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ABSTRACT 
Data sets are growing rapidly and there is an attendant need for 
tools that facilitate human analysis of them in a timely manner. To 
help meet this need, column-oriented databases (or “column 
stores”) have come into wide use because of their low latency on 
analytic workloads. Column stores use a number of techniques to 
produce these dramatic performance techniques, including the 
ability to perform operations directly on compressed data. 

In this paper, we describe how the Tableau Data Engine (an 
internally developed column store) leverages a number of 
compression techniques to improve query performance. The 
approach is simpler than existing systems for operating on 
compressed data and more unified, removing the necessity for 
custom data access mechanisms. The approach also uses some 
novel metadata extraction techniques to improve the choices made 
by the system’s run-time optimizer. 

1. INTRODUCTION 
Recent years have seen an unprecedented growth in the amount of 
data available for analysis. This data often needs to be processed 
manually by a human who understands the semantics of the 
problem domain. Once the initial analysis has been completed, the 
results are often passed on to other interested parties. Visual 
analysis tools such as Tableau [1] enable the creation of such 
analyses via an intuitive drag-and-drop interface. 

In the early days of data analytics, these results were generally 
static reports designed to communicate the end result of the 
analysis to decision makers. Increasingly, however, such analyses 
are becoming the starting point for further work. More recent 
incarnations of these tools have added an emphasis on interactive 
visualization and computer-mediated analytic narratives.   

A low-latency analytic query engine best serves such interactive 
tools, but the underlying data source may have higher latency, 
either due to architectural issues or heavy workloads. The Tableau 
Data Engine (TDE) acts as a low-latency relational store for visual 
analysis in the Tableau system by storing and processing extracts 
of a data set under analysis. 

As a commercial desktop product, Tableau’s lack of control over 
the deployment environment hardware makes scale-out of the 
TDE impossible in many use cases. While we have managed to 
incorporate some single-node parallelism into the execution core, 
the machines users employ for analytics are often laptops with 
limited energy, disk and CPU resources. This constraint has given 
us a bias towards gaining performance through algorithmic 
techniques. The focus of the current work is to describe several 
such algorithmic approaches centered around operating directly 
on compressed data. 

One important component of many low-latency relational stores is 
the ability to operate directly on compressed data [12]. In this 
paper, we will describe how the TDE leverages various kinds of 
compression during query compilation and execution. The 
approaches we will describe include: 

• New data formats that enable modifying the semantics 
of entire columns independent of the number of rows; 

• Two methods of expressing decompression as a join 
operation, one of which we believe to be novel; 

• A technique for extracting metadata during query 
execution for use by a tactical optimizer. 

We will also combine these techniques with a flat file import 
operator to demonstrate how the system can generate good 
physical designs during the import process at low cost. 

The organization of this paper is as follows. Section 2 covers 
some background material and related work.  In Sect. 3 we 
describe a set of lightweight compression techniques that are used 
to quickly improve the physical design of the imported data set.  
Section 4 presents our optimizer-based decompression system.  
Section 5 contains our evaluation setup, including our flat file 
input system, and we give the results of our evaluation in Section 
6. We describe our conclusions in Section 7, and Section 8 
sketches avenues for future work. 

2. BACKGROUND 
In this section, we summarise some previous work on the use of 
column stores for analytic workloads [2,6,10,11] in order to 
provide the context for the rest of the paper. 

2.1 Lightweight Compression 
Lightweight compression is a staple of column store physical 
storage layers and has been described by [5,6] and others.  
Examples of lightweight compression include run-length 
encoding and delta encoding.  These compression techniques 
typically work on data of fixed-width types and are often 
symmetrical in that compression and decompression have similar 
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computational complexity. They are lightweight in that they 
require less computation time than reading from secondary 
storage, or even from main memory. 

Lightweight compression algorithms are common in column 
stores because the heterogeneous data layout inherent to columnar 
layouts make such algorithms easy to apply. The data storage used 
by the algorithms typically includes actual values from the 
column, which makes it relatively simple to extract the values and 
use them directly in query processing instead of decompressing 
the data to its full size. Because of the relatively high performance 
of the compression algorithms, column stores can compress data 
during execution to save I/O bandwidth when spilling results to 
disk. 

2.2 Extracts 
Tableau is a visual analysis tool based on the Polaris system [1], 
which allows the user to create analytic queries and narratives 
using a simple drag-and-drop interface. 

For input, Tableau connects natively to a wide range of databases, 
both relational and hierarchical.  In addition to supporting a large 
number of commercial and open source databases, it also connects 
to extracts of data, which are subset of the original data set that 
may have been filtered, sampled or rolled up. 

These extracts are used in various workflow scenarios, including 
off-line work, reducing the load on data warehouses, sharing of 
data with third parties, filtering/projecting subsets of the data, pre-
aggregating the data and supplementing databases that either 
perform poorly or lack useful functionality such as COUNTD or 
MEDIAN aggregation.  

2.3 Data Engine 
Tableau extracts were originally created using the Firebird [14] 
open source relational engine, but performance considerations 
eventually led to its replacement with an in-house component, the 
Tableau Data Engine (TDE).  

We first described the TDE in [10]. It is a read-only column store 
that has been optimized for use with the Tableau visualization 
environment. We chose to create our own component because of 
business requirements that could not be met by any existing 
commercial, academic or open source system, including: collated 
strings, single file databases, 32-bit hardware, calculation 
language semantics and Tableau’s NULL join semantics. 

We now provide a brief overview of the salient parts of the TDE 
architecture to provide background for the main discussion. 

2.3.1 Query Plan Generation 
The TDE expresses a query plan as a block-iterated Volcano-style 
[8] operator tree with two styles of operators:  flow operators 
process a block of rows at a time before passing the block on to 
the next operator; stop-and-go operators must read all the blocks 
of their input before their output is available. The query processor 
follows the optimization model of [3].  

In the first strategic phase, the shape of the optimal plan is 
determined. A rule-based component derives properties for all tree 
nodes based on metadata and performs transformations, such as 
elimination of common sub-expressions, computation and 
filtering move-around, parallelism injection and expression 
simplification.  

The second part of optimization, tactical, is delayed until run-
time, where decisions can be made based on the actual data. This 
time property derivation happens on-the-go and can be more 
accurate. In particular, we track minimum/maximum value or 
cardinality or nullability. While the arrangement of operators is 
not affected, their implementation can be optimized based on 
specific input properties. For example, an aggregation operator 
can choose a hash algorithm based on the sizes and other 
attributes of the aggregation keys. 

2.3.2 Compression 
For historical and structural reasons, the TDE storage layer makes 
a distinction between compression and encoding of columns.  
Compression in this parlance is traditional dictionary compression 
with each column owning an associated dictionary that can 
contain either fixed width data (array compression) or variable 
width data (heap compression).  The main data column is always 
fixed width and consists of either uncompressed scalars, indexes 
into the fixed width dictionary or offsets into the heap dictionary.  
This architecture allows the query optimizer to reason about 
compression and to optimize computation on compressed data by 
using invisible joins [5] 

A second form of compression was included in the original TDE 
design, which operated only on fixed-width data. These forms of 
compression are called encodings.  Encodings are an abstraction 
that externally appear as a paged array of fixed width values, but 
are stored internally in a more compressed format. Encodings are 
concealed from the rest of the system behind virtual interfaces that 
present a paged interface to an ordered stream of bytes. Encoding 
and decoding is implemented behind these interfaces during 
insertion and byte range requests. Encodings are semantically 
neutral in that they do not know the type of the underlying data, 
only its width. In the first release, the TDE only implemented run-
length encoding. 

All compression and encoding is performed independently at the 
column level, so there are no global tables to update. 

2.3.3 Storage Constraints 
One important usage requirement for a TDE database is that the 
user should be able to choose it in a file selection dialog, i.e. the 
database needs to be represented by a single file. While this 
restriction does not affect functionality of extracts, due to their 
read-only nature, it adds a significant I/O burden of copying the 
read-write internal format based on multiple column files into a a 
single file. Compression applied at the column level helps reduce 
the total size and, thus, the cost of making this unavoidable copy. 

2.3.4 Hashing and Comparing 
While the TDE's strategic optimizer determines the structure of 
the plan, the tactical optimizer makes run-time decisions based on 
the actual data being processed. One of its tasks is to choose 
algorithms for hashing and comparing used by several operators, 
including joins and aggregation. String comparison performance 
is greatly improved by having sorted string heaps whose tokens 
can be directly compared instead of comparing string contents. 
This performance benefit is especially important because unlike 
many column stores (which only offer simple binary collation) the 
TDE must implement locale-sensitive collations, which are even 
more time consuming to compute. Hashing of strings must also be 



performed in a locale-sensitive manner, and imposes a similar 
computational burden. 

Even with unique string tokens, hashing performance is based on 
the width of the data being grouped or joined. A width of 1-2 
bytes allows the TDE to use direct hashing with a small 64K-
element lookup table. With a width of 3-4 bytes, a perfect hash 
function can be constructed, but wider data requires expensive 
collision detection. Minimising data width is, therefore, an 
important physical design goal for TDE columns.   

The TDE has more leeway in type design than typical relational 
stores because Tableau itself does not model data types very 
precisely. In fact, Tableau only has Boolean, integer, real, date, 
timestamp and locale-sensitive string types. This means, for 
example, that the TDE can use any representation it likes for a 
column that Tableau considers an integer. This type design 
flexibility can in turn be used to improve hash performance. 

2.3.5 Fetch Joins 
The TDE can also use fetch joins [3] for many-to-one joins if 
there is a single join column and the row id of the inner table is an 
affine transformation of the column value. This type of join 
requires no intermediate lookup tables and is the fastest join 
available. Detecting when it can be applied improves join 
performance significantly. This situation happens most often in 
primary-key/foreign-key joins, and especially in decompression of 
scalar dimensions via invisible joins. 

3. ENCODINGS 
In the first TDE paper [10] we listed creating new encodings as a 
topic for future work.  After a review of the literature, we settled 
on several simple encodings that are compatible with the existing, 
non-segmented storage model used by the TDE. Our goal was to 
reduce storage requirements for user extracts, but we discovered a 
number of unexpected benefits along the way, which we will now 
describe. 

3.1 Encoding Formats 
While the encodings being described here are well known in the 
literature, we would like to quickly explain the storage format of 
each one to facilitate later discussion. This header has been 
carefully designed so that some simple header manipulations can 
lead to semantically interesting column-level changes.  

Each bit-packed stream starts with a header of the general form 
shown in Figure 1 followed by blocks of bit-packed values. The 
bit-packed values are treated as unsigned values by the encodings.  

The first 8 header bytes cache the logical size of the stream to 
make stream length queries perform well and to handle situations 
where the physical size of the packed data is larger than the 
logical size. This happens frequently with bit-packing schemes, 
because bit fields must fit into an exact number of bytes. 

The second 8 header bytes contain the offset to the bit-packed 
data.  This allows the header to be resized without disturbing the 
bit packing.  

 
Figure 1. Bit-Packed Header Format. 

The third 8 header bytes contain the decompression block size 
(i.e. the number of values in the block), the encoding algorithm, 
the width of the data stream elements and the number of packing 
bits. The block size is a multiple of 32 to ensure that the bit 
packing ends on a byte boundary. A decompression block may 
also contain header information such as a running total. Each 
physical stream only contains complete decompression blocks 
(hence the need for the logical size field). The number of values in 
a decompression block is typically the same as the block iteration 
size of the query execution system so that one decompression call 
is needed per iteration block.  

The rest of the header contains encoding-specific data, which we 
will now describe. 

3.1.1 Frame-of-Reference 
The frame-of-reference header contains 8 bytes to hold the frame 
value. The bit-packed values are added to this frame value to 
produce the uncompressed values. 

3.1.2 Delta 
The delta-encoding header also contains 8 bytes to hold the 
minimum delta value.  The bit field values are added to this delta 
value to obtain the next value.  Each encoding block starts with 
the running total for that block so the data can be accessed 
randomly as well as sequentially. 

3.1.3 Dictionary 
The dictionary-encoding header starts with 8 bytes containing the 
number of dictionary entries, followed by enough space to contain 
2^bits dictionary entries. This allows the dictionary to grow up to 
the 2^bits limit. Dictionary encoding is limited to 2^15 values to 
keep the dictionary in cache and make the compression cuckoo 
hash table implementation simple and fast. 

3.1.4 Affine 
Affine data streams are a simplified form of delta encoding where 
the bit width is zero or (equivalently) where the delta value is 
constant.  Each value can be simply computed as value = base + 
row * delta.  

The affine-encoding header contains 16 bytes to hold two signed 
integers for the base and delta values. Again, the header reserves 8 
bytes for both values even if the actual values are narrower. Affine 
encoding does not require any bit-packed values and sets the bit 
count to 0. 

Affine encoding is similar to the virtual column representation in 
MonetDB [3] except that the values are physically expanded a 
block at a time instead of being computed in line.  The advantage 
of treating affine encoding uniformly with the other encodings is 



that its applicability can be detected during the compression stage 
e.g. when a column contains sequential values. 

3.1.5 Run-Length 
Run-length-encoding headers have a different format that consists 
of a header followed by runs represented by length/value pairs. 
The header contains the logical size of the stream and two bytes 
that contain the width of the two fields.  These values are fixed for 
the entire stream. 

3.2 Dynamic Encoding 
The MonetDB/X100 system described in [6,9] demonstrates that 
lightweight compression can be used during query execution 
because the compression routines are computationally cheap. We 
have not implemented the patched variants of these encodings 
because they require a segmented storage model. We needed 
another mechanism to solve the problem of inserting values that 
lie outside the range currently supported by the column encoding. 

To accomplish this, we continually track statistics for a column as 
values are inserted. These statistics are simple to gather, 
consisting mostly of the value range and delta range. At any given 
point, we can quickly determine the best of the available choices 
of encoding for the column. We dynamically encode the columns 
one block at a time, using the block values for a column to update 
the column’s statistics before inserting the data block into the 
column’s encoding stream. If the column insert fails (e.g. due to 
representation limitations), we can consult the column’s statistics 
and choose a new encoding.  When all rows have been processed, 
we can also compare the current encoding with the optimal one 
and convert to this optimal format if desired.  In practice, we 
found that the encoding stabilizes quite quickly:  Encoding the 
TPC-H [TPCH] lineitem table at SF 1 made only two 
encoding changes and the rewrites still performed less disk IO 
than writing the unencoded column. 

This technique is vulnerable to data sequences that can cause 
constant re-encoding, but we have not investigated situations that 
might trigger this problem. One approach would be to detect 
excessive reformatting and fall back to unencoded data until the 
end.  At that point, we could consult the final statistics and decide 
whether it is worth encoding the column or leaving it unencoded 
as the I/O cost has already been paid. 

3.3 FlowTable 
Applying encodings require a full scan of each column, therefore, 
this functionality needs to be expressed in a plan by a stop-and-go 
operator. In the MonetDB/X100 project [6], encoding happens as 
part of the Save operator, which writes a table back into the 
store. Later on, such a table can be scanned and decoding will 
happen behind the scenes. 

In order to leverage encodings in the TDE, we extended the 
existing FlowTable operator, whose task is to turn a stream of 
row blocks into a table. Note that encoding of each column is 
independent, therefore, the computations can be distributed across 
the available cores. This allows more processing power to be 
substituted for memory and I/O bandwidth. 

3.4 Encoding Manipulations 
Once a column has been encoded, there are some fast 
manipulations that can be performed on the header to change the 
type of the data, or create a sorted dictionary for a compressed 

column. These manipulations can be advantageous for 
downstream processing by reducing the size and complexity of the 
data. The speed of these transforms is a consequence of the 
formats used in the encoding headers as described above. The 
encoding statistics can also be mined to determine useful column 
level metadata. The FlowTable operator applies these 
manipulations as a post-processing step during its build step. 

The unifying principle for all these manipulations is that 
lightweight compression makes it easy to transform the entire 
compressed data set in semantically meaningful ways. We will 
now describe these manipulations in more detail. 

3.4.1 Type Narrowing 
The headers for frame-of-reference, dictionary and affine 
encodings can all be modified to change the width of the data.  
For example, if the column is a 4-byte integer column under 
frame-of-reference encoding, we can use the bit width and the 
base value to detect when the values can be represented by a 2- 
byte integer.  The header can then be edited to update the size, 
width and base fields.  The offset to the bit field data does not 
need to change because the offset is stored in the header.   

These operations can be accomplished in O(1) time for all three of 
these encodings except dictionary encoding, where the operation 
cost is proportional to the number of entries i.e.  O(2^bits).  Note 
that these run times are independent of the size of the column. 

Delta encoding embeds the running totals in each block and run-
length encoding contains values in each pair, so these encodings 
are not amenable to this type of header manipulation. It is 
possible, however, to decompose a run-length encoded column 
into a value stream and a count stream, perform the narrowing 
operation on the extracted value stream and then rebuild a run-
length stream with the original counts and the new values. 

If a narrower type can represent a column, then the downstream 
operators may be able to produce a better hash function that does 
not have collisions for aggregation or joins.  It also means that 
later computations may produce smaller results, reducing the 
memory, disk and network footprint of the system. 

3.4.2 Metadata Extraction 
Encoding statistics can help cheaply derive properties of the 
underlying data and, thus, enable tactical optimizations. Delta-
encoding, for example, can indicate whether a column is sorted.  
Detection of sorted columns can be used to improve the efficiency 
of downstream operations such as aggregation, joins and sorting. 

Affine encodings can be checked to see if the delta is 1.  If so, the 
column is not only sorted, but also dense and unique, which may 
enable fetch joins downstream. Filtering the inner table of a join 
can mask the applicability of a fetch join, because the filter will 
remove an existing dense attribute of a column (because it may no 
longer be valid).  If FlowTable is used to build the inner join 
table after the filter has been applied, its encoding component can 
detect the situation where the filter leaves a contiguous sub-range 
of the data and reassert the dense property, allowing a fetch join to 
be generated. This situation is common with date columns, which 
are often compressed and filtered to a range and then joined back 
into the main query. 

The encoding statistics can also be analysed to determine the 
cardinality of the column domain, the maximum and minimum 



value of the column and – because the TDE uses sentinel values 
for NULL – whether the column contains NULLs. These 
properties can be used by downstream operators to make tactical 
optimizations, or reported back to Tableau. Tableau can in turn 
use this metadata to drive choices in the UI such as whether to 
represent domain values using colors, shapes or other mark types. 

3.4.3 Encoding Becomes Compression 
Accelerators [3] for string heaps help make small string heaps 
distinct, but an even better outcome is to have a sorted heap, 
which means that its tokens are directly comparable. The 
accelerator also reduces the number of tokens in use, and if it 
succeeds in keeping the token count low enough, this reduction 
will result in dictionary encoding of the tokens. 

In this situation, the dictionary encoding entries are the set of 
distinct tokens for the strings.  Since the number of strings is 
small, we can sort them in a relatively short period of time.  The 
new tokens take up the same amount of space as the original 
tokens and can be written back out to the dictionary-encoding 
header, with the result that the column now has both comparable 
and distinct tokens.  Combined with type narrowing, this allows 
us to optimize the representation of an intermediate computed 
string column in time proportional to the domain size and avoid 
touching the actual rows of the column – which can be arbitrarily 
many. 

A dictionary-encoded scalar column can be converted into a 
dictionary-compressed column by copying the encoding 
dictionary (which is just an array of scalars) into a compression 
dictionary.  The original encoding dictionary is then replaced with 
the compression tokens (again, narrowing them if desired) and the 
column is now a dictionary-compressed column with minimal 
width.  This can be valuable for scalar dimensions such as dates, 
which have relatively few values, but expensive calculations (such 
as extracting the month). Converting the column into a dictionary-
compressed column enables invisible joins on the data if the 
containing table is written out as part of an import process. 

A similar transformation can be performed with frame-of-
reference encoding, with the caveat that the compression 
dictionary may contain values that are not actually in the column.  
The frame value and the bit width determine the outer envelope of 
integer values that are present in the column. If the underlying 
type has the same bit ordering semantics as the signed integers 
used by the encoding process, then a sorted scalar dictionary can 
be generated from the base value and the number of bits in the 
representation. The header can then be modified to contain the 
unsigned tokens as indexes into this scalar dictionary. Because the 
frame range defined an outer bound, we have no guarantee that all 
dictionary values are actually present in the column, but this 
technique looks promising for compressing date and timestamp 
columns, and may be the topic of future work. 

We have not implemented this encoding to scalar dictionary 
compression in the FlowTable operator because the existence 
of non-string dictionaries is something that the query compiler 
needs to be aware of. This technique can, however, be employed 
by the more heavyweight operators (like AlterColumn) used 
during the TDE’s global optimization phase to reduce the run time 
of that operation. AlterColumn can also apply the run-length 
decomposition technique described in Sect.3.4.1 to generate 
dictionary compression columns from the value stream, greatly 

reducing the optimization cost. This results in a scalar dictionary 
compressed column with a run-length encoded token stream. 

4. DECOMPRESSION JOINS 
Strategic query optimizers are typically oblivious about details of 
the storage layer, such as data compression. That ensures clear 
boundaries of the component but may also limit application of 
optimizations dependent on low-level properties of data. For this 
reason certain storage concepts are at times modeled for the 
optimizer to use. 

Plan costing is one good example. Row sizes or average costs of 
reads or writes of data stored in different layouts are made 
available to allow for more precise estimations. Also, non-
standard storage concepts can be expressed by special types of 
columns, such as the sparse column set in Microsoft SQL Server 
used to model the interpreted storage [13]. 

Below, we express decompression of data values in a manner that 
permits the query optimizer to reason about it using established 
query optimization techniques. In this model, compressed 
columns are expanded using joins against special kinds of tables. 

4.1 Dictionary Tables 

4.1.1 Invisible Joins 
Dictionary compressed columns (that is, columns with a 
secondary heap, as distinct from the dictionary encoded columns 
of Sect. 3.1.3) can be introduced to the query plan using an 
operator called DictionaryTable. This table operator has a 
column of the same type as the original, but the column data has 
been replaced with the set of unique tokens in heap order. For 
variable width data (e.g. strings) this column is the only one in the 
table and it has a copy of the original column’s heap. For fixed 
width data, the token column does not have a heap but the table 
itself has a second column, which is simply a copy of the original 
column’s fixed-width heap. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Invisible join for a string column. 

Expansion of this column can now be expressed as a foreign key 
join between the main table and the token column in the 
DictionaryTable (see Fig. 2). Further, the strategic 
optimizer can rearrange the plan by pushing filters and 
computations on the column values down to the inner side of this 
foreign key join. In consequence, computations on the 
compressed data get expressed quite naturally as part of a 
traditional query plan without having to widen the inter-operator 
interfaces. 
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4.1.2 Tactical Optimization 
Using the encoding manipulations above, there is now an 
opportunity for the run-time (or tactical) optimizer to take 
advantage of compression. The TDE Join operator takes a stop-
and-go operator as the inner relation, so once the plan contains 
flow operators (like Select and Project) on the inner side of 
these expansion joins, the flow needs to be materialized, usually 
by employing the FlowTable operator. FlowTable now 
extracts metadata during its processing, including the kinds of 
metadata used by the tactical optimizer to decide upon the join 
algorithm. 

Consider the common situation where a date column has been 
dictionary compressed and a range predicate has been applied. 
Assuming the date column heap has been sorted, the range 
predicate will produce a dense range of token values from the 
DictionaryTable, which FlowTable can now detect. The 
Join operator can in turn use this information to choose an 
efficient fetch join instead of some form of hashing that requires 
an additional table lookup per row.  

Next, consider the situation of a string column containing URL 
requests and a calculation to extract the file extension of the 
request. This will produce a relatively small number of strings on 
the inner side of the join, but the string function library is 
probably unable to estimate the resulting domain ahead of time. 
The computation therefore produces a column with wide tokens 
and an unsorted heap. FlowTable can now sort this small string 
table quickly and minimize the width of the token data. If the 
query then aggregates on this computation (e.g. counting the 
number of requests for each file type) the aggregation operator 
will be able to use a faster hashing algorithm thanks to the 
narrower representation. 

4.2 Index Tables 

4.2.1 Rank Joins 
A similar “special table” technique can be used to expose run-
length encoded columns to the strategic optimizer. The table is 
called an IndexTable and consists of three columns: The 
value, the count and the start. The first two are extracted directly 
from the column data and the start values are computed as the 
running total of the count values. 

This IndexTable can be joined to the main table as before with 
DictionaryTable, but in this case, the join is not an equi-
join. Instead, the join condition is a range predicate: 

Index.start <= Outer.rank < Index.start + Index.count 

Once again, now that we have expressed the decompression as a 
join, we can push single column arguments down to the inner 
table (see Fig. 3). Predicates and computations will now be 
evaluated on the compressed data, with significant performance 
gains. 

Because the join is on the rank column, we have implemented a 
new type of join operator called IndexedScan that translates 
the range specifications directly into disk accesses. 
IndexedScan will access the outer table in the order given by 

 

Figure 3. Predicate push-down on a Rank Join. 

the inner table. This allows us to express range skipping simply as 
a join in the query plan. As we also use FlowTable to produce 
the inner table, we can apply the same metadata extraction and 
type minimisation techniques to any computed columns and 
present this enhanced metadata to the client of the 
IndexedScan. 

4.2.2 Ordered Retrieval 
IndexedScan also allows us to implement ordered retrieval of 
out-of-order run-length values by sorting the index on the value 
column. This access pattern enables us to use ordered (or 
sandwiched [Sandwich]) aggregation on columns that are not the 
primary sort key. This technique must be used with care because if 
the runs are too small, performance will be degraded, as we will 
show in our results. 

4.3 Other Optimization Concerns 
Besides the benefits of new optimizations that one can apply 
thanks to the nature of some encodings, the fact that data is 
compressed might have detrimental impact on the plan 
performance if other rewrites are not applied carefully. 

FlowTable is commonly used as the right hand (or inner) side 
of a join operator. Hash joins usually exhibit random access 
patterns against this inner table, and not all of our encoding types 
have good random access performance. In particular, seeking 
backwards in our run-length encoded columns requires a 
sequential scan from the start of the data stream. Therefore, during 
strategic optimization we restrict encoding choices for the 
FlowTable nodes on the inner side. 

Furthermore, the quality of encodings is sensitive to the order of 
raw data. Therefore, operators that disturb order, such as sorting 
or exchange, might affect how well data will be encoded down the 
stream and potentially increase I/O. 

To give a more concrete example, let us consider a simple plan in 
which we read a column of dates from disk and apply a filter to it. 
Moreover, during extraction the column got dictionary-
compressed and the resulting column Date in the dictionary got 
delta-encoded. Note that the tokens follow the original order of 
the dates and thus, the achieved encoding is efficient. 



Since we are dealing with an invisible join scenario between the 
denormalized table and the dictionary, the filter can be pushed 
down to the dictionary. The values from the dictionary column 
Date need to be decoded first to evaluate the filtering predicate. 
Then, the results have to be materialized using FlowTable to 
build an inner side of a hash-join. The final encoding is likely to 
be of similar quality, because the filter removed a subset of data 
but did not change the order of values. However, if one injects 
exchange operators to parallelize the filter, the order of blocks of 
values gets disturbed and the resulting encoding might be much 
worse and lead to a physically larger column. 

We identify situations of this kind and force the exchange 
operator to use order-preserving routing, i.e. number the blocks 
and output them in order [8]. Our benchmarks showed a relatively 
low, 10-15% overhead, associated with this additional constraint. 

5. EXPERIMENTAL DESIGN 
We performed two sets of experiments to assess the performance 
of our new features. The first set of experiments involves using a 
high-performance flat-file parsing operator to drive our new 
dynamic encoder, and measuring compression and metadata 
extraction performance. The second set of experiments measure 
the performance of pushed down filter predicates with indexed 
scans on an artificial run-length encoded data set. 

We do not measure the performance of the dictionary expansion 
as that was evaluated in the original TDE paper [10]. 

5.1 TextScan 
As part of our experimental setup, we used a text-parsing operator 
called TextScan to produce a stream of uncompressed columns 
with little metadata. TextScan is a flow type operator, which 
reads from a memory mapped byte stream and produces blocks of 
typed data. It attempts to perform type and column name inference 
if the schema is not provided, which can further reduce the need 
for user intervention, but it can also be given a schema if one is 
available. The development of this operator produced some 
interesting experimental results of its own, which we now 
describe.  

5.1.1 Initial Approach 
The first implementation of TextScan was designed to evaluate 
the text cracking process described in [7]. The operator was 
originally given a text file and a list of columns to parse.  The 
unparsed columns would just be cracked into separate text files 
for later parsing. The file is assumed to be UTF-8. 

The first step in the parsing process is to determine the field and 
record boundaries. A sample set of rows is tokenized using a 
given record separator (which defaults to end-of-line). Simple 
statistical analysis is used to determine the field separator. 

Once the field boundaries have been determined, the columns 
must be typed. A sample block of rows is selected and typed by 
comparing the results of parsers for each data type to see which 
produced the fewest errors.  The winning type parser is then used 
for the eventual scan of the entire text file. The parsers are then 
applied to the first row and if there were no errors, it was 
presumed that the flat file did not contain a header row and all 
values were treated as data. If there were errors, then the values 
were taken to be the column names. The schema and header row 
information can also be specified as inputs to the parsing system. 

5.1.2 Parallel Parsing 
Because these column parsers were producing independent output 
from a shared read-only state, it was a simple matter to run them 
in parallel on each block of rows.  We were surprised to find that 
the performance degraded by at least an order of magnitude under 
parallel execution. Profiling the code showed that the problem 
was that the native parsers attached to each type object in the 
TDE’s extensible type system were using the C++ standard library 
to parse the fields.  The standard library is locale sensitive and 
each stream parse first needed to obtain and lock a singleton 
locale object. The lock contention for this object completely 
negated any gains from parallelism. 

5.1.3 Scalar Cracking 
To avoid this problem, we wrote buffer-oriented parsers for all the 
different types in the system.  These parsers are tightly written C 
code and rely on no external state. With these in place, we found 
that parsing the scalar columns in the TPC-H lineitem table at 
SF-30 [4] on a four-core machine was comparable to the disk read 
bandwidth. This suggested that scalar parsing did not need to be 
deferred because it could be performed while waiting for the disk.  

5.1.4 String Cracking 
This discovery naturally led us to ask whether string parsing could 
be done at the same speed.  To create a baseline, we first added a 
“compression” style where split strings were simply written to a 
text file with quotation marks and end-of-line separators.  This is 
approximately the same amount of I/O as used for writing a string 
heap element consisting of a 4-byte header followed by the 
character data.  The corresponding data streams consisted of a 
series of ascending offset tokens whose deltas were equal to the 
length of the string itself.  If these tokens were fed into a delta 
encoder, the resulting data stream could be highly compressed. 
For example, the l_comment column has a maximum string 
width of 140 characters, so an 8-bit delta could be used, adding 
about 1 byte per row to the data.  

Creating a string column in the TDE makes optional use of a heap 
accelerator object, which maintains a hash table of all strings that 
have been seen so far.  This allows us to minimize the size of the 
heap for columns with small (< 2^31) numbers of strings and also 
ensures that such string columns have distinct tokens. Profiling of 
the import process shows that maintaining this hash table appears 
to be an execution “hot spot” when the number of strings is small, 
but performance of the entire import process does not appear to be 
affected thanks to the gains in reduced disk IO. The accelerator 
gives up on hashing once the number of heap elements passes the 
2^31 element threshold. 

5.2 Text Data 
We conducted a number of experiments to judge the performance 
and other properties of the combined TextScan / FlowTable 
system.  For these experiments, we used the output of the TPC-H 
dbgen tool [4], at both SF-1 and SF-30.  We also used a 25GB 
text version of a 67M row internal testing database of containing 
ten years of FAA on time flight data (“Flights”).  

The only typical import operations that were not performed were 
sorting on a preferred attribute (e.g. l_orderdate) and 
applying dictionary compression to date scalars.  Sorting is 
expensive but can sometimes help filtering and aggregation 
performance.  Dictionary compression of dates can improve the 



performance of certain date calculations (e.g. month extraction) 
by performing the calculation on the date domain and joining the 
results to the main query via an invisible join. Both of these 
operations could be performed as a further design optimization if 
the workload suggests it.  

Execution speed was only measured for the two large tables (both 
labeled “Large Tables” in the Figures.) Both of these files are 
larger than the disk cache of the test machine, so there were no 
cache “warm up” issues.  The most important difference between 
the two files is that Flights does not have a large random string 
column like l_comment, but this is more typical of the data sets 
actually analysed by our customers. 

The smaller tables from TPC-H SF-1 were used to demonstrate 
the efficacy of the metadata extraction process. They are labeled 
“SF-1 Tables” in the combined Figures. 

5.3 Run Length Data 
To evaluate the performance of indexed scans, we created 
artificial tables containing two run-length encoded columns 
(called primary and secondary). The columns consist of uniformly 
distributed random values in the range [0,100), and the tables 
were sorted ascending on both columns. We prepared two tables, 
one with 1 million rows and one with 1 billion rows and ran 
aggregation queries of varying selectivity against this data. 
Because of the size of the data sets, both columns were run-length 
encoded and the entire data sets easily fit in main memory. 

6. EXPERIMENTAL EVALUATION 
6.1 Parsing Performance 
We ran the import process for both SF-30 lineitem and Flights 
5 times on an Intel® Xeon® E5620 single chip machine running 
Windows 7 and averaged the run times.  We measured times for:  

• Disk bandwidth (summing all the bytes of the text file) 

• Tokenizing the data (finding field boundaries) 

• Splitting the file into column files, but not parsing 

• Parsing scalars only (numbers and dates) 

• Parsing all columns. 

Where applicable, we also ran the tests with heap acceleration on 
and off, as well as with encodings on and off. The results are 
displayed in Figure 2.  

 Figure 4. Split Time versus Compression Time. 

By comparing the encoded and un-encoded results for the “All” 
and “Scalars” scenarios in Fig. 4, we can see that in all situations 

were it was applicable, the system performance with encoding 
turned on was either comparable to or superior to the performance 
without encoding. This result holds whether or not heap 
acceleration is in use.  

Moreover, by comparing the adjacent “Split” and “All” bars, we 
can see that the system performance with both encoding and 
acceleration was comparable to simply splitting the flat file into 
separate text columns for later parsing, which shows that there 
was no benefit to delayed parsing on these data sets. The scalar 
only parsing also splits the strings for later parsing, which 
similarly appears to provide no additional benefit here. 

Encoding and acceleration provide other important benefits 
beyond eliminating deferred parsing costs, which we will now 
quantify. 

6.2 Storage 
Our original TPC-H SF-1 database from [10] was about 660MB.  
Applying the new encodings to the columns reduces the size of 
the database by about 140MB. 

We did not have a version 1 database for TPC-H SF-30, but we 
show the logical and physical sizes of the lineitem table for all 
combinations of encoding and heap acceleration in Fig. 5.  The 
total disk savings from the original 26GB flat file is 22GB (84%) 
and the savings from the logical size (i.e. the un-encoded size) is 
7.5GB (63%). 

The version 1 Flights database with only run-length encoding and 
dictionary compression was 4.1GB. Figure 5 also shows the 
logical and physical sizes of this table. The total disk savings from 
the original 25GB flat file is 21GB (84%) and the savings from 
the logical size is 15GB (85%). 

 Figure 5. Compression Savings. 

The top section of Fig. 5 shows the effects of heap acceleration 
without encoding. The effects are more pronounced for Flights 
because all of its string columns have relatively small domains. 
By contrast, lineitem consists mostly of l_comment, which 
is too large for the accelerator to compress effectively. The 
accelerator is designed to be small and fast for common usage, but 
is not designed to scale and it is doubtful that the 33% disk 
savings that would result would be worth the extra IO caused by 
heap collision comparisons. 

Moreover, Fig. 5 breaks down the contribution of each type of 
encoding to the total savings. This shows that artificiality of the 
TPC-H data provides a number of opportunities for affine 
encoding.  One notable example is the c_customername 



column, which consists of a set of unique strings all with the same 
length.  Each string takes up the same amount of space in the heap 
so the tokens are equally spaced, which the system notices and 
encodes accordingly. For systems that store fixed width 
CHAR(N) style strings, this could be an important source of space 
savings when such strings are unique, because affine encoding has 
constant storage requirements.  

The benefits of reduced storage footprint extend throughout the 
entire storage hierarchy. At one end, compression effectively 
increases memory bandwidth [6] by trading off CPU resources for 
memory latency. At the other end, smaller storage requirements 
reduce network transfer latency for data set upload and download. 

6.3 Heap Sorting 
Another operation we were able to perform during the parsing 
stage at no discernable performance cost was the sorting of string 
heaps when the column was dictionary encoded. Since TDE string 
heap tokens are not dense (being offsets instead of indexes), they 
typically end up being dictionary encoded if the domain is small. 
Figure 6 shows the extent that dictionary encoding can be 
leveraged to improve the generation of sorted string heaps for SF 
1 tables as well as the SF-30 lineitem and Flights tables.  

Note that with no encoding, there were a total of five sorted heaps 
in the table set (the blue bars in the figure), mostly due to the 
TPC-H data generation algorithm or other accidents. With 
encoding on, however, all string heaps are sorted except one 
(l_comment), which has a large domain with low duplication. 

 

Figure 6. Number of Sorted Heaps. 

Sorted heaps improve query performance by converting string 
comparisons to integer comparisons. The results shown in here 
demonstrate that this benefit can be realized for many string 
columns at no significant latency cost during the loading process. 

6.4 Metadata Extraction 
The encoding statistics enable the extraction of a number of 
metadata properties. Figure 7 shows the number of extracted 
metadata properties for the full set of tables, both with and 
without encoding active, and broken down into the set of all SF-1 
tables and the two large tables. Heap acceleration was turned on 
for these tests. 

Many of these properties were not even detected with encoding 
off and the few that were detected owe their detection to 
fortuitous circumstances such as the string data being inserted in 

order or as a side effect of the accelerator’s statistics (e.g. domain 
cardinality.) 

As we have shown in Sect. 6.1, this metadata was extracted by the 
system with no latency costs. The extracted metadata can then be 
used by both the TDE to improve query performance and by the 
Tableau visual system to enhance the analytic experience. 

 

 

Figure 7. Metadata Detected. 

6.5 Minimal Representations 
The use of minimum width representations for scalars and tokens 
is another important optimization. When values have minimal 
widths, the system can choose better hashing algorithms for joins 
and aggregation. In Fig. 8, we can see that about three quarters of 
the string columns had their token width reduced from the default 
width of 8 bytes, often down to one byte. This can mean the 
difference between using an imperfect hash function with 
collision detection and using a perfect hash, or even a fast direct 
hash during joins and aggregation. 

 

Figure 8. String Token Width Reduction. 

A similar transformation can be performed on integer columns.  
Integers are parsed with a default width of 8 bytes, but often 
contain numbers from a much smaller domain. In Fig. 9, we can 
again see that about three quarters of the integer columns had 
their width reduced, often down to one byte, indicating that the 
values are in a very small range near zero. 

These representation transformations were achieved without any 
additional import latency costs over simply splitting the file. 



 

 

Figure 9. Integer Width Reduction. 

 

6.6 Filtering 
To test the performance of indexed scanning, we ran the following 
query over both run-length encoded tables:  

SELECT Index, MAX(Other) 

FROM table  

WHERE Index > (100-selectivity) 

GROUP BY Index 

Index is one of the two integer sort columns (primary and 
secondary) whose run-length encoding index we are using and 
Other is the one we are not filtering.  

To evaluate the indexed table operator, we tested the performance 
of three plans: 

1. Scan => Filter => Aggregate 

2. Index => Filter => IndexedScan => Aggregate 

3. Index => Filter => Sort => IndexedScan => OrdAggr 

 

 
Figure 10. Indexed Filter Performance. 

The first plan is a control, which fulfills the query using the 
existing system. The second plan applies the filter to the index, 
but relies on hash aggregation. The third plan also sorts the index, 
before scanning to allow the use of ordered aggregation. 

We ran all three plans against both tables for filter selectivities 
between 0 and 100. Each plan was run 12 times, the two extremes 
were discarded and the remaining times were averaged: 

As can be seen in Fig. 10, the plan that filters the run-length 
encoding index outperforms the other two plans by about a factor 
of two when the filtering is on the primary sort key. 

We can also see that this plan gives the best performance for 
filtering the secondary sort column on the larger (1B row) table 
by nearly a factor of three. This is because we can apply a faster 
ordered aggregation to the secondary sort column, even though 
the table was not originally ordered on this column. 

The only case where the sorted and filtered index plan does not 
outperform the other two plans is when filtering the secondary 
sort column on the smaller (1M row) table. In this case, the run 
lengths of the secondary encoding are only about 100 rows long, 
and the system ends up processing many more small blocks, 
which degrades performance past the point where the ordered 
aggregation can compensate. 

7. CONCLUSIONS 
In this paper, we described and evaluated various mechanisms for 
operating on compressed data in the Tableau Data Engine.  These 
mechanisms can be used to significantly improve the performance 
of both data import and query execution operations. 

The first mechanism consists of a novel set of techniques for post 
processing an encoded column without modifying the main body 
of the column. As part of the encoding process, we also extract 
metadata that can be used for later tactical optimizations during 
query execution. We have demonstrated that these techniques can 
be used to significantly reduce storage requirements and 
accumulate valuable metadata during thess loading of flat files 
without degrading performance. 

The second mechanism introduces a new pseudo-table derived 
from a run-length encoded column and a corresponding join 
operator that can be used to express decompression as a join in a 
query plan. We have demonstrated that traditional optimization 
techniques of predicate pushdown can be used to improve the 
performance of a single-threaded filter and aggregate query by a 
factor of two when filtering primary sort keys. This result can be 
further extended to secondary sort keys if the secondary run 
lengths are larger than the block iteration size. 

As part of our test process, we introduced a new flat file import 
operator for fast reading of large, well-designed formatted flat 
files with latency comparable to that required for only tokenising 
and splitting the text files. This initial import design should allow 
fairly responsive exploration of the data set without incurring any 
loading penalty beyond what was already required. 

8. FUTURE WORK 
Previous uses of parallel execution in the TDE have centered on 
multiple queries, sorting and data flow operators such as 
Exchange [8]. Distributing the processing of independent 
columns across multiple cores in the TextScan and 
FlowTable operators is new form of parallel processing in our 
execution engine. Our results suggest that there may be other 
places in column stores where work on independent columns can 
be easily and effectively parallelized with minimal 



synchronisation overhead. In the future, we intend to consider 
more uses for parallel computation that operate on independent 
columns.  

One possibly interesting use case for IndexTable occurs when 
it is applied to a sorted date column. A common analytic 
calculation on dates is to roll them up to a higher level (e.g. 
rolling a date up to the start of the month or a date time upto the 
start of the hour). If this roll-up calculation is performed on the 
IndexTable , the computed result can then be aggregated on 
the rolled up date using MIN(start) and SUM(count), which 
converts the original index on the raw date to one on the rolled up 
date. In the future, we hope to investigate using this technique for 
implementing parallel ordered aggregation on rolled up dates (or 
any other order-preserving calculation) by partitioning the index 
range and running the scan for each partition on a separate core. 

The cost of rewriting a run-length encoding may be worth paying 
if the number of blocks is small compared to the full set of data in 
the column, but we have not investigated or quantified the use of 
this technique. 

Because of its read-only, single file database format, the TDE is 
restricted by design from taking full advantage of the cracking 
approach.  In spite of this, we would like to find ways to extend it 
to be able to reference external flat files and rebuild the database 
when the file changes. This would require a repackaging cost, but 
the user is most likely willing to incur this cost to have up-to-date 
data. Work along these lines may help us to find ways to integrate 
other aspects of database cracking techniques, possibly under user 
control so as to minimise unexpected IO costs.  
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