider a PRNG having a cycle of length C
— comprising seeds s1, s2, . . . , sC — and having seed trans-
formation function T . Fix K > 1 and let M1, M2, . . . , MK

449

be K mutually independent random variables, each uniformly
distributed on { 1, 2, . . . , C }. For k = 1, 2, . . . , K, define a
segment σk of length L (≥ 1) by setting σk,1 = sMk and
σk,l = T (σk,l−1) for 2 ≤ l ≤ L. Then the probability that the
K segments have one or more overlaps is less than 2K2L/C.

Proof. For 2 ≤ j ≤ K, denote by Aj the event that
segments σ1 through σj are mutually non-overlapping. Then
the probability of interest can be written as 1 − P (AK).
Note that σk will overlap σj if sMk coincides with one of
the 2L − 1 seeds sMj−L+1, sMj−L+2, . . . , sMj+L−1. (Here
subscripts are to be interpreted modulo C.) Given that
the first j − 1 segments are mutually non-overlapping, the
probability that σj overlaps one or more of these segments
is maximized when σ1, σ2, . . . , σj−1 are arranged such that
each pair of adjacent segments is separated by at least L−1
seeds. This arrangement maximizes the number of “bad”
positions to which sMj can be assigned, namely 2L − 1 bad
positions for each of the j−1 prior segments. Thus, denoting
by Ac the complement of event A, we have

P (Aj | Aj−1) = 1 − P (Ac
j | Aj−1) ≥ 1 − (j − 1)(2L − 1)

C
,

so that, using the Bernoulli inequality,

1 − P (AK) = 1 − P (A2)P (A3 | A2)P (A4 | A3)

· · ·P (AK | AK−1)

≤ 1 −
(

1 − 2L − 1

C

) (
1 − 2(2L − 1)

C

)

· · ·
(

1 − (K − 1)(2L − 1)

C

)

≤ 1 −
(

1 − (K − 1)(2L − 1)

C

)K−1

≤ 1 −
(

1 − (K − 1)2(2L − 1)

C

)

= (K − 1)2(2L − 1)/C,

and the desired result follows immediately.

We can now analyze the probabilities of overlaps during
the seeding and instantiation operations. For the seeding al-
gorithm, observe that, by construction, the initial G2-seeds
s2
0(0), s

2
0(1), . . . , s

2
0(J − 1) for the J mappers are based on

mutually disjoint segments of the G1 cycle. These J seeds
for G2, can be viewed as being randomly placed, uniformly
and independently, on the cycle for G2. Each seed s2

0(j)
initiates a segment of kjm3 successive seeds on the G2 cy-
cle. With k∗ = max0≤j≤J−1 kj , Lemma 1 implies that the
probability of any overlaps between these segments is less
than α2 = 2J2k∗m3/C2. For the instantiation algorithm,
set K = k0 + k1 + · · · + kJ−1 and observe that the K seeds
s3
0(0), s

3
0(1), . . . , s

3
0(K − 1) can be viewed as being randomly

placed on the cycle for G3, and the probability of any over-
laps between segments (each having length m4) is less than
α3 = 2K2m4/C3. Finally, let l∗ = max1≤i≤K li be the maxi-
mum number of seeds consumed by a tuple bundle during in-
stantiation, and view the K seeds s4

0(0), s
4
0(1), . . . , s

4
0(K−1)

as being randomly placed on the cycle for G4. Since each
seed initiates a segment of length at most l∗, the overlap
probability is less than α4 = 2K2l∗/C4.

With suitable choice of generators, m3 can be chosen to be
a small integer, so that seeding a tuple bundle does not un-
duly increase the bundle size. Moreover, α2, α3, and α4 can

Seed length Cycle length

i Came Ref. (mi) (Ci)

1 LCG16807 [25] 1 ≈ 231

2 MRG32k3a [21] 6 ≈ 2191

3 CLCG4 [22] 4 ≈ 2121

4 WELL512a [24] 16 ≈ 2512

Table 1: Generators for seeding and instantiation.

Integers PRNG calls: PRNG calls:

Scheme stored seeding instantiation setup

SeedMult 4 ≈ 4 16

SeedSkip 2 0 ≤ 30

Table 2: Per-bundle space and time costs for seeding
and instantiation. “Setup” refers to the process of
reaching the starting point on the G4 cycle.

be made vanishingly small, so that, effectively with prob-
ability 1, no seed is ever used more than once for any of
the generators. Specifically, we can use the generators in
Table 1. When J = 210 ≈ 1,000, ki = 220 ≈ 1,000,000 for
1 ≤ i ≤ J (so that there are K = 230, or about 1 billion
tuple bundles in total), and li = 220 for 1 ≤ i ≤ K, then, for
the above choice of generators, we have α2 ≈ 2−148 ≈ 10−44,
α3 ≈ 2−56 ≈ 10−17, and α4 ≈ 2−431 ≈ 10−129. Clearly, the
probability of any overlaps is negligible, and only four 32-bit
integers of seeding information need be stored in each tuple
bundle. The selected generators, besides having the requi-
site seed sizes and cycle lengths, are also known to have good
statistical properties.

4.3 Performance Comparison of Methods
To get a better feel for the performance tradeoffs between

the two seeding methods, suppose that we have J = 1000
mappers and an upper bound of k∗ = 1 million bundles per
mapper, and that we use a single VG function and ω = 104

Monte Carlo replications. Also suppose that we use the
generators as in Table 1. Then the space and time costs for
the SeedMult and SeedSkip schemes are as in Table 2. Note
that the seeding cost for the SeedMult scheme is dominated
by the calls to G2; the per-bundle amortized cost of G1

calls is negligible. Also note that the results in the first two
columns are independent of J and k∗.

Thus the SeedSkip scheme requires less seeding informa-
tion per tuple bundle and has lower seeding costs. The in-
stantiation setup can require more PRNG calls, but this may
not be an actual disadvantage if calls to G4 are faster than
calls to G3. Indeed, calls to WELL512 are exceedingly fast
because the seed transformation function is implemented us-
ing bit operations such as XOR. In contrast, CLCG4 uses
integer arithmetic, and is somewhat slower. The cost of
computing skip parameters is unique to SeedSkip, but this
cost can often be amortized over multiple queries; see Sec-
tion 4.4 below. In our experiments (see Section 5), we found
that SeedSkip was slightly faster than SeedMult, but the
other map-reduce processing costs masked the performance
differences between the seeding schemes. The foregoing per-
formance considerations — together with the fact that Seed-
Skip guarantees no overlaps between seed sequences — indi-

450

cate that SeedSkip, when applicable, is the method of choice.
This is why we view SeedMult as a fallback method.

4.4 Extensions
We now drop some of our simplifying assumptions, and

show how the algorithms described above can be extended
in several important ways.

Intra-Tuple Parallelism. As discussed in Section 3.3.2,
the intra-tuple parallelism scheme uses multiple mappers to
generate the N Monte Carlo realizations of a tuple bundle
during instantiation. I.e., the set of Monte Carlo replica-
tions is divided into δ (> 1) chunks of ω = N/δ replications
each, and these chunks are generated in parallel (by a set
of J ′ mappers). Inter-tuple parallelism corresponds to the
special case δ = 1. We modify the S-PPRNG and SeedMult
algorithms to assign each chunk its own seed; our previous
descriptions and analyses still hold, except that now each kj

is interpreted as the number of chunks that are seeded by
mapper Pj , and ω is interpreted, as above, to be the number
of Monte Carlo replications per chunk.

Multiple VG Functions. Suppose that M (> 1) VG
functions must be seeded per tuple bundle. As with intra-
tuple parallelism, our prior algorithms and analyses carry
over virtually unchanged, except that now each (VG func-
tion, chunk) pair is assigned a unique seed. With a slight
abuse of terminology, we henceforth use the term “chunk”
to denote such a pair — thus there are Mδ chunks in total
for each tuple bundle — and kj is again interpreted as the
number of chunks that are seeded by Pj .

Shared Storage. If the J mappers have access to a
(small) amount of shared storage, as is the case for Hadoop,
then speedups for SeedMult are possible by amortizing seed-
ing costs over multiple queries. For example, suppose that
the number of seeding mappers used per query is bounded
above by J∗ over the query workload, and the upper bound
k∗ on the number of chunks per mapper also holds for the
workload. Then the seeds s2

0(0), s
2
0(1), . . . , s

2
0(J

∗−1) can be
computed once and written to shared storage. These seed
values can simply be looked up at seeding time (in parallel,
since only read operations are involved). Similarly, the Seed-
Skip scheme can also exploit shared storage, to amortize the
initial cost of computing the skip-ahead information over a
query workload. E.g., if the values of J and k∗ in Section 4.3
serve as upper bounds for the query workload, then we can
precompute and store the 30 sets of skip parameters for use
by all of the queries.

Hybrid Algorithms. Hybrids of SeedMult and Seed-
Skip can be developed by using skip-ahead methods to place
starting seeds on the G2 and/or G3 cycles in an equally-
spaced manner, rather than dropping them randomly. We
leave a detailed study of these methods for future work.

5. EXPERIMENTAL EVALUATION
We evaluated the performance of MC3 based on scaleup

and speedup metrics, which are commonly used to evaluate
parallel database systems [10]. Scaleup is determined by
increasing the workload and system resources proportion-
ally. Intuitively, k times as much hardware should be able
to handle k times the workload. Speedup is determined by
keeping the workload constant and increasing the system
resources. Intuitively, k times as much hardware should be
able to process the same workload in a fraction 1/k of the
time.

First, we considered inter-tuple parallelism and used sev-
eral queries from the original MCDB paper [16] to deter-
mine scaleup performance. MC3 scaled up well in these
experiments. Next, we considered intra-tuple parallelism
for workloads that have small input files but can be CPU-
intensive; specifically, we executed queries that involved un-
certain stock-option values. The results demonstrated effec-
tive speedup as CPU cores were added, since the workload
was truly CPU-intensive, i.e., the VG functions were expen-
sive.

Hardware and Software. All experiments were run
on a cluster of ten servers. Each server had two 64-bit 2.1
GHz AMD quad-core CPUs, 16GB of memory, and eight 250
GB disks. The software used was 64-bit Linux V2.6.23.1-
42, Sun Java JDK V1.7, Hadoop V0.18.1, and JAQL V0.3.
Although such a cluster is small by map-reduce standards —
due to constraints on our experimental setup — we expect
our scaleup results to hold for much larger clusters, provided
that the appropriate parallelization scheme is used.

5.1 Inter-tuple Parallelism
To evaluate scaleup, we measured the running times of

several queries on increasingly large data sets while propor-
tionally increasing the number of servers. In the ideal case,
we would expect to see the running time remain the same as
the data set and number of servers are proportionally scaled
up.

5.1.1 Experimental Setup
(a) Data and Query. In our experiments, we used the

TPC-H benchmark dataset.4 The dataset was generated
using the dbgen program provided by the benchmark, con-
verted to JSON, and loaded into Hadoop’s HDFS. We used
queries Q1 and Q4 from the original MCDB paper [16] which
are described for convenience below:

Query Q1. This query guesses the revenue gain for prod-
ucts supplied by Japanese companies next year (assumed to
be 1996), assuming that current sales trends hold. The ra-
tio μ of sales volume in 1995 to 1994 is first computed on
a per-customer basis. Then the 1996 sales are generated by
replicating each 1995 order a random number of times, ac-
cording to a Poisson distribution with mean μ. Once 1996
is generated, the additional revenue is computed.

The query plan consisted of seven map-reduce jobs. Three
jobs were used to obtain products supplied by Japanese
companies by joining NATION with SUPPLIER, PARTSUPP, and
LINEITEM. Two more jobs were used to seed the records in
ORDERS, join them with customer orders, and instantiate
them to produce hypothetical orders. The two remaining
jobs were used to join Japanese-supplied products with the
hypothetical orders and to compute the empirical distribu-
tion.

Query Q4. This query is the “marketing query” men-
tioned in Section 1, which estimates the effect of a 5% cus-
tomer price increase on an organization’s profits. A com-
plicated Bayesian VG function that involves acceptance-
rejection sampling is used to predict a customer’s demand
at a new price; see [16] for details. An interesting feature
of this query is that the Bayesian approach determines per-
customer demand distributions, rather than the traditional
one-size-fits-all approach of fitting a single demand curve for
all customers. One can therefore easily estimate the effect

4http://www.tpc.org/tpch/

451

of a price change on various customer segments that are de-
fined dynamically at query time via, e.g., SQL group-by or
selection operations.

The query plan consisted of five map-reduce jobs. Two
jobs were used to obtain the cost of supplied parts by join-
ing LINEITEM, ORDERS, and PARTSUPP. The third job grouped
LINEITEM by part to parameterize parts with their prior dis-
tribution. The fourth job seeded supplied costs, joined sup-
plied costs with prior parameters, and instantiated the tuple
bundles. The final job computed the probability distribu-
tion.

(b) Experimental Procedure. We varied the num-
ber of servers from 1 to 10 and prepared 10 corresponding
datasets, from 2GB for 1 server to 20GB for 10 servers. For
each computing-cluster size, we evaluated both Q1 and Q4
and recorded total elapsed time. Each query was evaluated
using both the SeedMult and SeedSkip distributed seeding
methods, and 1000 Monte Carlo replicates were produced.

0 1 2 3 4 5 6 7 8 9 10
600

850

1100

1350

1600

1850

Number of Servers

R
un

ni
ng

 T
im

e
(s

)

Q4
Q1

Figure 6: Scaleup results for Q1 and Q4

5.1.2 Discussion
Figure 6 displays the results for Q1 and Q4 using Seed-

Skip. The displayed execution times are the average of five
runs. For both queries, the time for seeding was insignificant
compared to the time for I/O, sorting, network transfer, and
instantiation. As a result, we did not observe significant dif-
ferences in overall elapsed times when SeedSkip or SeedMult
were used. (In isolation, it appeared that SeedSkip was at
least 5% faster than SeedMult.) For both Q1 and Q4, join
operations accounted for nearly 50% of the total execution
time. Q1 spent most of the remaining time on tuple-bundle
manipulation (e.g., aggregating arrays) rather than on in-
stantiation. In contrast, Q4’s VG function was more com-
plex, so substantially more time was spent on instantiation
than on tuple-bundle manipulation.

The network was not the bottleneck for either query. Both
queries spent a large fraction of their time reading, writing,
sorting, and transferring data. Q4 also spent substantial
time on its CPU-intensive VG function. The curves in Fig-
ure 6 are relatively flat, which indicates that MC3 scaled up
well. Even though the data set used was small, we expect
that MC3 will effectively scaleup for larger data sets as well,
based on map-reduce’s excellent scalability properties.

5.2 Intra-tuple Parallelism
To evaluate the speedup of intra-tuple parallelism, we kept

the workload constant and measured query execution time
while increasing the number of servers. In the ideal case, we
would expect to see the overall running time decrease by a
factor of 1/k (so that the speedup factor equals k) when k
times as many servers are used.

5.2.1 Experimental Setup
(a) Data and Query. In these experiments, we used

a customer table and an option table. The option table

contained four different call options and the customer ta-
ble contained 100 customers. Each customer had 0 or more
options. Both the option table and customer table were gen-
erated randomly. The query estimates the future portfolio
value for each customer after the options are exercised. The
VG function generates samples of option values by simu-
lating the underlying stock values over the time period of
interest. Two queries were executed, one for Asian call op-
tions and one for European call options. The Asian-option
query uses a relatively inexpensive VG function, whereas
the European-option query uses a very expensive VG func-
tion, about 20 times as expensive as the Asian-option VG
function; see the Appendix for details.

(b) Experimental Procedure. For each query, we var-
ied the number of cores from 4 to 80 and observed the execu-
tion times. Each query was executed using SeedMult seeding
and 1000 Monte Carlo replication. Since four options were
used, our baseline was to use four cores. At this setting,
intra-tuple and inter-tuple parallelism are equivalent.

0 4 8 16 24 32 40 48 56 64 72 80
0
4
8

16

24

32

40

48

56

64

72

80

Number of Cores

S
pe

ed
up

Ideal Speedup
European Option
Asian Option

Figure 7: Speedup results for option queries.

5.2.2 Discussion
Figure 7 displays the speedup behavior for the two queries.

The execution times for both queries were dominated by
CPU time. Since the data set was so small, I/O, network,
and sorting consumed a much smaller fraction of time rela-
tive to the inter-tuple parallelism experiments.

Ideally, we expect a straight line for speedup. We notice
that for the expensive European-option query, the speedup
is nearly ideal. Such excellent results can be attributed to
the fact that a large fraction of the execution time was due
to VG function evaluation, so that intra-tuple parallelism,
which directly tries to reduce this execution cost, is very
effective.

In contrast, the speedup curve for the Asian-option query
starts to flatten out after about 20 cores. The reason for this
degradation is that the task of merging chunks has a fixed
cost, independent of the number of cores, as opposed to the
VG-function execution costs, which decrease as the number
of cores increases. Thus, as the number of cores increases
and the VG function execution costs decrease, the merging
cost eventually dominates the total execution cost, thereby
limiting the benefits of parallelism. I.e., the Asian-option
query was too inexpensive for intra-query parallelism to be
helpful at higher degrees of parallelism.

These experiments indicate the importance of matching
the parallelization scheme to the query and data. If the
correct scheme is chosen, good scaleup can be obtained.

452

6. CONCLUSIONS AND FUTURE WORK
The MC3 system subsumes MCDB functionality, and ex-

tends it to a map-reduce setting, opening up the potential
for massive parallelization and flexible data handling when
managing uncertain enterprise data. Our experiments show
that, using our proposed parallelization schemes and novel
SeedSkip and SeedMult distributed seeding methods, MC3

indeed can scale up effectively to take advantage of avail-
able computing resources and efficiently process data even
with complex extrapolation-based uncertainty. Our exper-
iments show, however, that one must be careful in match-
ing the parallelization scheme to the task at hand. Inter-
tuple parallelism is most appropriate for large numbers of
tuples and relatively cheap VG functions, whereas intra-
tuple parallelism becomes advantageous as the number of
tuples decreases or the VG-function cost increases. Thus
“classical” probabilistic-database applications, where uncer-
tainty is caused by data integration, information extraction,
sensor errors, and so forth, will most likely be well suited
to inter-tuple parallelism, whereas applications that involve
complex, expensive Monte Carlo operations may be better
suited to intra-tuple parallelism.

One notable feature of the map-reduce approach is the
relative ease and speed at which we were able to get MCDB
queries up and running; based on our experience, we expect
that the Hadoop environment will be well suited to trying
out new ideas and prototypes for uncertain data manage-
ment.

There are many possible directions for future research.
Some issues surrounding Monte Carlo approaches to man-
aging uncertain data are common to both MCDB and MC3.
These include estimation of extreme quantiles, allowing the
user to pre-specify the precision of Monte Carlo estimates,
and methods for handling inter-table correlations; see [16]
for a discussion. An issue specific to MC3 is the lack of tech-
niques for optimization of MC3-oriented JAQL queries, e.g.,
with respect to the choice of parallelization scheme. Current
JAQL optimization techniques are entirely based on query
rewrites, and are both ad hoc and not tailored to MC3. In
general, the processing efficiency of MCDB, JAQL, and MC3

queries can vary, and is not yet well understood. This topic
presents rich opportunities for future work.

Another interesting topic is the development of formal
semantics and practical processing methods for general un-
certain JSON data; our current techniques are limited to
nested JSON data for which only leaf values are uncertain.
Finally, an intriguing feature of Hadoop is the potential for
implementing dynamic simulation techniques, e.g., methods
for simulating possible worlds until a desired precision is ob-
tained, or for simultaneously simulating competing business
policies and redirecting map-reduce resources away from a
policy as soon as it becomes apparent that the policy is in-
ferior.

Overall, the MC3 system lies at the confluence of multiple
interesting new technologies. Our examples have empha-
sized uncertainty arising from stochastic models in the hope
that this work will encourage new information-management
applications in which traditional analytical methods are ex-
tended seamlessly to data-intensive settings, thereby im-
proving overall analytical accuracy and decisionmaking.

Acknowledgements
The authors wish to thank Rainer Gemulla and the referees,
whose comments improved the paper. Preparation of this
paper was supported at least in part by the National Science
Foundation under Grant No. 0803511.

APPENDIX

Details of the Call-Option Queries
To save space, we describe the examples using MCDB ter-
minology throughout. Consider a set of customers, each
owning a few different types of call options. All customers
in the database have bought the options at the same time.
A buyer of option i has the right to purchase a share of
an underlying stock at a given strike price Ki at a speci-
fied time T (assumed the same for all options considered).
The owner of the stock can collect a payoff at time T , de-
noted Pi(T), which depends on the value of the stock over
the interval [0, T]. Thus, if Pi(T) > Ki, the customer can
purchase the stock and immediately collect the payoff, for a
profit of Pi(T)−Ki; if Pi ≤ Ki, then the option is worthless,
and the customer’s profit is 0. Thus the value of the option

Oi at time T is
(
Pi(T) − Ki

)+
, where x+ = max(x, 0).

We first consider Asian call options with Black-Scholes
dynamics. Let Si(t) denote the value of the ith underly-
ing stock at time t and assume that the stock evolves ac-
cording to the Black-Scholes stochastic differential equation:
dSi(t)/Si(t) = ri dt + σi dWi(t), where W1, W2, . . . are inde-
pendent standard Brownian motions (so that different stocks
evolve independently), ri is the mean rate of return, and σi

is the stock’s “volatility.” The payoff for the Asian option is
the average price over a sequence of m ≥ 1 equally spaced
measurement times in [0, T]: Pi(T) = m−1 ∑m

j=1 Si(tj),

where tj = (j/m)T for j = 1, 2, . . . , m. For convenience,
set t0 = 0. The initial stock price Si(t0) = Si(0) is assumed
known. Under the assumed stock dynamics, we have S(tj) =

Si(tj−1)× exp
(
(ri − 0.5σ2

i)(tj − tj−1) + σi

√
(tj − tj−1)Zij

)
for j = 1, 2, . . . , m, where Zi1, Zi2, . . . , Zim is a sequence
of independent and identically distributed normal random
variables with mean 0 and variance 1.

The database has parameter tables CUST(CID,OID,NUM),
which specifies the number of options of each type owned by
each customer, and OPTION(OID,INITVAL,R,SIGMA,K,M,T),
which specifies the properties of each option. We define the
following random table of option values at future time T :

CREATE TABLE OPTION VAL(OID,VAL) AS
FOR EACH o in OPTION
WITH OVAL AS VAL COMP (
VALUES(o.INITVAL, o.R, o.SIGMA, o.K, o.M, o.T))

SELECT o.OID, v.VALUE FROM OVAL v

The VG function VAL COMP simulates the stock price for an
option Oi over [0, T], computes the payoff Pi(T), and then
computes the option value at time T . The following query
computes the value of the option account for each customer.

SELECT c.OID, SUM(c.NUM * ov.VAL)
FROM CUST c, OPTION VAL ov
WHERE c.OID = ov.OID GROUP BY c.OID

We next consider European call options with time-varying
volatility. The setup is almost the same as above, but now
the payoff is simply the terminal stock price, i.e., Pi(T) =
Si(T), and the stock price now evolves according to the mod-

ified equation dSi(t)/Si(t) = ri dt + ai

(
Si(t)

)1/2
dWi(t) for

453

some constant ai ∈ [0, 1]. Thus the volatility varies over
time, depending on the stock price. This equation does
not have an analytic solution in general, and must be sim-
ulated. The standard Euler method approximates the dy-
namics by dividing up the interval [0, T] into m small steps
of length Δt = T/m and computing the dynamics according
to the recursive equation Si(tj) = Si(tj−1) + riS(tj−1)Δt +

ai

(
Si(tj−1)

)3/2√
ΔtZij , where tj = jΔt and each Zij is a

normal sample as before. Thus we can formulate an MCDB
query similar to the previous example, by appropriately
modifying the VG function and adding the ai attribute to
the OPTION parameter table. For both examples, observe
that the cost of the VG function increases as the parameter
m increases. In our experiments, we choose a large value of
m, so that the VG function is expensive.

A. REFERENCES
[1] P. Agrawal, O. Benjelloun, A. D. Sarma,

C. Hayworth, S. U. Nabar, T. Sugihara, and
J. Widom. Trio: A system for data, uncertainty, and
lineage. In VLDB, 2006.

[2] L. Antova, C. Koch, and D. Olteanu. MayBMS:
Managing incomplete information with probabilistic
world-set decompositions. In ICDE, pages 1479–1480,
2007.

[3] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur,
C. Ré, and D. Suciu. MYSTIQ: a system for finding
more answers by using probabilities. In ACM
SIGMOD, pages 891–893, 2005.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: a distributed storage system
for structured data. In OSDI, pages 15–15, 2006.

[5] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S.
Parker. Map-reduce-merge: simplified relational data
processing on large clusters. In SIGMOD, pages
1029–1040, 2007.

[6] P. D. Coddington. Random number generators for
parallel computers. The NHSE Review, 2, 1996.

[7] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB, pages 1277–1288,
2008.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[9] L. Devroye. Non-Uniform Random Variate
Generation. Springer, 1986.

[10] D. DeWitt and J. Gray. Parallel database systems:
the future of high performance database systems.
Commun. ACM, 35(6):85–98, 1992.

[11] P. W. Glynn and S. Asmussen. Stochastic Simulation:
Algorithms and Analysis. Springer, 2007.

[12] Hadoop. http://hadoop.apache.org/core/.

[13] H. Haramoto, M. Matsumoto, and P. L’Ecuyer. A fast
jump ahead algorithm for linear recurrences in a
polynomial space. In SETA, pages 290–298, 2008.

[14] H. Haramoto, M. Matsumoto, T. Nishimura,
F. Panneton, and P. L’Ecuyer. Efficient jump ahead
for F2-linear random number generators. INFORMS J.
Computing, 20(3):385–390, 2008.

[15] S. G. Henderson and B. L. Nelson, editors.
Simulation. North-Holland, 2006.

[16] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M.
Jermaine, and P. J. Haas. MCDB: a Monte Carlo
approach to managing uncertain data. In ACM
SIGMOD, pages 687–700, 2008.

[17] JAQL. http://code.google.com/p/jaql/.

[18] JSON. http://www.json.org.

[19] B. Kimelfeld and Y. Sagiv. Modeling and querying
probabilistic XML data. SIGMOD Record,
37(4):69–77, 2008.

[20] P. L’Ecuyer. Random numbers for simulation. Comm.
ACM, 33(10):85–97, 1990.

[21] P. L’Ecuyer. Good parameters and implementations
for combined multiple recursive random number
generators. Oper. Res., 47(1):159–164, 1999.

[22] P. L’Ecuyer and T. H. Andres. A random number
generator based on the combination of four LCGs.
Math. Comput. Simul., 44(1):99–107, 1997.

[23] M. Mascagni. Some methods of parallel pseudorandom
number generation. In R. Schreiber, M. Heath, and
A. Ranade, editors, Algorithms for Parallel
Processing, pages 277–288. Springer, 1997.

[24] F. Panneton, P. L’Ecuyer, and M. Matsumoto.
Improved long-period generators based on linear
recurrences modulo 2. ACM Trans. Math. Software,
32(1):1–16, 2006.

[25] S. K. Park and K. W. Miller. Random number
generators: Good ones are hard to find. Comm. ACM,
31(10):1192–1201, 1988.

[26] C. Re and D. Suciu. Managing probabilistic data with
MystiQ: The can-do, the could-do, and the can’t-do.
In SUM, pages 5–18, 2008.

[27] SimpleDB. http://aws.amazon.com.

[28] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar,
S. Hambrusch, and R. Shah. Orion 2.0: native support
for uncertain data. In ACM SIGMOD, pages
1239–1242, 2006.

[29] SQLServer Data Services.
http://www.microsoft.com/sql/dataservices/default.mspx.

[30] A. Srinivasan, D. M. Ceperley, and M. Mascagni.
Random number generators for parallel applications.
In Monte Carlo Methods in Chemical Physics, pages
13–36. Wiley, 1997.

[31] C. J. K. Tan. The PLFG parallel pseudo-random
number generator. Future Generation Computer
Systems, 18:693–698, 2002.

[32] D. Z. Wang, E. Michelakis, M. N. Garofalakis, and
J. M. Hellerstein. BayesStore: managing large,
uncertain data repositories with probabilistic
graphical models. Proc. VLDB, pages 340–351, 2008.

454

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

