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ABSTRACT
To deal with data uncertainty, existing probabilistic database sys-
tems augment tuples with attribute-level or tuple-level probability
values, which are loaded into the database along with the data itself.
This approach can severely limit the system’s ability to gracefully
handle complex or unforeseen types of uncertainty, and does not
permit the uncertainty model to be dynamically parameterized ac-
cording to the current state of the database. We introduce MCDB,
a system for managing uncertain data that is based on a Monte
Carlo approach. MCDB represents uncertainty via “VG functions,”
which are used to pseudorandomly generate realized values for un-
certain attributes. VG functions can be parameterized on the re-
sults of SQL queries over “parameter tables” that are stored in
the database, facilitating what-if analyses. By storing parameters,
and not probabilities, and by estimating, rather than exactly com-
puting, the probability distribution over possible query answers,
MCDB avoids many of the limitations of prior systems. For ex-
ample, MCDB can easily handle arbitrary joint probability distri-
butions over discrete or continuous attributes, arbitrarily complex
SQL queries, and arbitrary functionals of the query-result distri-
bution such as means, variances, and quantiles. To achieve good
performance, MCDB uses novel query processing techniques, exe-
cuting a query plan exactly once, but over “tuple bundles” instead
of ordinary tuples. Experiments indicate that our enhanced func-
tionality can be obtained with acceptable overheads relative to tra-
ditional systems.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

General Terms
Algorithms, Design, Languages, Performance

1. INTRODUCTION
The operation of virtually any modern enterprise requires risk as-

sessment and decisionmaking in the presence of uncertain informa-
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tion. In the database research literature, the usual approach to ad-
dressing uncertainty employs an extended relational model (ERM),
in which the classical relational model is augmented with attribute-
level or tuple-level probability values, which are loaded into the
database along with the data itself [1, 2, 4, 8, 11, 16, 19].

This ERM approach can be quite inflexible, however, for two
key reasons. First, the representation of uncertainty is “hard wired”
into the data model, and thus the types of uncertainty that can be
processed are permanently limited by the specific model that has
been chosen. If a new, unanticipated manifestation of uncertainty is
later found to be important, but does not fit into the particular ERM
being used, the only choice is to alter the data model itself. The user
must then migrate the database to a new logical model, overhaul the
database software, and likely change the physical database design.

Second, the uncertainty information, having been loaded in with
the rest of the data, can be difficult to modify and limited in ex-
pressive power. Indeed, it rapidly becomes awkward to statically
encode in an ERM anything more than the simplest types of un-
certainty, such as (value, probability) pairs or standard distribution
functions, e.g., in the form (“NormalDistn”, meanVal, sigmaVal).
If the probabilities associated with possible data values are derived
from a complex statistical model, and the model or its parameters
change, the probabilities typically need to be recomputed outside
of the database and then loaded back in. It is therefore almost im-
possible to dynamically parameterize the uncertainty on the global
state of the database or on results from arbitrary database queries.

As a result, there are many important types of uncertainty that
seem difficult to handle in an ERM. An example is “extrapola-
tion uncertainty,” where the current state of the database is used to
dynamically parameterize a statistical model that extrapolates the
database into the past, the future, or into other possible worlds.
Consider, for example, the TPC-H database schema.1 We may
wish to ask, “what would our profits have been last 12 months if
we had raised all of our prices by 5%?” The problem is that we
did not raise our prices by 5%, and so the relevant data are not
present in the database. To handle this, we could use a Bayesian
approach [28] that combines a “prior” distribution model of cus-
tomer demand (having parameters that are derived from the entire
database) with a customer’s observed order size to create a “poste-
rior” distribution for each customer’s demand under the hypotheti-
cal price increase. After computing the posterior demand for each
customer, we could check the new profits that would be expected;
see Section 10, query Q4.

It is difficult to imagine implementing this analysis in an ERM.
First, the statistical model is quite unique, so it is unlikely that it

1See www.tpc.org/tpch.
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would be supported by any particular ERM. Moreover, the param-
eterization of the model depends upon the current database state in
a complex way: in order to predict a customer’s demand at a new
price, it is necessary to consider the order sizes at the original price
for all of the customers in the database and use this as input into
a Bayesian statistical analysis. If the customer-demand analysis is
to be performed on an ongoing basis, then it is necessary to pa-
rameterize the model on the fly. Finally, the posterior distribution
function for a given customer’s demand at the new price is quite
complex; indeed, it cannot even be represented in closed form.

MCDB: The Monte Carlo Database System. In this paper, we
propose a new approach to handling enterprise-data uncertainty,
embodied in a prototype system called MCDB. MCDB does not en-
code uncertainty within the data model itself—all query processing
is over the classical relational data model. Instead, MCDB allows
a user to define arbitrary variable generation (VG) functions that
embody the database uncertainty. MCDB then uses these functions
to pseudorandomly generate realized values for the uncertain at-
tributes, and runs queries over the realized values. In the “what if”
profit scenario outlined above, the user could specify a VG func-
tion that, for a given customer, performs a Bayesian inference step
to determine the posterior demand distribution for the customer at
the new, discounted price, and then pseudorandomly generates a
specific order quantity according to this distribution. Importantly,
VG functions can be parameterized on the results of SQL queries
over “parameter tables” that are stored in the database. By storing
parameters rather than probabilities, it is easy to change the exact
form of the uncertainty dynamically, according to the global state
of the database. Such dynamic parameterization is highly desirable
both for representing complex stochastic models of uncertainty, as
described above, and for exploring the effect on a query result of
different assumptions about the underlying data uncertainty.

Since VG functions can be arbitrary, it is very difficult to ana-
lytically compute the effect on the query result of the uncertainty
that they embody. MCDB avoids this problem by, in effect, using
the VG functions to generate a large number of independent and
identically distributed (i.i.d.) realizations of the random database—
also called “possible worlds”—on the fly, and running the query
of interest over each of them. Using these Monte Carlo repli-
cates, MCDB summarizes the effect of the underlying uncertainty
in the form of an empirical probability distribution over the possi-
ble query results. Since MCDB relies on computational brute force
rather than complicated analytics, it gracefully avoids common de-
ficiencies of the various ERM approaches (see Section 2).

Our Contributions. The paper’s contributions are as follows:

• We propose the first “pure” Monte Carlo approach toward
managing uncertain data. Although others have suggested
the possibility of Monte Carlo techniques in probabilistic
databases [31], ours is the first system for which the Monte
Carlo approach is fundamental to the entire system design.

• We propose a powerful and flexible representation of data
uncertainty via schemas, VG functions and parameter tables.

• We provide a syntax for specifying random tables that re-
quires only a slight modification of SQL, and hence is easily
understood by database programmers. The specification of
VG functions is very similar to specification of user-defined
functions (UDFs) in current database systems.

• To ensure acceptable practical performance, we provide new
query processing algorithms that execute a query plan only
once, processing “tuple bundles” rather than ordinary tuples.

A tuple bundle encapsulates the instantiations of a tuple over
a set of possible worlds. We exploit properties of pseudo-
random number generators to maintain the tuple bundles in
highly compressed form whenever possible.

• We show, by running a collection of interesting benchmark
queries on our prototype system, that MCDB can provide
novel functionality with acceptable performance overheads.

2. MONTE CARLO QUERY PROCESSING
VG functions provide a powerful and flexible framework for

representing uncertainty, incorporating statistical methods directly
into the database (similar in spirit to the MauveDB project [12]).
One consequence of the extreme generality is that exact evalua-
tion of query results—such as tuple appearance probabilities or the
expected value of an aggregation query—is usually not feasible.
From MCDB’s point of view, a VG function is a “black box” with
an invisible internal mechanism, and thus indirect means must be
used to quantify the relationship between a VG function and the
query results that it engenders. Specifically, MCDB invokes the
VG functions to provide pseudorandom values, and then uses those
values to produce and evaluate many different database instances
(“possible worlds”) in Monte Carlo fashion.

2.1 Monte Carlo Benefits
The need for Monte Carlo techniques is not necessarily a bad

thing. Monte Carlo has several important benefits compared to
the exact-computation approach that underlies virtually all existing
proposals [1, 2, 4, 6, 7, 8, 10, 11, 33].

For example, unlike Monte Carlo, exact computation imposes
strong restrictions both on the class of queries that can be handled
and on the characteristics of the query answer that can be evaluated.
Complex query constructs—e.g., EXISTS and NOT IN clauses,
outer joins, or DISTINCT operators—cause significant difficulties
for current exact approaches. Even relatively simple queries can
result in #P complexity for query evaluation [11], and aggregation
queries such as SUM and AVG, which are fundamental to OLAP
and BI processing, pose significant challenges [25]. Moreover, it
is often unclear how to compute important characteristics of the
query output such as quantiles, which are essential for risk evalu-
ation and decisionmaking. Of course, it is possible to extend the
exact approach to handle broader classes of queries and inference
problems, and work in this direction has been abundant [3, 6, 9, 23,
24, 29, 32, 35]. But adding more and more patches to the exact-
computation approach is not a satisfactory solution: almost every
significant extension to the approach requires new algorithms and
new theory, making system implementation and maintenance diffi-
cult at best.

Another benefit of the Monte Carlo approach is that the same
general-purpose methods apply to any correlated or uncorrelated
uncertainty model. In contrast, general models for statistical cor-
relation can be quite difficult to handle (and model) using exact
computation. This is evidenced by the sheer number of approaches
tried. Proposals have included: storing joint probabilities in an
ERM, e.g., (A1.value, A2.value, probability) triplets to spec-
ify correlations between attributes [4], storing joint probabilities
over small subsets of attributes [18, 33], and enhancing the stored
probabilities with additional “lineage” information [1, 16]. Each of
these models has its own sophisticated computational methods to
measure the effect of the correlation—and yet none of them at-
tempts to handle standard statistical dependencies such as those
produced via a random walk (see Section 10, query Q3), much less
dependencies described by complex models such as VARTA pro-
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cesses or copulas [5, 27]. Of course, one can always attempt to de-
velop specialized algorithms to handle new types of correlation as
they arise—but again, this is not a practical solution. At an abstract
level, the task of computing probabilities based on many correlated
input random variables can be viewed as equivalent to computing
the value of an integral of a high-dimensional function. Such an
integration task is extremely hard or impossible in the absence of
very special structure; even the application of approximation meth-
ods, such as the central limit theorem, is decidedly nontrivial, since
the pertinent random variables are, in general, non-identically dis-
tributed and dependent. Monte Carlo methods are well-known to
be an effective tool for attacking this problem [15, 17].

Finally, Monte Carlo methods can easily deal with arbitrary, con-
tinuous distributions. It is possible to handle continuous distribu-
tions using the exact method, and relevant proposals exist [7, 10].
However, exact computation becomes difficult or impossible when
continuous distributions do not have a closed-form representation;
for example, evaluation of a “greater than” predicate requires ex-
pensive numerical integration. Such analytically intractable dis-
tributions arise often in practice, e.g., as posterior distributions in
Bayesian analysis or as distributions that are built up from a set of
base distributions by convolution and other operations.

2.2 Monte Carlo Challenges
Of course, the flexibility of the Monte Carlo approach is not

without cost, and there are two natural concerns. First is the issue of
performance. This is significant; implementation and performance
are considered in detail in Sections 6 through 10 of the paper, where
we develop our “tuple bundle” approach to query processing.

Second, MCDB merely estimates its output results. However,
we feel that this concern is easily overstated. Widely accepted sta-
tistical methods can be used to easily determine the accuracy of
inferences made using Monte Carlo methods; see Section 5. Per-
haps more importantly, the probabilities that are stored in a prob-
abilistic database are often very rough estimates, and it is unclear
whether exact computation over rough estimates makes sense. In-
deed, the “uncertainty” will often be expressed simply as a set of
constraints on possible data values, with no accompanying prob-
ability values for the various possibilities. For example, the age
of a customer might be known to lie in the set { 35, 36, . . . , 45 },
but a precise probability distribution on the ages might be unavail-
able. In such cases, the user must make an educated guess about
this probability distribution, e.g., the user might simply assume that
each age is equally likely, or might propose a tentative probabil-
ity distribution based on pertinent demographic data. As another
example, probabilities for extraction of structured data from text
are often based on approximate generative models, such as condi-
tional random fields, whose parameters are learned from training
data; even these already approximate probabilities are sometimes
further approximated to facilitate storage in an ERM [19]. MCDB
avoids allocating system resources to the somewhat dubious task of
computing exact answers based on imprecise inputs, so that these
resources can instead be used, more fruitfully, for sensitivity and
what-if analyses.

3. SCHEMA SPECIFICATION
We now start to describe MCDB. As mentioned above, MCDB

is based on possible-worlds semantics. A relation is deterministic
if its realization is the same in all possible worlds, otherwise it is
random. Each random relation is specified by a schema, along with
a set of VG functions for generating relation instances. The output
of a query over a random relation is no longer a single answer, but
rather a probability distribution over possible answers. We begin

our description of MCDB by considering specification of random
relations.

3.1 Schema Preliminaries
Random relations are specified using an extended version of the

SQL CREATE TABLE syntax that identifies the VG functions used
to generate relation instances, along with the parameters of these
functions. We follow [30] and assume that each random relation
R can be viewed as a union of blocks of correlated tuples, where
tuples in different blocks are independent. This assumption entails
no loss of generality since, as an extreme case, all tuples in the
table can belong to the same block. At the other extreme, a random
relation made up of mutually independent tuples corresponds to the
case in which each block contains at most one tuple.

3.2 Schema Syntax: Simple Cases
First consider a very simple setting, in which we wish to specify

a table that describes patient systolic blood pressure data, relative
to a default of 100 (in units of mm Hg). Suppose that, for privacy
reasons, exact values are unavailable, but we know that the average
shifted blood pressure for the patients is 10 and that the shifted
blood pressure values are normally distributed around this mean,
with a standard deviation of 5. Blood pressure values for different
patients are assumed independent. Suppose that the above mean
and standard deviation parameters for shifted blood pressure are
stored in a single-row table SPB PARAM(MEAN, STD) and that
patient data are stored in a deterministic table PATIENTS(PID,
GENDER). Then the random table SBP DATA can be specified as

CREATE TABLE SBP DATA(PID, GENDER, SBP) AS
FOR EACH p in PATIENTS
WITH SBP AS Normal (
(SELECT s.MEAN, s.STD
FROM SPB PARAM s))

SELECT p.PID, p.GENDER, b.VALUE
FROM SBP b

A realization of SBP DATA is generated by looping over the set of
patients and using the Normal VG function to generate a row for
each patient. These rows are effectively UNIONed to create the re-
alization of SBP DATA. The FOR EACH clause specifies this outer
loop. In general, every random CREATE TABLE specification has
a FOR EACH clause, with each looping iteration resulting in the
generation of a block of correlated tuples. The looping variable is
tuple-valued, and iterates through the result tuples of a relation or
SQL expression (the relation PATIENTS in our example).

The standard library VG function Normal pseudorandomly gen-
erates independent and identically distributed (i.i.d.) samples from
a normal distribution, which serve as the uncertain blood pres-
sure values. The mean and variance of this normal distribution is
specified in a single-row table that is input as an argument to the
Normal function. This single-row table is specified, in turn, as the
result of an SQL query—a rather trivial one in this example—over
the parameter table SPB PARAM. The Normal function, like all
VG functions, produces a relation as output—in this case, a single-
row table having a single attribute, namely, VALUE.

The final SELECT clause assembles the finished row in the real-
ized SBP DATA table by (trivially) selecting the generated blood
pressure from the single-row table created by Normal and ap-
pending the appropriate PID and GENDER values. In general, the
SELECT clause “glues together” the various attribute values that
are generated by one or more VG functions or are retrieved from
the outer FOR EACH query and/or from another table. To this end,
the SELECT clause may reference the current attribute values of
the looping variable, e.g., p.PID and p.GENDER.
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3.3 Parameterizing VG Functions
As a more complicated example, suppose that we wish to create

a table of customer data, including the uncertain attributes MONEY,
which specifies the annual disposable income of a customer, and
LIVES IN, which specifies the customer’s city of residence. Sup-
pose that the deterministic attributes of the customers are stored
in a table CUST ATTRS(CID, GENDER, REGION). That is,
we know the region in which a customer lives but not the precise
city. Suppose that, for each region, we associate with each city
a probability that a customer lives in that city—thus, the sum of
the city probabilities over a region equals 1. These probabilities
are contained in a parameter table CITIES(NAME, REGION,
PROB). The distribution of the continuous MONEY attribute follows
a gamma distribution, which has three parameters: shift, shape and
scale. All customers share the same shift parameter, which is stored
in a single-row table MONEY SHIFT(SHIFT). The scale param-
eter is the same for all customers in a given region, and these re-
gional scale values are stored in a table MONEY SCALE(REGION,
SCALE). The shape-parameter values vary from customer to cus-
tomer, and are stored in a table MONEY SHAPE(CID, SHAPE).
The (MONEY, LIVES IN) value pairs for the different customers
are conditionally mutually independent, given the REGION and
SHAPE values for the customers. Similarly, given the REGION
value for a customer, the MONEY and LIVES IN values for that
customer are conditionally independent. A specification for the
CUST table is then
CREATE TABLE CUST(CID, GENDER, MONEY, LIVES IN) AS
FOR EACH d in CUST ATTRS
WITH MONEY AS Gamma(
(SELECT n.SHAPE
FROM MONEY SHAPE n
WHERE n.CID = d.CID),

(SELECT sc.SCALE
FROM MONEY SCALE sc
WHERE sc.REGION = d.REGION),

(SELECT SHIFT
FROM MONEY SHIFT))

WITH LIVES IN AS DiscreteChoice (
(SELECT c.NAME, c.PROB
FROM CITIES c
WHERE c.REGION = d.REGION))

SELECT d.CID, d.GENDER, m.VALUE, l.VALUE
FROM MONEY m, LIVES IN l

We use the Gamma library function to generate gamma variates;
we have specified three single-row, single-attribute tables as input.
The DiscreteChoice VG function is a standard library func-
tion that takes as input a table of discrete values and selects exactly
one value according to the specified probability distribution.

Note that by modifying MONEY SHAPE, MONEY SCALE, and
MONEY SHIFT, we automatically alter the definition of CUST, al-
lowing what-if analyses to investigate the sensitivity of query re-
sults to probabilistic assumptions and the impact of different sce-
narios (e.g., an income-tax change may affect disposable income).
Another type of what-if analysis that we can easily perform is to
simply replace the Gamma or DiscreteChoice functions in the
definition of CUST with alternative VG functions. Finally, note
that the parameters for the uncertainty model are stored in a space-
efficient denormalized form; we emphasize that parameter tables
are standard relational tables that can be indexed to boost process-
ing efficiency.

3.4 Capturing ERM Functionality
As a variant of the above example, suppose that associated with

each customer is a set of possible cities of residence, along with a
probability for each city. Assuming that this information is stored

in a table CITIES(CID, NAME, PROB), we change the defini-
tion of LIVES IN to
WITH LIVES IN AS DiscreteChoice (
(SELECT c.NAME, c.PROB
FROM CITIES c
WHERE c.CID = d.CID))

Thus, MCDB can capture attribute-value uncertainty [1, 4, 19].
Tuple-inclusion uncertainty as in [11] can also be represented

within MCDB. Consider a variant of the example of Section 3.3 in
which the CUST ATTRS table has an additional attribute INCL PROB
which indicates the probability that the customer truly belongs in
the CUST table. To represent inclusion uncertainty, we use the li-
brary VG function Bernoulli, which takes as input a single-
row table with a single attribute PROB and generates a single-row,
single-attribute output table, where the attribute VALUE equals true
with probability p specified by PROB and equals falsewith prob-
ability 1− p. Augment the original query with the clause
WITH IN TABLE AS Bernoulli (VALUES(d.INCL PROB))

where, as in standard SQL, the VALUES function produces a single-
row table whose entries correspond to the input arguments. Also
modify the select clause as follows:
SELECT d.CID, d.GENDER, m.VALUE, l.VALUE
FROM MONEY m, LIVES IN l, IN TABLE i
WHERE i.VALUE = true

3.5 Structural Uncertainty
“Structural” uncertainty [18], i.e., fuzzy queries, can also be cap-

tured within the MCDB framework. For example, suppose that a
table LOCATION(LID, NAME, CITY) describes customer lo-
cations, and another table SALES(SID, NAME, AMOUNT) con-
tains transaction records for these customers. We would like to
compute sales by city, and so need to join the tables LOCATION
and SALES. We need to use a fuzzy similarity join because a name
in LOCATION and name in SALES that refer to the same entity
may not be identical, because of spelling errors, different abbre-
viations, and so forth. Suppose that we have a similarity function
Sim that takes two strings as input, and returns a number between
0 and 1 that can be interpreted as the probability that the two in-
put strings refer to the same entity. Then we define the following
random table:
CREATE TABLE LS JOIN (LID, SID) AS
FOR EACH t IN (

SELECT l.LID, l.NAME AS NAME1,
s.SID, s.NAME AS NAME2

FROM LOCATIONS l, SALES s)
WITH JOINS AS Bernoulli (
VALUES(Sim(t.NAME1, t.NAME2)))
SELECT t.LID, t.SID
FROM JOINS j
WHERE j.VALUE = true

Here Bernoulli is defined as before. The desired overall result
is now given by the query
SELECT l.CITY, SUM(s.AMOUNT)
FROM LOCATION l, SALES s, LS JOIN j
WHERE l.TID = j.LID AND s.SID = j.SID
GROUP BY l.CITY

Unlike the traditional approach, in which all tuples that are “suf-
ficiently” similar are joined, repeated Monte Carlo execution of
this query in MCDB yields information not only about the “most
likely” answer to the query, but about the entire distribution of sales
amounts for each city. We can then assess risk, such as the proba-
bility that sales for a given city lie below some critical threshold.
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3.6 Correlated Attributes
Correlated attributes are easily handled by using VG functions

whose output table has multiple columns. Consider the case where
a customer’s income and city of residence are correlated:
CREATE TABLE CUST(CID, GENDER, MONEY, LIVES IN) AS
FOR EACH d in CUST ATTRS
WITH MLI AS MyJointDistribution (...)
SELECT d.CID, d.GENDER, MLI.VALUE1, MLI.VALUE2
FROM MLI

The user-defined VG function MyJointDistribution outputs
a single-row table with two attributes VALUE1 and VALUE2 corre-
sponding to the generated values of MONEY and LIVES IN.

3.7 Correlated Tuples
Suppose, for example, that we have readings from a collection of

temperature sensors. Because of uncertainty in the sensor measure-
ments, we view each reading as the mean of a normal probability
distribution. We assume that the sensors are divided into groups,
where sensors in the same group are located close together, so
that their readings are correlated, and thus the group forms a mul-
tivariate normal distribution. The table S PARAMS(ID, LAT,
LONG, GID) contains the sensor ID (a primary key), the latitude
and longitude of the sensor, and the group ID. The means corre-
sponding to the given “readings” are stored in a parameter table
MEANS(ID, MEAN), and the correlation structure is specified by
a covariance matrix whose entries are stored in a parameter ta-
ble COVARS(ID1, ID2, COVAR). The desired random table
SENSORS is then specified as follows:
CREATE TABLE SENSORS(ID, LAT, LONG, TEMP) AS
FOR EACH g IN (SELECT DISTINCT GID FROM S PARAMS)
WITH TEMP AS MDNormal(
(SELECT m.ID, m.MEAN
FROM MEANS m, SENSOR PARAMS ss
WHERE m.ID = ss.ID AND ss.GID = g.GID),

(SELECT c.ID1, c.ID2, c.COVAR
FROM COVARS c, SENSOR PARAMS ss
WHERE c.ID1 = ss.ID AND ss.GID = g.GID))

SELECT s.ID, s.LAT, s.LONG, t.VALUE
FROM SENSOR PARAMS s, TEMP t
WHERE s.ID = t.ID

The subquery in the FOR EACH clause creates a single-attribute
relation containing the unique group IDs, so that the looping vari-
able g iterates over the sensor groups. The MDNormal function
is invoked once per group, i.e., once per distinct value of g. For
each group, the function returns a multi-row table having one row
per group member. This table has two attributes: ID, which spec-
ifies the identifier for each sensor in the group, and VALUE, which
specifies the corresponding generated temperature. The join that is
specified in the final SELECT clause serves to append the appropri-
ate latitude and longitude to each tuple produced by MDNormal,
thereby creating a set of completed rows—corresponding to group
g—in the generated table SENSORS.

4. SPECIFYING VG FUNCTIONS
A user of MCDB can take advantage of a standard library of VG

functions, such as Normal() or Poisson(), or can implement
VG functions that are linked to MCDB at query-processing time.
The latter class of customized VG functions is specified in a manner
similar to the specification of UDFs in ordinary database systems.
This process is described below.

4.1 Basic VG Function Interface
A VG function is implemented as a C++ class with four public

methods: Initialize(), TakeParams(), OutputVals(),

and Finalize(). For each VG function referenced in a CREATE
TABLE statement, the following sequence of events is initiated for
each tuple in the FOR EACH clause.

First, MCDB calls the Initialize() method with the seed
that the VG function will use for pseudorandom number genera-
tion.2 This invocation instructs the VG function to set up any data
structures that will be required for random value generation.

Next, MCDB executes the queries that specify the input param-
eter tables to the VG function. The result of the query execution
is made available to the VG function in the form of a sequence of
arrays called parameter vectors. The parameter vectors are fed into
the VG function via a sequence of calls to TakeParams(), with
one parameter vector at each call.

After parameterizing the VG function, MCDB then executes the
first Monte Carlo iteration by repeatedly calling OutputVals()
to produce the rows of the VG function’s output table, with one row
returned per call. MCDB knows that the last output row has been
generated when OutputVals() returns a NULL result. Such a
sequence of calls to OutputVals() can then be repeated to gen-
erate the second Monte Carlo replicate, and so forth.

When all of the required Monte Carlo replicates have been gen-
erated, MCDB invokes the VG function’s Finalize() method,
which deletes any internal VG-function data structures.

4.2 Example VG Implementation
We illustrate the above ideas via a naive implementation of a

very simple VG function, DiscreteChoice for strings. This
VG function is slightly more general than the VG function de-
fined in Section 3.3, in that the function accepts a set of char-
acter strings x1, x2, . . . , xn and associated nonnegative “weights”
w1, w2, . . . , wn, then normalizes the weights into a vector of prob-
abilities P = (p1, p2, . . . , pn) with pi = wi/

∑
j wj , and fi-

nally returns a random string X distributed according to P , i.e.,
P {X = xi } = pi for 1 ≤ i ≤ n. The function uses a stan-
dard “inversion” method to generate the random string, which is
based on the following fact. Let U be a random number uniformly
distributed on [0, 1]. Set X = xI , where I is a random variable
defined by I = min{ 1 ≤ i ≤ n : U <

∑i
j=1 pj }. Then

P { I = i } = P

{
i−1∑
j=1

pj ≤ U <

i∑
j=1

pj

}
= pi

for 1 ≤ i ≤ n. That is, X is distributed according to P .
This DiscreteChoice function has a single input table with

two columns that contain the strings and the weights, respectively,
so that each input parameter vector v to this function is of length 2;
we denote these two entries as v.str and v.wt. The output table
has a single row and column, which contains the selected string.

Our implementation is now as follows. The Initialize()
method executes a statement of the form myRandGen = new
RandGen(seed) to create and initialize a uniform pseudoran-
dom-number generator myRandGen using the seed value that
MCDB has passed to the method; a call to myRandGen returns
a uniform pseudorandom number and, as a side effect, updates the
2A uniform pseudorandom number generator deterministically and
recursively computes a sequence of seed values (typically 32 or 64
bit integers), which are then converted to floating-point numbers in
the range [0, 1] by normalization. Although this process is deter-
ministic, the floating-point numbers produced by a well designed
generator will be statistically indistinguishable from a sequence of
“truly” i.i.d. uniform random numbers. See [15] and [21, Ch. 3] for
introductory and state-of-the-art discussions, respectively. The uni-
form pseudorandom numbers can then be transformed into pseudo-
random numbers having the desired final distribution [13].
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1 If newRep:
2 newRep = false
3 uniform = myRandGen()
4 probSum = i = 0
5 while (uniform >= probSum):
6 i = i + 1
7 probSum = probSum + (L[i].wt/totWeight)
8 return L[i].str
9 Else:
10 newRep = true
11 return NULL

Figure 1: The OutputVals method

value of seed. The method also allocates storage for a list L of pa-
rameter vectors; we can view L as an array indexed from 1. Next,
the method initializes a class variable totWeight to 0; this vari-
able will store the sum of the input weights. Finally, the method
also sets a class variable newRep to true, indicating that we are
starting a new Monte Carlo repetition (namely, the first such repe-
tition). The Finalize() method de-allocates the storage for L
and destroys myRandGen. The TakeParams() function simply
adds the incoming parameter vector v to the list L and also incre-
ments totWeight by v.wt.

The most interesting of the methods is OutputVals(), whose
pseudocode is given in Figure 1. When OutputVals() is called
with newRep = true (line 1), so that we are starting a new
Monte Carlo repetition, the algorithm uses inversion (lines 3–8)
to randomly select a string from the list L, and sets newRep to
false, indicating that the Monte Carlo repetition is underway.
When OutputVals() is called with newRep = false (line
9), a Monte Carlo repetition has just finished. The method returns
NULL and sets newRep to true, so that the method will correctly
return a non-NULL value when it is next called.

5. INFERENCE AND ACCURACY
Using the Inference operator described in Section 8.4 below,

MCDB returns its query results as a set of (ti, fi) pairs, where
t1, t2, . . . are the distinct tuples produced in the course ofN Monte
Carlo iterations and fi is the fraction of the N possible worlds in
which tuple ti appears. Such results can be used to explore the
underlying distribution of query answers in many different ways.

For example, in the presence of uncertain data, the answer X to
an aggregation query Q such as SELECT SUM(sales) FROM
T—where T is a random table—is no longer a fixed number, but a
random variable, having a probability distribution that is unknown
to the user. MCDB will, in effect, executeQ onN i.i.d. realizations
of T , thereby generating N i.i.d. realizations of X . We can now
plot the results in a histogram to get a feel for the shape of the
distribution of X; see Section 10 for examples of such plots.

We can, however, go far beyond graphical displays: the power of
MCDB lies in the fact that we can leverage over 50 years of Monte
Carlo technology [17, 21] to make statistical inferences about the
distribution ofX , about interesting features of this distribution such
as means and quantiles, and about the accuracy of the inferences
themselves. For example, if we are interested in the expected value
of the answer toQ, we can estimateE[X] by x̄N = N−1∑d

i=1 yini,
where y1, y2, . . . , yd are the distinct values of X produced in the
course of the N Monte Carlo iterations, and ni is the number of
possible worlds in which X = yi, so that

∑d
i=1 ni = N . (In

this example, the SUM query result is a single-row, single-attribute
table, so that yi = ti and ni = fiN .) We can also assess the
accuracy of x̄N as an estimator of E[X]: assuming N is large,
the central limit theorem [34, Sec. 1.9] implies that, with probabil-

ity approximately 95%, the quantity x̄N estimates E[X] to within
±1.96σ̂N/

√
N , where σ̂2

N = (N − 1)−1∑d
i=1(yi − x̄N )2ni. If

we obtain preliminary values of x̄N and σ̂N , say, from a small pilot
execution, then we can turn the above formula around and estimate
the number of Monte Carlo replications needed to estimate E[X]
to within a desired precision; alternatively, we can potentially use a
sequential estimation procedure as in [26] (this is a topic for future
research).

Analogous results apply to estimation of quantiles [34, Sec. 2.6]
and other statistics of interest. Indeed, we can use Kolmogorov’s
theorem [34, p. 62] to approximate the entire cumulative distribu-
tion function of X . For example, denoting this function by F and
the empirical distribution function by FN , Kolmogorov’s theorem
implies that with probability approximately 95%, the absolute dif-
ference |F (x) − FN (x)| is bounded above by 1.36/

√
N for all

x. If the distribution of X is known to have a probability den-
sity function, then this function can be estimated using a variety of
techniques [14]; note that a histogram can be viewed as one type
of density estimator. Besides estimation, we can perform statistical
tests of hypotheses such as “the expected value of the result ofQ1 is
greater than the expected value of the result of Q2.” If Q1 and Q2

correspond to two different business policies, then we are essen-
tially selecting the best policy, taking into account the uncertainty
in the data; more sophisticated “ranking and selection” procedures
can potentially be used with MCDB [21, Ch. 17].

More generally, the answer X to a query can be an entire (ran-
dom) table. In this case, we can, for example, use the results from
MCDB to estimate the true probability that a given tuple ti ap-
pears in the query answer; this estimate is simply fi. We can also
compute error estimates on fi, perform hypothesis tests on appear-
ance probabilities, and so forth. The idea is to consider a transfor-
mation φi(X) of the random, table-valued query result X , where
φi(X) = 1 if ti appears in X , and φi(X) = 0 otherwise. Then,
on each possible world, the result of our transformed query is sim-
ply a number (0 or 1), and the previous discussion applies in full
generality, with fi = x̄N .

In summary, MCDB permits the use of powerful inference tools
that can be used to study results of queries on uncertain data. Many
other estimation methods, stochastic optimization techniques, hy-
pothesis tests, and efficiency-improvement tricks are potentially ap-
plicable within MCDB, but a complete discussion is beyond the
scope of this paper.

6. QUERY PROCESSING IN MCDB
In this section we describe the basic query-processing ideas un-

derlying our prototype implementation. Subsequent sections con-
tain further details.

6.1 A Naive Implementation
Logically, the MCDB query processing engine evaluates a query

Q over many different database instances, and then uses the vari-
ous result sets to estimate the appearance probability for each result
tuple. It is easy to imagine a simple method for implementing this
process. Given a queryQ over a set of deterministic and random re-
lations, the following three steps would be repeatedN times, where
N is the number of Monte Carlo iterations specified:

1. Generate an instance of each random relation as specified by
the various CREATE TABLE statements.

2. Once an entire instance of the database has been material-
ized, compile, optimize, and execute Q in the classical man-
ner.
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3. Append every tuple in Q’s answer set with a number identi-
fying the current Monte Carlo iteration.

OnceN different answer sets have been generated, all of the output
tuples are then merged into a single file, sorted, and scanned to
determine the number of iterations in which each tuple appears.

Unfortunately, although this basic scheme is quite simple, it is
likely to have dismal performance in practice. The obvious prob-
lem is that each individual database instance may be very large—
perhaps terabytes in size—and N is likely to be somewhere from
10 to 1000. Thus, this relatively naive implementation is impracti-
cal, and so MCDB uses a very different strategy.

6.2 Overview of Query Processing in MCDB
The key ideas behind MCDB query processing are as follows:

MCDB runs each query one time, regardless of N . In MCDB,
Q is evaluated only once, whatever value of N is supplied by the
user. Each “database tuple” that is processed by MCDB is actually
an array or “bundle” of tuples, where t[i] for tuple bundle t denotes
the value of t in the ith Monte Carlo database instance.

The potential performance benefit of the “tuple bundle” approach
is that relational operations may efficiently operate in batch across
allN Monte Carlo iterations that are encoded in a single tuple bun-
dle. For example, if t[i].att equals some constant c for all i, then
the relational selection operation σatt=7 can be applied to t[i] for
all possible values of i via a single comparison with the value c.
Thus, bundling can yield a N -fold reduction in the number of tu-
ples that must be moved through the system, and processed.

MCDB delays random attribute materialization as long as pos-
sible. The obvious cost associated with storing all of the N gen-
erated values for an attribute in a tuple bundle is that the resulting
bundle can be very large for large N . If N = 1000 then stor-
ing all values for a single random character string can easily re-
quire 100Kb per tuple bundle. MCDB alleviates this problem by
materializing attribute values for a tuple as late as possible during
query execution, typically right before random attributes are used
by some relational operation.

In MCDB, values for random attributes are reproducible. Af-
ter an attribute value corresponding to a given Monte Carlo itera-
tion has been materialized—as described above—and processed by
a relational operator, MCDB permits this value to be discarded and
then later re-materialized if it is needed by a subsequent operator.
To ensure that the same value is generated each time, so that the
query result is consistent, MCDB ensures that each tuple carries
the pseudorandom number seeds that it supplies to the VG func-
tions. Supplying the same seed to a given VG function at every
invocation produces identical generated attribute values. One can
view the seed value as being a highly compressed representation of
the random attribute values in the tuple bundle.

7. TUPLE BUNDLES IN DETAIL
A tuple bundle t with schema S is, logically speaking, simply an

array of N tuples—all having schema S—where N is the number
of Monte Carlo iterations. Tuple bundles are manipulated using
the new operators described in Section 8 and the modified versions
of classical relational operators described in Section 9. In general,
there are many possible ways in which the realized attribute values
for a random table R can be bundled. The only requirement on a
set of tuple bundles t1, t2, . . . , tk is that, for each i, the set ri =⋃
j tj [i] corresponds precisely to the ith realization of R.
There are many possible ways to bundle individual tuples to-

gether across Monte Carlo database instances. For storage and

processing efficiency, MCDB tries to bundle tuples so as to maxi-
mize the number of “constant” attributes. An attribute att is con-
stant in a tuple bundle t if t[i].att = c for some fixed value c
and i = 1, 2, . . . , N . Since constant attributes do not vary across
Monte Carlo iterations, they can be stored in compressed form as a
single value. In the blood pressure example of Section 3.2, the natu-
ral approach is to have one tuple bundle for each patient, since then
the patient ID is a constant attribute. Attributes that are supplied di-
rectly from deterministic relations are constant. MCDB also allows
the implementor of a VG function to specify attributes as constant
as a hint to the system. Then, when generating Monte Carlo repli-
cates of a random table, MCDB creates one tuple bundle for ev-
ery distinct combination of constant-attribute values encountered.
MCDB often stores values for non-constant attributes in a highly
compressed form by storing only the seed used to pseudorandomly
generate the values, rather than an actual array of values.

A tuple bundle t in MCDB may have a special random attribute
called the isPresent attribute. The value of this attribute for the ith
iteration is denoted by t[i].isPres. The value of t[i].isPres equals
true if and only if the tuple bundle actually has a constituent tu-
ple that appears in the ith Monte Carlo database instance. If the
isPresent attribute is not explicitly represented in a particular tuple
bundle, then t[i].isPres is assumed to be true for all i, so that t
appears in every database instance.

isPresent is not created via an invocation of a VG function. Rat-
her, it may result from a standard relational operation that happens
to reference an attribute created by a VG function. For example,
consider a random attribute gender that takes the value male or
female, and the relational selection operation σB where B is the
predicate “gender=female”. If, in the ith database instance,
t[i].gender=male, then t[i].isPres will necessarily be set to
false after application of σB to t because σB removes t from
that particular database instance. In MCDB the isPresent attribute
is physically implemented as an array of N bits within the tuple
bundle, where the ith bit corresponds to t[i].isPres.

8. NEW OPERATIONS IN MCDB
Under the hood, MCDB’s query processing engine looks quite

similar to a classical relational query processing engine. The pri-
mary differences are that (1) MCDB implements a few additional
operations, and (2) the implementations of most of the classic rela-
tional operations must be modified slightly to handle the fact that
tuple bundles move through the query plan. We begin by describing
in some detail the operations unique to MCDB.

8.1 The Seed Operator
For a given random table R and VG function V , the Seed oper-

ator appends to each tuple created by R’s FOR EACH statement an
integer unique to the (tuple, VG function) pair. This integer serves
as the pseudorandom seed for V when expanding the tuple into an
uncompressed tuple bundle.

8.2 The Instantiate Operator
The Instantiate operator is perhaps the most unique and

fundamental operator used by MCDB. For a random table R, this
operator uses a VG function to generate a set of attribute values—
corresponding to a Monte Carlo iteration—which is appended to
the individual tuple bundles in R. To understand the workings of
Instantiate, it is useful to consider a slightly modified version
of the example in Section 3.2, in which the mean and variance for
the shifted blood pressure reading explicitly depend on a patient’s
gender, so that the table SPB PARAM now has two rows and an
additional GENDER attribute.
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CREATE TABLE SBP DATA(PID, GENDER, SBP) AS
FOR EACH p in PATIENTS
WITH SBP AS Normal (
(SELECT s.MEAN, s.STD
FROM SPB PARAM s
WHERE s.GENDER = p.GENDER))

SELECT p.PID, p.GENDER, b.VALUE
FROM SBP b

The Instantiate operator accepts the following seven parame-
ters, which are extracted from R’s CREATE TABLE statement:

• Qout. This is the answer set for the “outer” query that is
the source for the tuples in the FOR EACH clause. In our
example, Qout is simply the result of a table scan over the
relation PATIENTS. However, as in Sections 3.5 and 3.7,
Qout may also be the result of a query. In general, a random
relationRmay be defined in terms of multiple VG functions,
in which case R is constructed via a series of invocations of
the Instantiate operation, one for each VG function.

• V G. This is the variable generation function that will be used
to generate attribute values.

• V GAtts. This is the set of attributes whose values are pro-
duced by the VG function and are to be used to update the
tuple bundles. In our example, V GAtts comprises the sin-
gle attribute Normal.VALUE.

• OutAtts. This is the set of attributes from Qout that should
appear in the result of Instantiate. In our example,
OutAtts comprises the attributes p.PID and p.GENDER.

• Qin,1, Qin,2, . . . , Qin,r . These are the answer sets for the
“inner” input queries used to supply parameters to V G. In
our example, there is only one inner input query, and so
Qin,1 is the result of SELECT s.MEAN, s.STD, s.GENDER
FROM SBP PARAM s. Note that the attribute s.GENDER
is required because this attribute will be used to join Qout
with Qin,1.

• InAtts1, InAtts2, . . . , InAttsr . Here InAttsi is the set
of those attributes from the ith inner query that will be fed
into V G. In our example, InAtts1 consists of s.MEAN and
s.STD.

• B1, B2, . . . , Br . Here Bi is the boolean join condition that
links the ith inner query to the outer query. In our example,
B1 is the predicate “s.GENDER = p.GENDER”.

We first assume (as in our example) that there is only one in-
ner query, so that we have only Qin, InAtts, and B in addi-
tion to Qout, V GAtts, and OutAtts; extensions to multiple in-
ner queries (and multiple VG functions) are given below. Given
this set of arguments, an outline of the steps implemented by the
Instantiate operator to add random attribute values to a stream
of input tuples is as follows. The process is illustrated in Figure 2.

1. First, the input pipe supplying tuples from Qout is forked,
and copies of the tuples from Qout are sent in two “direc-
tions”. One fork bypasses the VG function entirely, and
is used only to supply values for the attributes specified in
OutAtts. For this particular fork, all of the attributes present
in Qout except for those in OutAtts∪ {seed} are projected
away and then all of the result tuples are sorted based upon
the value of the tuple’s seed.

“inner” input pipe

“outer”
input pipe

B

pipe fork

πVGAtts seed{ }∪

πInAtts seed{ }∪

πOutAtts seed{ }∪

Qin

Qout

output
pipe

Mergeseed

VG Function

Sortseed

Figure 2: The Instantiate operation for a single inner input
query.

1 V G.Initialize(ti.seed)
2 For each tuple s in the group Si:
3 V G.TakeParams(πInAtts(s))
4 OutputTuples = 〈〉
5 For j = 1 to N :
6 For k = 1 to∞:
7 temp = V G.OutputVals()
8 If temp is NULL, then break
9 OutputTuples[j][k] = πV GAtts(temp) • ti.seed
10 V G.Finalize()

Figure 3: Step four of the Instantiate operator.

2. The second fork is used to supply parameters to the VG func-
tion. Using this fork, the set S = Qout 1B Qin is com-
puted; all attributes except for the VG function seed and the
attributes in InAtts are then projected away after the join.

3. Next, S is grouped (ordered) so that if two tuples s1, s2 in
S were produced by the same t ∈ Qout, then s1 and s2 are
always found in the same group. This is easily accomplished
by sorting S on the seed value contained in each tuple. Note
that tuples in the same group have the same seed value.

4. Then, for each group Si in S, the VG function produces a re-
sult array OutputTuples using the pseudocode in Figure 3.
After the pseudocode is completed for a given Si, the rows
inOutputTuples are sent onwards, to update the tuple bun-
dles. In the figure, ti ∈ Qout is the outer tuple corresponding
to Si, ti.seed is the common seed value, and • denotes tuple
concatenation. This code first feeds each of the parameter
values in the set Si into the function V G (line 3). The code
then performs N Monte Carlo iterations (lines 5–9). The
seed value ti.seed that produced the set of tuple bundles is
appended to the row, so that it is possible to identify which
tuple from the outer input query was used to produce the row.

5. Finally, the results of steps 1 and 4 are merged (joined) based
upon the seed values, so that the attributes supplied by Qout
can be combined with the attributes produced by the VG
function. During this merge step, the putative instantiated
row of R that has just been created may be filtered out by
applying the final WHERE predicate, if any, that appears after
the final SELECT clause in the CREATE TABLE statement.
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“inner” input pipes

“outer”
input pipe

B1 B2
B3

pipe fork

πVGAtts seed{ }∪

πInAtts1 seed{ }∪ πInAtts2 seed{ }∪ πInAtts3 seed{ }∪

πOutAtts seed{ }∪

Qin,1 Qin,2 Qin,3

Qout

output
pipe

Mergeseed

VG Function

Sortseed

Mergeseed

Figure 4: The Instantiate operation for multiple inner in-
put queries.

Handling multiple inner queries. When there are multiple inner
queries that supply input parameters to the VG function, the fore-
going process must be generalized slightly. The generalization is
pictured in Figure 4. Rather than only forking the outer input pipe
that supplies tuples from Qout in two directions, one additional
fork is required for each additional inner query. Each of the re-
sulting parameter streams is merged or grouped so that each group
contains only parameters with exactly the same seed value. Once
this single set of parameters is obtained, it is sent to the VG func-
tion via calls to TakeParams, and the rest of the Instantiate
operation proceeds exactly as described above.

Handling multiple VG functions. When k (> 1) VG functions
appear in the same CREATE TABLE statement, Instantiate
is not changed at all; instead, k Instantiate operations are exe-
cuted, and then a final join is used to link them all together. In more
detail, MCDB first seeds each outer tuple with k seeds, one for each
VG function, and then appends a unique synthetic identifier to the
tuple. The resulting stream of tuples is then forked k ways. The kth
fork is sent into an Instantiate operation for the kth VG func-
tion, essentially implementing a modified CREATE TABLE state-
ment in which all references to VG functions other than the kth
have been removed and in which the synthetic identifier is added
to the final SELECT list. MCDB executes a k-way join over the k
result streams, using the synthetic identifiers as the join attributes
(and appropriately projecting away redundant attributes).

8.3 The Split Operator
One potential problem with the “tuple bundle” approach is that

it becomes impossible to order tuple bundles with respect to a non-
constant attribute. This is problematic when implementing an oper-
ation such as relational join, which typically requires ordering the
input tuples by their join attributes via sorting or hashing.

In such a situation, it is necessary to apply the Split operator.
The Split operator takes as input a tuple bundle, together with
a set of attributes Atts. Split then splits the tuple bundle into
multiple tuple bundles, such that, for each output bundle, each of
the attributes in Atts is now a constant attribute. Moreover, the
constituent tuples for each output bundle t are marked as nonex-
istent (that is, t[i].isPres = false) for those Monte Carlo iter-

ations in which t’s particular set of Atts values is not observed.
For example, consider a tuple bundle t with schema (fname,
lname, age) where attributes fname = Jane and lname =
Smith are constant, and attribute age is non-constant. Specifi-
cally, suppose that there are four Monte Carlo iterations and that
t[i].age = 20 for i = 1, 3 and t[i].age = 21 for i = 2, 4.
We can compactly represent this tuple bundle as t = (Jane,
Smith, (20,21,20,21),(T,T,T,T)), where the last nest-
ed vector contains the isPresent values, and indicates that Jane
Smith appeared in all four Monte Carlo iterations (though with
varying ages). An application of the Split operation to t with
Atts = {age} yields two tuple bundles t1 = (Jane, Smith,
20, (T, F, T, F)) and t2 = (Jane, Smith, 21, (F,
T, F, T)). Thus, the nondeterminism in age has been trans-
ferred to the isPresent attribute.

8.4 The Inference Operator
The final new operator in MCDB is the Inference operator.

The output from this operator is a set of distinct, unbundled tuples,
where unbundled tuple t′ is annotated with a value f that denotes
the fraction of the Monte Carlo iterations for which t′ appears at
least once in the query result. (Typically, one attribute of t′ will be
a primary key, so that t′ will appear at most once per Monte Carlo
iteration.) Note that f estimates p, the true probability that t′ will
appear in a realization of the query result.

MCDB implements Inference operator as follows. Assume
that the input query returns a set of tuple bundles with exactly the
set of attributes Atts (not counting the isPresent attribute). Then

1. MCDB runs the Split operation on each tuple bundle in
Q using Atts as the attribute-set argument. This ensures
that each resulting tuple bundle has all of its nondetermin-
ism “moved” to the isPresent attribute.

2. Next, MCDB runs the duplicate removal operation (see the
next section for a description).

3. Finally, for each resulting tuple bundle, Inference counts
the number of i values for which t[i].isPres = true. Let
this value be n. The operator then outputs a tuple with at-
tribute value t[ · ].att for each att ∈ Atts, together with the
relative frequency f = n/N .

9. STANDARD RELATIONAL OPS
In addition to the new operations described above, MCDB imple-

ments versions of the standard relational operators that are modified
to handle tuple bundles.

9.1 Relational Selection
Given a boolean relational selection predicateB and a tuple bun-

dle t, for each i, t[i].isPres = B(t[i]) ∧ t[i].isPres. In the case
where t.isPres has not been materialized and stored with t, then
t[i].isPres is assumed to equal true for all i prior to the selec-
tion, and t[i].isPres is set to B(t[i]).

If, after application of B to t, t[i].isPres = false for all i,
then t is rejected by the selection predicate and t is not output
at all by σB(t). If B refers only to constant attributes, then the
Selection operation can be executed in O(1) time by simply
accepting or rejecting the entire tuple bundle based on the unique
value of each of these attributes.

9.2 Projection
Projection in MCDB is nearly identical to projection in a classi-

cal system, with a few additional considerations. If a non-constant
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attribute is projected away, the entire array of values for that at-
tribute is removed. Also, so that an attribute generated by a VG
function can be re-generated, projection of an attribute does not
necessarily remove the seed for that attribute unless this is explic-
itly requested.

9.3 Cartesian Product and Join
The Cartesian product operation (×) in MCDB is also similar to

the classical relational case. Assume we are given two sets of tuple
bundles R and S. For r ∈ R and s ∈ S, define t = r ⊕ s to be the
unique tuple bundle such that

1. t[i] = r[i] • s[i] for all i, where • denotes tuple concatena-
tion as before, but excluding the elements r[i].isPres and
s[i].isPres.

2. t[i].isPres = r[i].isPres ∧ s[i].isPres.

Then the output of the × operation comprises all such t.
The join operation (1) with an arbitrary boolean join predicate

B is logically equivalent to a × operation as above, followed by
an application of the (modified) relational selection operation σB .
In practice, B most often contains an equality check across the
two input relations (i.e., an equijoin). An equijoin over constant
attributes is implemented in MCDB using a sort-merge algorithm.
An equijoin over non-constant attributes is implemented by first
applying the Split operation to force all of the join attributes to
be constant, and then using a sort-merge algorithm.

9.4 Duplicate Removal
To execute the duplicate-removal operation, MCDB first exe-

cutes the Split operation, if necessary, to ensure that isPresent is
the only non-constant attribute in the input tuple bundles. The bun-
dles are then lexicographically sorted according to their attribute
values (excluding isPresent). This sort operation effectively parti-
tions the bundles into groups such that any two bundles in the same
group have the identical attribute values. For each such group T ,
exactly one result tuple t is output. The attribute values of t are the
common ones for the group, and t[i].isPres =

∨
t′∈T t

′[i].isPres
for each i.

9.5 Aggregation
To sum a set of tuple bundles T over an attribute att, MCDB

creates a result tuple bundle t with a single attribute called agg and
sets t[i].agg =

∑
t′∈T I(t′[i].isPres) × t′[i].att. In this expres-

sion, I is the indicator function returning 1 if t′[i].isPres = true
and 0 otherwise. Standard SQL semantics apply, so that if the fore-
going sum is empty for some value of i, then t[i].agg = NULL.
Other aggregation functions are implemented similarly.

10. EXPERIMENTS
The technical material in this paper has focused upon the basic

Monte Carlo framework employed by MCDB, upon the VG func-
tion interface, and upon MCDB’s implementation details. Our ex-
perimental study is similarly focused, and has two goals:

1. To demonstrate examples of non-trivial, “what-if” analyses
that are made possible by MCDB.

2. To determine if this sort of analysis is actually practical from
a performance standpoint in a realistic application environ-
ment. An obvious upper bound for the amount of time re-
quired to compute 100 Monte Carlo query answers is the
time required to generate the data and run the underlying
database query 100 times. This is too slow. The question

addressed is: Can MCDB do much better than this obvious
upper bound?

There are many possible novel, interesting, and rich examples to
study. Given our space constraints, we choose to focus on four
such examples in depth, to give a better feel both for the novel
applications amenable to MCDB and for the performance of our
initial prototype.

Basic Experimental Setup. We generate a 20GB instance of the
TPC-H database using TPC-H’s dbgen program and use MCDB
to run four non-trivial “what-if” aggregation queries over the gen-
erated database instance. Each of the four queries is run using one,
ten, 100, and 1000 Monte Carlo iterations, and wall-clock running
times as well as the query results are collected.

MCDB Software. To process the queries, we use our prototype
of the MCDB query processing engine, which consists of about
20,000 lines of C++ source code. This multi-threaded prototype
has full support for the VG function interface described in the pa-
per, and contains sort-based implementations of all of the standard
relational operations as well as the special MCDB operations. Our
MCDB prototype does not yet have a query compiler/optimizer,
as development of these software components is a goal for future
research. The query processing engine’s front-end is an MCDB-
specific “programming language” that describes the physical query
plan to be executed by MCDB.

Hardware Used. We chose our hardware to mirror the dedicated
hardware that might be available to an analyst in a small- to medi-
um-sized organization. The four queries are run on a dedicated and
relatively low-end, $3000 server machine with four, 160GB ATA
hard disks and eight, 2.0GHz cores partitioned over two CPUs. The
system has eight GB of RAM and runs the Ubuntu distribution of
the Linux OS.

Queries Tested. The four benchmark queries we study are each
computationally expensive, involving joins of large tables, expen-
sive VG-function evaluation, grouping, and aggregation. The SQL
for the queries is given in the Appendix.

Query Q1. This query guesses the revenue gain for products sup-
plied by Japanese companies next year (assumed to be 1996), as-
suming that current sales trends hold. The ratio µ of sales volume
in 1995 to 1994 is first computed on a per-customer basis. Then the
1996 sales are generated by replicating each 1995 order a random
number of times, according to a Poisson distribution with mean µ.
This process approximates a “bootstrapping” resampling scheme.
Once 1996 is generated, the additional revenue is computed.

Query Q2. This query estimates the number of days until all or-
ders that were placed today are delivered. Using past data, the
query computes the mean and variance of both time-to-shipment
and time-to-delivery for each part. For each order placed today,
instances of these two random delays are generated according to
discretized gamma distributions with the computed means and vari-
ances. Once all of the times are computed for each component of
each order, the maximum duration is selected.

Query Q3. One shortcoming of the TPC-H schema is that, for a
given supplier and part, only the current price is maintained in the
database. Thus, it is difficult to ask, “What would the total amount
paid to suppliers in 1995 have been if we had always gone with the
most inexpensive supplier?” Query Q3 starts with the current price
for each item from each supplier and then performs a random walk
to guess prices from December, 1995 back to January, 1995. The
relative price change per month is assumed to have a mean of -0.02
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Query 1 iter 10 iters 100 iters 1000 iters
Q1 25 min 25 min 25 min 28 min
Q2 36 min 35 min 36 min 36 min
Q3 37 min 42 min 87 min 222 mina

Q4 42 min 45 min 60 min 214 min

aMeasurement based on 350 Monte Carlo iterations

Figure 5: Wall-clock running times.
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Figure 6: Empirical distributions for answers to Q1–Q4.

and a variance of 0.04. The most inexpensive price available for
each part is then used to compute the total supplier cost.

Query Q4. This query is the one mentioned in Section 1, which
estimates the effect of a 5% customer price increase on an organi-
zation’s profits. The Bayesian VG function used in this query to
predict a customer’s demand at a new price appears impossible to
integrate, and so Monte Carlo methods must be used.

At a high level, this VG function works as follows. For a given
part that can be purchased, denote by Dp a given customer’s ran-
dom demand for this part when the price equals p. A prior distri-
bution for Dp is used that is the same for all customers. Bayesian
methods are used obtain a posterior, customer-specific distribution
for Dp (for all values of p) by combining the generic prior dis-
tribution with our knowledge of the actual price p∗ offered to the
customer, and the customer’s resulting demand d∗.

The inner workings of the VG function are described in more
detail in the Appendix, but to make use of this VG function we
must first issue a query to parameterize the prior version of Dp,
and then for each customer, we feed the actual values p∗ and d∗

as well as the proposed price increase to the VG function, which
then “guesses” the new demand. This new demand is then used to
calculate the change in profit.

Results. The results obtained by running the four queries are given
above in Figures 5 and 6. To put the running times in perspec-
tive, we ran a foreign key join over partsupp, lineitem, and
orders in the Postgres DBMS, and killed the query after waiting
more than 2.5 hours for it to complete. A commercial system would
probably be much faster, but this shows that MCDB times are not
out of line with what one may expect from a classical relational
query processing engine.

Figure 6 plots a histogram for all observed aggregate values over
the four queries. The 1000 i.i.d. Monte Carlo samples obtained for
each query do an excellent job of accurately summarizing the true
distribution of aggregate values. For example, for query Q1, the

inferred mean aggregate value is 8.3277e+09; 95%, central-limit-
theorem-based bounds on this value (see Section 5) show an error
of only ±0.02%.

Remarkably, we found that for the first two queries, the number
of Monte Carlo iterations had no effect on the running time. For
query Q1, the naive approach of simply running the query 1000
times to complete 1000 Monte Carlo iterations would take over 400
hours to complete, whereas the MCDB approach takes 28 minutes.
This illustrates very clearly the benefit of MCDB’s tuple bundle
approach to query processing, where the query is run only once
and bundles of Monte Carlo values are stored within each tuple.
Even for a large database, much of the cost in a modern database
system is related to performing in-memory sorts and hashes, and
these costs tend to be constant no matter how many Monte Carlo
iterations are employed by MCDB.

In queries Q3 and Q4, MCDB was somewhat more sensitive to
the number of Monte Carlo iterations, though even for the “worst”
query (Q3), the MCDB time for 350 iterations was only six times
that for a single iteration. The reason for the relatively strong in-
fluence of the number of Monte Carlo iterations on Q3’s running
time is that this query produces twelve individual, correlated tuple
bundles for each and every tuple in partsupp, which results in
96 million large tuple bundles being produced by the VG function,
where bundle size is proportional to the number of Monte Carlo
iterations. Because of the sort-based GROUP BY operations in the
query, the materialized attribute values needed to be carried along
through most of the query processing, and had to be stored on disk.
For 1000 Monte Carlo iterations, the resulting terabyte-sized ran-
dom relation exceeded the capabilities of our benchmarking hard-
ware, and so our observation of 222 minutes was obtained using
a value of 350 iterations. We conjecture that replacing sort-based
joins and grouping operations with hash-based operations will go a
long way towards alleviating such difficulties.

Query Q4’s sensitivity to the number of Monte Carlo iterations is
related to its very expensive Bayesian VG function. For 1000 itera-
tions, this function’s costly OuputVals method is invoked nearly
ten billion times, and this cost begins to dominate the query execu-
tion time. The cost of the VG function is made even more signifi-
cant because our initial attempt at parallelizing the Instantiate
implementation was somewhat ineffective, and MCDB had a very
difficult time making use of all eight CPU cores available on the
benchmarking hardware. We suspect that future research specifi-
cally aimed at Instantiate could facilitate significant speedups
on such a query. Even so, the 214 minutes required by MCDB to
perform 1000 trials is only 0.5% of the 700 hours that would be
required to naively run the query 1000 times.

Although the TPC-H database generated by dbgen is synthetic,
some of the qualitative results shown in Figure 6 are still interest-
ing. In particular, we point to Q2, where MCDB uncovers evidence
of a significant, long tail in the distribution of anticipated times un-
til all existing orders are complete. If this were real data, the tail
would be indicative of a significant need to be more careful in con-
trolling the underlying order fulfillment process!

11. CONCLUSIONS
This paper describes an initial attempt to design and prototype

a Monte Carlo-based system for managing uncertain data. The
MCDB approach—which uses the standard relational data model,
VG functions, and parameter tables—provides a powerful and flex-
ible framework for representing uncertainty. Our experiments indi-
cate that our new query-processing techniques permit handling of
uncertainty at acceptable overheads relative to traditional systems.

Much work remains to be done, and there are many possible re-
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search directions. Some issues we intend to explore in future work
include:

• Query optimization. The problem of costing alternative query
plans appears to be challenging, as does the possibility of us-
ing query feedback to improve the optimizer. A related is-
sue is to automatically detect when queries can be processed
exactly and very efficiently, and have the MCDB system re-
spond accordingly; the idea would be to combine our Monte
Carlo approach with existing exact approaches in the liter-
ature, in an effective manner. We also plan—in the spirit
of [32, 35]—to combine MCDB’s processing methods with
classical DBMS technology such as indexing and pre-ag-
gregation, to further enhance performance.

• Error control. In our current prototype, the user must spec-
ify the desired number of Monte Carlo iterations, which can
be hard to do without guidance. Our goal is to have the user
specify precision and/or time requirements, and have the sys-
tem automatically determine the number of iterations. Alter-
natively, it may be desirable to have the system return results
in an online manner, so that the user can decide on the fly
when to terminate processing [20, 22]. As indicated in Sec-
tion 5, there is a large amount of existing technology that
can potentially be leveraged here. Closely related to this is-
sue is the question of how to define an appropriate syntax
for specifying the functionals of the query-output distribu-
tion required by the user, along with the speed and precision
requirements. Finally, we hope to exploit knowledge of these
requirements to tailor MCDB’s processing methods individ-
ually for each query, thereby improving efficiency. The func-
tionality discussed in [24] is also of interest in this regard.

• Improved risk assessment. For purposes of risk assessment,
we often want to estimate quantiles of the distribution of a
query result. This task can be challenging for extreme quan-
tiles that correspond to rare events. We hope to leverage
Monte Carlo techniques, such as importance sampling [21,
Ch. 11], that are known to be effective for such problems.
Importance sampling can also potentially be used to “push
down” selections into the VG function, i.e., to only generate
sample tuples that satisfy selection predicates; see [36].

• Correlated relations. We are currently investigating the best
way to handle correlation between random relations. One
approach—which can be handled by the current prototype
but may not be the most efficient possible—is to denormalize
the random tables as necessary; that is, to ensure that any
correlated attributes appear jointly in the same table. Other
possible approaches include allowing a random relation R to
appear in the specification of another random relation table
S, and to allow VG functions to return a set of output tables.

• Lineage. We also note that our system does not explicitly
track data lineage (also called provenance) as does a system
like Trio [1]. It may be possible, however, to combine our
Monte Carlo methods with lineage-management technology.

• Non-relational applications. Finally, we hope to extend the
techniques and ideas developed here to other types of data,
such as uncertain XML [23], as well as to other types of data-
processing environments.

Overall, the approach embodied in MCDB has the potential to
facilitate real-world risk assessment and decisionmaking under data
uncertainty, both key tasks in a modern enterprise.
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APPENDIX
Query Q1.
CREATE VIEW from japan AS
SELECT *
FROM nation, supplier, lineitem, partsupp
WHERE n name=’JAPAN’ AND s suppkey=ps suppkey AND

ps partkey=l partkey AND ps suppkey=l suppkey
AND n nationkey = s nationkey

CREATE VIEW increase per cust AS
SELECT o custkey AS custkey, SUM(yr(o orderdate)
-1994.0)/SUM(1995.0-yr(o orderdate)) AS incr

FROM ORDERS
WHERE yr(o orderdate)=1994 OR yr(o orderdate)=1995
GROUP BY o custkey

CREATE TABLE order increase AS
FOR EACH o in ORDERS

WITH temptable AS Poisson(

SELECT incr
FROM increase per cust
WHERE o custkey=custkey AND

yr(o orderdate)=1995)
SELECT t.value AS new cnt, o orderkey
FROM temptable t

SELECT SUM(newRev-oldRev)
FROM (
SELECT l extendedprice*(1.0-l discount)*new cnt
AS newRev, (l extendedprice*(1.0-l discount))
AS oldRev

FROM increase per cust, from japan
WHERE l orderkey=o orderkey)

Query Q2.
CREATE VIEW orders today AS
SELECT *
FROM orders, lineitem
WHERE o orderdate=today AND o orderkey=l orderkey

CREATE VIEW params AS
SELECT AVG(l shipdate-o orderdate) AS ship mu,
AVG(l receiptdate-l shipdate) AS arrv mu,
STD DEV(l shipdate-o orderdate) AS ship sigma,
STD DEV(l receiptdate-l shipdate) AS arrv sigma,
l partkey AS p partkey

FROM orders, lineitem
WHERE o orderkey=l orderkey
GROUP BY l partkey

CREATE TABLE ship durations AS
FOR EACH o in orders today
WITH gamma ship AS DiscGamma(
SELECT ship mu, ship sigma
FROM params
WHERE p partkey=l partkey)

WITH gamma arrv AS DiscGamma(
SELECT arrv mu, arrv sigma
FROM params
WHERE p partkey=l partkey)

SELECT gs.value AS ship, ga.value AS arrv
FROM gamma ship gs, gamma arrv ga

SELECT MAX(ship+arrv)
FROM ship durations

Query Q3.
CREATE TABLE prc hist(ph month, ph year, ph prc,

ph partkey) AS
FOR EACH ps in partsupp
WITH time series AS RandomWalk(

VALUES (ps supplycost,12,"Dec",1995,
-0.02,0.04))

SELECT month, year, value, ps partkey
FROM time series ts

SELECT MIN(ph prc) AS min prc, ph month, ph year,
ph partkey

FROM prc hist
GROUP BY ph month, ph year, ph partkey

SELECT SUM(min prc*l quantity)
FROM prc hist, lineitem, orders
WHERE ph month=month(o orderdate) AND l orderkey=
o orderkey AND yr(o orderdate)=1995 AND
ph partkey=l partkey

Query Q4.
CREATE VIEW params AS
SELECT 2.0 AS p0shape, 1.333*AVG(l extendedprice
*(1.0-l discount)) AS p0scale, 2.0 AS d0shape,
4.0*AVG(l quantity) AS d0scale, l partkey AS
p partkey
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FROM lineitem l
GROUP BY l partkey

CREATE TABLE demands (new dmnd, old dmnd,
old prc, new prc, nd partkey, nd suppkey) AS
FOR EACH l IN (SELECT * FROM lineitem, orders

WHERE l orderkey=o orderkey AND
yr(o orderdate)=1995)

WITH new dmnd AS Bayesian (
(SELECT p0shape, p0scale, d0shape, d0scale
FROM params
WHERE l partkey = p partkey)
(VALUES (l quantity, l extendedprice*(1.0-
l discount))/l quantity, l extendedprice*
1.05*(1.0-l discount)/l quantity))

SELECT nd.value, l quantity, l extendedprice*
(1.0-l discount))/ l quantity, 1.05*
l extendedprice*(1.0-l discount)/l quantity,
l partkey, l suppkey

FROM new dmnd nd

SELECT SUM (new prf-old prf)
FROM (
SELECT

new dmnd*(new prc-ps supplycost) AS new prf
old dmnd*(old prc-ps supplycost) AS old prf

FROM partsupp, demands
WHERE ps partkey=nd partkey AND

ps suppkey=nd suppkey)

Details of VG function for query Q4. We define the prior dis-
tribution indirectly, in terms of the stochastic mechanism used to
generate a realization of Dp. This mechanism works by generat-
ing random variables p0 and d0 according to independent gamma
distributions Gamma(kp, θp) and Gamma(kd, θd), and then setting
Dp = (d0/p0)(p0− p). Here the shape parameters are kp = kd =
2.0, and the scale parameters are θp = 4

3
× (the average price), and

θd = 4× (the average demand), where the average price and de-
mand are computed over all of the existing records of actual trans-
actions involving the part.

One way of viewing this process is that we have defined a proba-
bility distribution over the space of linear demand curves; i.e., p0 is
the price at which the customer will purchase nothing, and d0 is the
customer’s demand if the price offered is 0. Given our choice of kp
and kd, our subsequent choice of θp and θd ensures that the aver-
age price and demand over all customers for a given item actually
falls on the most likely demand curve—this most-likely curve is de-
picted in Figure 7. We generate a random demand Dp by first gen-
erating a random demand function and then evaluating this function
at the price of interest.

Given the observation (p∗, d∗) for a customer, the next task is
to determine the customer’s posterior demand distribution by first
determining the posterior distribution of the customer’s entire de-
mand function. Roughly speaking, we define the posterior prob-
ability density function over the space of linear demand functions
to be the prior density over this space, conditioned on the obser-
vation that the function intersects the point (p∗, d∗); we can write
down an expression for the posterior density, up to a normaliza-
tion factor, using Bayes’ rule. Although we cannot compute the
normalizing constant—and hence the demand-function density—
in closed form, we can generate random demand functions accord-
ing to this density, using a “rejection sampling” algorithm. The VG
function for customer demand, then, determines demand for the 5%
price increase essentially by (1) using Bayes’ rule to determine the
parameters of the rejection sampling algorithm, (2) executing the
sampling algorithm to generate a demand function, and then (3)
evaluating this function at the point 1.05p∗.

In more detail, let g(x; k, θ) = xk−1e−x/θ/θkΓ(k) be the stan-
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Figure 7: Most likely demand curve under prior distribution.

dard gamma density function with shape parameter k and scale pa-
rameter θ, and set gp(x) = g(x; kp, θp) and gd(x) = g(x; kd, θd).
Then the prior density function for p0 and d0 is fp0,d0(x, y) =
gp(x)gd(y). If a demand curve passes through the point (d∗, p∗),
then p0 and d0 must be related as follows: p0 = p∗d0/(d0 − d∗).
Let h(x, y) = 1 if x ≥ d∗ and y = p∗x/(x − d∗); otherwise,
h(x, y) = 0. For x ≥ d∗, Bayes’ theorem implies that

P { d0 = x, p0 = y | p0 = p∗d0/(d0 − d∗) }
∝ P { p0 = p∗d0/(d0 − d∗) | d0 = x, p0 = y }

× P { d0 = x, p0 = y }
= h(x, y)gp(x)gd(y)

= h(x, y)gp(x)gp
(
p∗x/(x− d∗)

)
.

That is, hd(x) = cgd(x)gp
(
p∗x/(x− d∗)

)
is the posterior density

of d0—where c is a constant such that
∫∞
x=d∗ hd(x) dx = 1—and

p0 is completely determined by d0. The normalization constant
c has no closed-form representation. Our VG function generates
samples from hd using a simple, approximate rejection algorithm
that avoids the need to compute c. Specifically, we determine a
value xmax such that

∫ xmax
x=d∗ hd(x) dx ≈ 1, and also numerically

determine the point x∗ at which c−1hd obtains its maximum value.
The rejection algorithm generates two uniform random numbersU1

and U2 on [0, 1], sets X = d∗ + U1(xmax − d∗), and “accepts” X
if and only if c−1hd(x

∗)U2 ≤ c−1hd(X); if the latter inequality
does not hold, then X is “rejected.” This process is repeated until
a value of X is accepted, and this accepted value is returned as
the sample from hd. The correctness of the rejection algorithm
is easy to verify, and the proof is standard [13]. Once we have
generated a sample d0 from hd, we determine p0 deterministically
as p0 = p∗d0/(d0 − d∗). Finally, we compute the customer’s
demand at the new price by D = (d0/p0)(p0 − 1.05p∗).
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