
Leveraging Compression in the Tableau Data Engine
Richard Wesley Pawel Terlecki

Tableau Software
837 North 34th Street, Suite 200

Seattle, WA 98103, USA
+01-206-633-3400

{hawkfish,pterlecki}@tableausoftware.com

ABSTRACT
Data sets are growing rapidly and there is an attendant need for
tools that facilitate human analysis of them in a timely manner. To
help meet this need, column-oriented databases (or “column
stores”) have come into wide use because of their low latency on
analytic workloads. Column stores use a number of techniques to
produce these dramatic performance techniques, including the
ability to perform operations directly on compressed data.

In this paper, we describe how the Tableau Data Engine (an
internally developed column store) leverages a number of
compression techniques to improve query performance. The
approach is simpler than existing systems for operating on
compressed data and more unified, removing the necessity for
custom data access mechanisms. The approach also uses some
novel metadata extraction techniques to improve the choices made
by the system’s run-time optimizer.

1. INTRODUCTION
Recent years have seen an unprecedented growth in the amount of
data available for analysis. This data often needs to be processed
manually by a human who understands the semantics of the
problem domain. Once the initial analysis has been completed, the
results are often passed on to other interested parties. Visual
analysis tools such as Tableau [1] enable the creation of such
analyses via an intuitive drag-and-drop interface.

In the early days of data analytics, these results were generally
static reports designed to communicate the end result of the
analysis to decision makers. Increasingly, however, such analyses
are becoming the starting point for further work. More recent
incarnations of these tools have added an emphasis on interactive
visualization and computer-mediated analytic narratives.

A low-latency analytic query engine best serves such interactive
tools, but the underlying data source may have higher latency,
either due to architectural issues or heavy workloads. The Tableau
Data Engine (TDE) acts as a low-latency relational store for visual
analysis in the Tableau system by storing and processing extracts
of a data set under analysis.

As a commercial desktop product, Tableau’s lack of control over
the deployment environment hardware makes scale-out of the
TDE impossible in many use cases. While we have managed to
incorporate some single-node parallelism into the execution core,
the machines users employ for analytics are often laptops with
limited energy, disk and CPU resources. This constraint has given
us a bias towards gaining performance through algorithmic
techniques. The focus of the current work is to describe several
such algorithmic approaches centered around operating directly
on compressed data.

One important component of many low-latency relational stores is
the ability to operate directly on compressed data [12]. In this
paper, we will describe how the TDE leverages various kinds of
compression during query compilation and execution. The
approaches we will describe include:

• New data formats that enable modifying the semantics
of entire columns independent of the number of rows;

• Two methods of expressing decompression as a join
operation, one of which we believe to be novel;

• A technique for extracting metadata during query
execution for use by a tactical optimizer.

We will also combine these techniques with a flat file import
operator to demonstrate how the system can generate good
physical designs during the import process at low cost.

The organization of this paper is as follows. Section 2 covers
some background material and related work. In Sect. 3 we
describe a set of lightweight compression techniques that are used
to quickly improve the physical design of the imported data set.
Section 4 presents our optimizer-based decompression system.
Section 5 contains our evaluation setup, including our flat file
input system, and we give the results of our evaluation in Section
6. We describe our conclusions in Section 7, and Section 8
sketches avenues for future work.

2. BACKGROUND
In this section, we summarise some previous work on the use of
column stores for analytic workloads [2,6,10,11] in order to
provide the context for the rest of the paper.

2.1 Lightweight Compression
Lightweight compression is a staple of column store physical
storage layers and has been described by [5,6] and others.
Examples of lightweight compression include run-length
encoding and delta encoding. These compression techniques
typically work on data of fixed-width types and are often
symmetrical in that compression and decompression have similar

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2376-5/14/06…$15.00.
http://dx.doi.org/10.1145/2588555.2595639

computational complexity. They are lightweight in that they
require less computation time than reading from secondary
storage, or even from main memory.

Lightweight compression algorithms are common in column
stores because the heterogeneous data layout inherent to columnar
layouts make such algorithms easy to apply. The data storage used
by the algorithms typically includes actual values from the
column, which makes it relatively simple to extract the values and
use them directly in query processing instead of decompressing
the data to its full size. Because of the relatively high performance
of the compression algorithms, column stores can compress data
during execution to save I/O bandwidth when spilling results to
disk.

2.2 Extracts
Tableau is a visual analysis tool based on the Polaris system [1],
which allows the user to create analytic queries and narratives
using a simple drag-and-drop interface.

For input, Tableau connects natively to a wide range of databases,
both relational and hierarchical. In addition to supporting a large
number of commercial and open source databases, it also connects
to extracts of data, which are subset of the original data set that
may have been filtered, sampled or rolled up.

These extracts are used in various workflow scenarios, including
off-line work, reducing the load on data warehouses, sharing of
data with third parties, filtering/projecting subsets of the data, pre-
aggregating the data and supplementing databases that either
perform poorly or lack useful functionality such as COUNTD or
MEDIAN aggregation.

2.3 Data Engine
Tableau extracts were originally created using the Firebird [14]
open source relational engine, but performance considerations
eventually led to its replacement with an in-house component, the
Tableau Data Engine (TDE).

We first described the TDE in [10]. It is a read-only column store
that has been optimized for use with the Tableau visualization
environment. We chose to create our own component because of
business requirements that could not be met by any existing
commercial, academic or open source system, including: collated
strings, single file databases, 32-bit hardware, calculation
language semantics and Tableau’s NULL join semantics.

We now provide a brief overview of the salient parts of the TDE
architecture to provide background for the main discussion.

2.3.1 Query Plan Generation
The TDE expresses a query plan as a block-iterated Volcano-style
[8] operator tree with two styles of operators: flow operators
process a block of rows at a time before passing the block on to
the next operator; stop-and-go operators must read all the blocks
of their input before their output is available. The query processor
follows the optimization model of [3].

In the first strategic phase, the shape of the optimal plan is
determined. A rule-based component derives properties for all tree
nodes based on metadata and performs transformations, such as
elimination of common sub-expressions, computation and
filtering move-around, parallelism injection and expression
simplification.

The second part of optimization, tactical, is delayed until run-
time, where decisions can be made based on the actual data. This
time property derivation happens on-the-go and can be more
accurate. In particular, we track minimum/maximum value or
cardinality or nullability. While the arrangement of operators is
not affected, their implementation can be optimized based on
specific input properties. For example, an aggregation operator
can choose a hash algorithm based on the sizes and other
attributes of the aggregation keys.

2.3.2 Compression
For historical and structural reasons, the TDE storage layer makes
a distinction between compression and encoding of columns.
Compression in this parlance is traditional dictionary compression
with each column owning an associated dictionary that can
contain either fixed width data (array compression) or variable
width data (heap compression). The main data column is always
fixed width and consists of either uncompressed scalars, indexes
into the fixed width dictionary or offsets into the heap dictionary.
This architecture allows the query optimizer to reason about
compression and to optimize computation on compressed data by
using invisible joins [5]

A second form of compression was included in the original TDE
design, which operated only on fixed-width data. These forms of
compression are called encodings. Encodings are an abstraction
that externally appear as a paged array of fixed width values, but
are stored internally in a more compressed format. Encodings are
concealed from the rest of the system behind virtual interfaces that
present a paged interface to an ordered stream of bytes. Encoding
and decoding is implemented behind these interfaces during
insertion and byte range requests. Encodings are semantically
neutral in that they do not know the type of the underlying data,
only its width. In the first release, the TDE only implemented run-
length encoding.

All compression and encoding is performed independently at the
column level, so there are no global tables to update.

2.3.3 Storage Constraints
One important usage requirement for a TDE database is that the
user should be able to choose it in a file selection dialog, i.e. the
database needs to be represented by a single file. While this
restriction does not affect functionality of extracts, due to their
read-only nature, it adds a significant I/O burden of copying the
read-write internal format based on multiple column files into a a
single file. Compression applied at the column level helps reduce
the total size and, thus, the cost of making this unavoidable copy.

2.3.4 Hashing and Comparing
While the TDE's strategic optimizer determines the structure of
the plan, the tactical optimizer makes run-time decisions based on
the actual data being processed. One of its tasks is to choose
algorithms for hashing and comparing used by several operators,
including joins and aggregation. String comparison performance
is greatly improved by having sorted string heaps whose tokens
can be directly compared instead of comparing string contents.
This performance benefit is especially important because unlike
many column stores (which only offer simple binary collation) the
TDE must implement locale-sensitive collations, which are even
more time consuming to compute. Hashing of strings must also be

performed in a locale-sensitive manner, and imposes a similar
computational burden.

Even with unique string tokens, hashing performance is based on
the width of the data being grouped or joined. A width of 1-2
bytes allows the TDE to use direct hashing with a small 64K-
element lookup table. With a width of 3-4 bytes, a perfect hash
function can be constructed, but wider data requires expensive
collision detection. Minimising data width is, therefore, an
important physical design goal for TDE columns.

The TDE has more leeway in type design than typical relational
stores because Tableau itself does not model data types very
precisely. In fact, Tableau only has Boolean, integer, real, date,
timestamp and locale-sensitive string types. This means, for
example, that the TDE can use any representation it likes for a
column that Tableau considers an integer. This type design
flexibility can in turn be used to improve hash performance.

2.3.5 Fetch Joins
The TDE can also use fetch joins [3] for many-to-one joins if
there is a single join column and the row id of the inner table is an
affine transformation of the column value. This type of join
requires no intermediate lookup tables and is the fastest join
available. Detecting when it can be applied improves join
performance significantly. This situation happens most often in
primary-key/foreign-key joins, and especially in decompression of
scalar dimensions via invisible joins.

3. ENCODINGS
In the first TDE paper [10] we listed creating new encodings as a
topic for future work. After a review of the literature, we settled
on several simple encodings that are compatible with the existing,
non-segmented storage model used by the TDE. Our goal was to
reduce storage requirements for user extracts, but we discovered a
number of unexpected benefits along the way, which we will now
describe.

3.1 Encoding Formats
While the encodings being described here are well known in the
literature, we would like to quickly explain the storage format of
each one to facilitate later discussion. This header has been
carefully designed so that some simple header manipulations can
lead to semantically interesting column-level changes.

Each bit-packed stream starts with a header of the general form
shown in Figure 1 followed by blocks of bit-packed values. The
bit-packed values are treated as unsigned values by the encodings.

The first 8 header bytes cache the logical size of the stream to
make stream length queries perform well and to handle situations
where the physical size of the packed data is larger than the
logical size. This happens frequently with bit-packing schemes,
because bit fields must fit into an exact number of bytes.

The second 8 header bytes contain the offset to the bit-packed
data. This allows the header to be resized without disturbing the
bit packing.

Figure 1. Bit-Packed Header Format.

The third 8 header bytes contain the decompression block size
(i.e. the number of values in the block), the encoding algorithm,
the width of the data stream elements and the number of packing
bits. The block size is a multiple of 32 to ensure that the bit
packing ends on a byte boundary. A decompression block may
also contain header information such as a running total. Each
physical stream only contains complete decompression blocks
(hence the need for the logical size field). The number of values in
a decompression block is typically the same as the block iteration
size of the query execution system so that one decompression call
is needed per iteration block.

The rest of the header contains encoding-specific data, which we
will now describe.

3.1.1 Frame-of-Reference
The frame-of-reference header contains 8 bytes to hold the frame
value. The bit-packed values are added to this frame value to
produce the uncompressed values.

3.1.2 Delta
The delta-encoding header also contains 8 bytes to hold the
minimum delta value. The bit field values are added to this delta
value to obtain the next value. Each encoding block starts with
the running total for that block so the data can be accessed
randomly as well as sequentially.

3.1.3 Dictionary
The dictionary-encoding header starts with 8 bytes containing the
number of dictionary entries, followed by enough space to contain
2^bits dictionary entries. This allows the dictionary to grow up to
the 2^bits limit. Dictionary encoding is limited to 2^15 values to
keep the dictionary in cache and make the compression cuckoo
hash table implementation simple and fast.

3.1.4 Affine
Affine data streams are a simplified form of delta encoding where
the bit width is zero or (equivalently) where the delta value is
constant. Each value can be simply computed as value = base +
row * delta.

The affine-encoding header contains 16 bytes to hold two signed
integers for the base and delta values. Again, the header reserves 8
bytes for both values even if the actual values are narrower. Affine
encoding does not require any bit-packed values and sets the bit
count to 0.

Affine encoding is similar to the virtual column representation in
MonetDB [3] except that the values are physically expanded a
block at a time instead of being computed in line. The advantage
of treating affine encoding uniformly with the other encodings is

that its applicability can be detected during the compression stage
e.g. when a column contains sequential values.

3.1.5 Run-Length
Run-length-encoding headers have a different format that consists
of a header followed by runs represented by length/value pairs.
The header contains the logical size of the stream and two bytes
that contain the width of the two fields. These values are fixed for
the entire stream.

3.2 Dynamic Encoding
The MonetDB/X100 system described in [6,9] demonstrates that
lightweight compression can be used during query execution
because the compression routines are computationally cheap. We
have not implemented the patched variants of these encodings
because they require a segmented storage model. We needed
another mechanism to solve the problem of inserting values that
lie outside the range currently supported by the column encoding.

To accomplish this, we continually track statistics for a column as
values are inserted. These statistics are simple to gather,
consisting mostly of the value range and delta range. At any given
point, we can quickly determine the best of the available choices
of encoding for the column. We dynamically encode the columns
one block at a time, using the block values for a column to update
the column’s statistics before inserting the data block into the
column’s encoding stream. If the column insert fails (e.g. due to
representation limitations), we can consult the column’s statistics
and choose a new encoding. When all rows have been processed,
we can also compare the current encoding with the optimal one
and convert to this optimal format if desired. In practice, we
found that the encoding stabilizes quite quickly: Encoding the
TPC-H [TPCH] lineitem table at SF 1 made only two
encoding changes and the rewrites still performed less disk IO
than writing the unencoded column.

This technique is vulnerable to data sequences that can cause
constant re-encoding, but we have not investigated situations that
might trigger this problem. One approach would be to detect
excessive reformatting and fall back to unencoded data until the
end. At that point, we could consult the final statistics and decide
whether it is worth encoding the column or leaving it unencoded
as the I/O cost has already been paid.

3.3 FlowTable
Applying encodings require a full scan of each column, therefore,
this functionality needs to be expressed in a plan by a stop-and-go
operator. In the MonetDB/X100 project [6], encoding happens as
part of the Save operator, which writes a table back into the
store. Later on, such a table can be scanned and decoding will
happen behind the scenes.

In order to leverage encodings in the TDE, we extended the
existing FlowTable operator, whose task is to turn a stream of
row blocks into a table. Note that encoding of each column is
independent, therefore, the computations can be distributed across
the available cores. This allows more processing power to be
substituted for memory and I/O bandwidth.

3.4 Encoding Manipulations
Once a column has been encoded, there are some fast
manipulations that can be performed on the header to change the
type of the data, or create a sorted dictionary for a compressed

column. These manipulations can be advantageous for
downstream processing by reducing the size and complexity of the
data. The speed of these transforms is a consequence of the
formats used in the encoding headers as described above. The
encoding statistics can also be mined to determine useful column
level metadata. The FlowTable operator applies these
manipulations as a post-processing step during its build step.

The unifying principle for all these manipulations is that
lightweight compression makes it easy to transform the entire
compressed data set in semantically meaningful ways. We will
now describe these manipulations in more detail.

3.4.1 Type Narrowing
The headers for frame-of-reference, dictionary and affine
encodings can all be modified to change the width of the data.
For example, if the column is a 4-byte integer column under
frame-of-reference encoding, we can use the bit width and the
base value to detect when the values can be represented by a 2-
byte integer. The header can then be edited to update the size,
width and base fields. The offset to the bit field data does not
need to change because the offset is stored in the header.

These operations can be accomplished in O(1) time for all three of
these encodings except dictionary encoding, where the operation
cost is proportional to the number of entries i.e. O(2^bits). Note
that these run times are independent of the size of the column.

Delta encoding embeds the running totals in each block and run-
length encoding contains values in each pair, so these encodings
are not amenable to this type of header manipulation. It is
possible, however, to decompose a run-length encoded column
into a value stream and a count stream, perform the narrowing
operation on the extracted value stream and then rebuild a run-
length stream with the original counts and the new values.

If a narrower type can represent a column, then the downstream
operators may be able to produce a better hash function that does
not have collisions for aggregation or joins. It also means that
later computations may produce smaller results, reducing the
memory, disk and network footprint of the system.

3.4.2 Metadata Extraction
Encoding statistics can help cheaply derive properties of the
underlying data and, thus, enable tactical optimizations. Delta-
encoding, for example, can indicate whether a column is sorted.
Detection of sorted columns can be used to improve the efficiency
of downstream operations such as aggregation, joins and sorting.

Affine encodings can be checked to see if the delta is 1. If so, the
column is not only sorted, but also dense and unique, which may
enable fetch joins downstream. Filtering the inner table of a join
can mask the applicability of a fetch join, because the filter will
remove an existing dense attribute of a column (because it may no
longer be valid). If FlowTable is used to build the inner join
table after the filter has been applied, its encoding component can
detect the situation where the filter leaves a contiguous sub-range
of the data and reassert the dense property, allowing a fetch join to
be generated. This situation is common with date columns, which
are often compressed and filtered to a range and then joined back
into the main query.

The encoding statistics can also be analysed to determine the
cardinality of the column domain, the maximum and minimum

value of the column and – because the TDE uses sentinel values
for NULL – whether the column contains NULLs. These
properties can be used by downstream operators to make tactical
optimizations, or reported back to Tableau. Tableau can in turn
use this metadata to drive choices in the UI such as whether to
represent domain values using colors, shapes or other mark types.

3.4.3 Encoding Becomes Compression
Accelerators [3] for string heaps help make small string heaps
distinct, but an even better outcome is to have a sorted heap,
which means that its tokens are directly comparable. The
accelerator also reduces the number of tokens in use, and if it
succeeds in keeping the token count low enough, this reduction
will result in dictionary encoding of the tokens.

In this situation, the dictionary encoding entries are the set of
distinct tokens for the strings. Since the number of strings is
small, we can sort them in a relatively short period of time. The
new tokens take up the same amount of space as the original
tokens and can be written back out to the dictionary-encoding
header, with the result that the column now has both comparable
and distinct tokens. Combined with type narrowing, this allows
us to optimize the representation of an intermediate computed
string column in time proportional to the domain size and avoid
touching the actual rows of the column – which can be arbitrarily
many.

A dictionary-encoded scalar column can be converted into a
dictionary-compressed column by copying the encoding
dictionary (which is just an array of scalars) into a compression
dictionary. The original encoding dictionary is then replaced with
the compression tokens (again, narrowing them if desired) and the
column is now a dictionary-compressed column with minimal
width. This can be valuable for scalar dimensions such as dates,
which have relatively few values, but expensive calculations (such
as extracting the month). Converting the column into a dictionary-
compressed column enables invisible joins on the data if the
containing table is written out as part of an import process.

A similar transformation can be performed with frame-of-
reference encoding, with the caveat that the compression
dictionary may contain values that are not actually in the column.
The frame value and the bit width determine the outer envelope of
integer values that are present in the column. If the underlying
type has the same bit ordering semantics as the signed integers
used by the encoding process, then a sorted scalar dictionary can
be generated from the base value and the number of bits in the
representation. The header can then be modified to contain the
unsigned tokens as indexes into this scalar dictionary. Because the
frame range defined an outer bound, we have no guarantee that all
dictionary values are actually present in the column, but this
technique looks promising for compressing date and timestamp
columns, and may be the topic of future work.

We have not implemented this encoding to scalar dictionary
compression in the FlowTable operator because the existence
of non-string dictionaries is something that the query compiler
needs to be aware of. This technique can, however, be employed
by the more heavyweight operators (like AlterColumn) used
during the TDE’s global optimization phase to reduce the run time
of that operation. AlterColumn can also apply the run-length
decomposition technique described in Sect.3.4.1 to generate
dictionary compression columns from the value stream, greatly

reducing the optimization cost. This results in a scalar dictionary
compressed column with a run-length encoded token stream.

4. DECOMPRESSION JOINS
Strategic query optimizers are typically oblivious about details of
the storage layer, such as data compression. That ensures clear
boundaries of the component but may also limit application of
optimizations dependent on low-level properties of data. For this
reason certain storage concepts are at times modeled for the
optimizer to use.

Plan costing is one good example. Row sizes or average costs of
reads or writes of data stored in different layouts are made
available to allow for more precise estimations. Also, non-
standard storage concepts can be expressed by special types of
columns, such as the sparse column set in Microsoft SQL Server
used to model the interpreted storage [13].

Below, we express decompression of data values in a manner that
permits the query optimizer to reason about it using established
query optimization techniques. In this model, compressed
columns are expanded using joins against special kinds of tables.

4.1 Dictionary Tables

4.1.1 Invisible Joins
Dictionary compressed columns (that is, columns with a
secondary heap, as distinct from the dictionary encoded columns
of Sect. 3.1.3) can be introduced to the query plan using an
operator called DictionaryTable. This table operator has a
column of the same type as the original, but the column data has
been replaced with the set of unique tokens in heap order. For
variable width data (e.g. strings) this column is the only one in the
table and it has a copy of the original column’s heap. For fixed
width data, the token column does not have a heap but the table
itself has a second column, which is simply a copy of the original
column’s fixed-width heap.

Figure 2. Invisible join for a string column.

Expansion of this column can now be expressed as a foreign key
join between the main table and the token column in the
DictionaryTable (see Fig. 2). Further, the strategic
optimizer can rearrange the plan by pushing filters and
computations on the column values down to the inner side of this
foreign key join. In consequence, computations on the
compressed data get expressed quite naturally as part of a
traditional query plan without having to widen the inter-operator
interfaces.

NULL -1

0

7

Alaska

Delaware

New York

Washington

6

8

8

10

16

27

State

16

27

16

7

…

…

…

…

…

-1

0

…

…

Offset Length + String

State = Offset

4.1.2 Tactical Optimization
Using the encoding manipulations above, there is now an
opportunity for the run-time (or tactical) optimizer to take
advantage of compression. The TDE Join operator takes a stop-
and-go operator as the inner relation, so once the plan contains
flow operators (like Select and Project) on the inner side of
these expansion joins, the flow needs to be materialized, usually
by employing the FlowTable operator. FlowTable now
extracts metadata during its processing, including the kinds of
metadata used by the tactical optimizer to decide upon the join
algorithm.

Consider the common situation where a date column has been
dictionary compressed and a range predicate has been applied.
Assuming the date column heap has been sorted, the range
predicate will produce a dense range of token values from the
DictionaryTable, which FlowTable can now detect. The
Join operator can in turn use this information to choose an
efficient fetch join instead of some form of hashing that requires
an additional table lookup per row.

Next, consider the situation of a string column containing URL
requests and a calculation to extract the file extension of the
request. This will produce a relatively small number of strings on
the inner side of the join, but the string function library is
probably unable to estimate the resulting domain ahead of time.
The computation therefore produces a column with wide tokens
and an unsorted heap. FlowTable can now sort this small string
table quickly and minimize the width of the token data. If the
query then aggregates on this computation (e.g. counting the
number of requests for each file type) the aggregation operator
will be able to use a faster hashing algorithm thanks to the
narrower representation.

4.2 Index Tables

4.2.1 Rank Joins
A similar “special table” technique can be used to expose run-
length encoded columns to the strategic optimizer. The table is
called an IndexTable and consists of three columns: The
value, the count and the start. The first two are extracted directly
from the column data and the start values are computed as the
running total of the count values.

This IndexTable can be joined to the main table as before with
DictionaryTable, but in this case, the join is not an equi-
join. Instead, the join condition is a range predicate:

Index.start <= Outer.rank < Index.start + Index.count

Once again, now that we have expressed the decompression as a
join, we can push single column arguments down to the inner
table (see Fig. 3). Predicates and computations will now be
evaluated on the compressed data, with significant performance
gains.

Because the join is on the rank column, we have implemented a
new type of join operator called IndexedScan that translates
the range specifications directly into disk accesses.
IndexedScan will access the outer table in the order given by

Figure 3. Predicate push-down on a Rank Join.

the inner table. This allows us to express range skipping simply as
a join in the query plan. As we also use FlowTable to produce
the inner table, we can apply the same metadata extraction and
type minimisation techniques to any computed columns and
present this enhanced metadata to the client of the
IndexedScan.

4.2.2 Ordered Retrieval
IndexedScan also allows us to implement ordered retrieval of
out-of-order run-length values by sorting the index on the value
column. This access pattern enables us to use ordered (or
sandwiched [Sandwich]) aggregation on columns that are not the
primary sort key. This technique must be used with care because if
the runs are too small, performance will be degraded, as we will
show in our results.

4.3 Other Optimization Concerns
Besides the benefits of new optimizations that one can apply
thanks to the nature of some encodings, the fact that data is
compressed might have detrimental impact on the plan
performance if other rewrites are not applied carefully.

FlowTable is commonly used as the right hand (or inner) side
of a join operator. Hash joins usually exhibit random access
patterns against this inner table, and not all of our encoding types
have good random access performance. In particular, seeking
backwards in our run-length encoded columns requires a
sequential scan from the start of the data stream. Therefore, during
strategic optimization we restrict encoding choices for the
FlowTable nodes on the inner side.

Furthermore, the quality of encodings is sensitive to the order of
raw data. Therefore, operators that disturb order, such as sorting
or exchange, might affect how well data will be encoded down the
stream and potentially increase I/O.

To give a more concrete example, let us consider a simple plan in
which we read a column of dates from disk and apply a filter to it.
Moreover, during extraction the column got dictionary-
compressed and the resulting column Date in the dictionary got
delta-encoded. Note that the tokens follow the original order of
the dates and thus, the achieved encoding is efficient.

Since we are dealing with an invisible join scenario between the
denormalized table and the dictionary, the filter can be pushed
down to the dictionary. The values from the dictionary column
Date need to be decoded first to evaluate the filtering predicate.
Then, the results have to be materialized using FlowTable to
build an inner side of a hash-join. The final encoding is likely to
be of similar quality, because the filter removed a subset of data
but did not change the order of values. However, if one injects
exchange operators to parallelize the filter, the order of blocks of
values gets disturbed and the resulting encoding might be much
worse and lead to a physically larger column.

We identify situations of this kind and force the exchange
operator to use order-preserving routing, i.e. number the blocks
and output them in order [8]. Our benchmarks showed a relatively
low, 10-15% overhead, associated with this additional constraint.

5. EXPERIMENTAL DESIGN
We performed two sets of experiments to assess the performance
of our new features. The first set of experiments involves using a
high-performance flat-file parsing operator to drive our new
dynamic encoder, and measuring compression and metadata
extraction performance. The second set of experiments measure
the performance of pushed down filter predicates with indexed
scans on an artificial run-length encoded data set.

We do not measure the performance of the dictionary expansion
as that was evaluated in the original TDE paper [10].

5.1 TextScan
As part of our experimental setup, we used a text-parsing operator
called TextScan to produce a stream of uncompressed columns
with little metadata. TextScan is a flow type operator, which
reads from a memory mapped byte stream and produces blocks of
typed data. It attempts to perform type and column name inference
if the schema is not provided, which can further reduce the need
for user intervention, but it can also be given a schema if one is
available. The development of this operator produced some
interesting experimental results of its own, which we now
describe.

5.1.1 Initial Approach
The first implementation of TextScan was designed to evaluate
the text cracking process described in [7]. The operator was
originally given a text file and a list of columns to parse. The
unparsed columns would just be cracked into separate text files
for later parsing. The file is assumed to be UTF-8.

The first step in the parsing process is to determine the field and
record boundaries. A sample set of rows is tokenized using a
given record separator (which defaults to end-of-line). Simple
statistical analysis is used to determine the field separator.

Once the field boundaries have been determined, the columns
must be typed. A sample block of rows is selected and typed by
comparing the results of parsers for each data type to see which
produced the fewest errors. The winning type parser is then used
for the eventual scan of the entire text file. The parsers are then
applied to the first row and if there were no errors, it was
presumed that the flat file did not contain a header row and all
values were treated as data. If there were errors, then the values
were taken to be the column names. The schema and header row
information can also be specified as inputs to the parsing system.

5.1.2 Parallel Parsing
Because these column parsers were producing independent output
from a shared read-only state, it was a simple matter to run them
in parallel on each block of rows. We were surprised to find that
the performance degraded by at least an order of magnitude under
parallel execution. Profiling the code showed that the problem
was that the native parsers attached to each type object in the
TDE’s extensible type system were using the C++ standard library
to parse the fields. The standard library is locale sensitive and
each stream parse first needed to obtain and lock a singleton
locale object. The lock contention for this object completely
negated any gains from parallelism.

5.1.3 Scalar Cracking
To avoid this problem, we wrote buffer-oriented parsers for all the
different types in the system. These parsers are tightly written C
code and rely on no external state. With these in place, we found
that parsing the scalar columns in the TPC-H lineitem table at
SF-30 [4] on a four-core machine was comparable to the disk read
bandwidth. This suggested that scalar parsing did not need to be
deferred because it could be performed while waiting for the disk.

5.1.4 String Cracking
This discovery naturally led us to ask whether string parsing could
be done at the same speed. To create a baseline, we first added a
“compression” style where split strings were simply written to a
text file with quotation marks and end-of-line separators. This is
approximately the same amount of I/O as used for writing a string
heap element consisting of a 4-byte header followed by the
character data. The corresponding data streams consisted of a
series of ascending offset tokens whose deltas were equal to the
length of the string itself. If these tokens were fed into a delta
encoder, the resulting data stream could be highly compressed.
For example, the l_comment column has a maximum string
width of 140 characters, so an 8-bit delta could be used, adding
about 1 byte per row to the data.

Creating a string column in the TDE makes optional use of a heap
accelerator object, which maintains a hash table of all strings that
have been seen so far. This allows us to minimize the size of the
heap for columns with small (< 2^31) numbers of strings and also
ensures that such string columns have distinct tokens. Profiling of
the import process shows that maintaining this hash table appears
to be an execution “hot spot” when the number of strings is small,
but performance of the entire import process does not appear to be
affected thanks to the gains in reduced disk IO. The accelerator
gives up on hashing once the number of heap elements passes the
2^31 element threshold.

5.2 Text Data
We conducted a number of experiments to judge the performance
and other properties of the combined TextScan / FlowTable
system. For these experiments, we used the output of the TPC-H
dbgen tool [4], at both SF-1 and SF-30. We also used a 25GB
text version of a 67M row internal testing database of containing
ten years of FAA on time flight data (“Flights”).

The only typical import operations that were not performed were
sorting on a preferred attribute (e.g. l_orderdate) and
applying dictionary compression to date scalars. Sorting is
expensive but can sometimes help filtering and aggregation
performance. Dictionary compression of dates can improve the

performance of certain date calculations (e.g. month extraction)
by performing the calculation on the date domain and joining the
results to the main query via an invisible join. Both of these
operations could be performed as a further design optimization if
the workload suggests it.

Execution speed was only measured for the two large tables (both
labeled “Large Tables” in the Figures.) Both of these files are
larger than the disk cache of the test machine, so there were no
cache “warm up” issues. The most important difference between
the two files is that Flights does not have a large random string
column like l_comment, but this is more typical of the data sets
actually analysed by our customers.

The smaller tables from TPC-H SF-1 were used to demonstrate
the efficacy of the metadata extraction process. They are labeled
“SF-1 Tables” in the combined Figures.

5.3 Run Length Data
To evaluate the performance of indexed scans, we created
artificial tables containing two run-length encoded columns
(called primary and secondary). The columns consist of uniformly
distributed random values in the range [0,100), and the tables
were sorted ascending on both columns. We prepared two tables,
one with 1 million rows and one with 1 billion rows and ran
aggregation queries of varying selectivity against this data.
Because of the size of the data sets, both columns were run-length
encoded and the entire data sets easily fit in main memory.

6. EXPERIMENTAL EVALUATION
6.1 Parsing Performance
We ran the import process for both SF-30 lineitem and Flights
5 times on an Intel® Xeon® E5620 single chip machine running
Windows 7 and averaged the run times. We measured times for:

• Disk bandwidth (summing all the bytes of the text file)

• Tokenizing the data (finding field boundaries)

• Splitting the file into column files, but not parsing

• Parsing scalars only (numbers and dates)

• Parsing all columns.

Where applicable, we also ran the tests with heap acceleration on
and off, as well as with encodings on and off. The results are
displayed in Figure 2.

 Figure 4. Split Time versus Compression Time.

By comparing the encoded and un-encoded results for the “All”
and “Scalars” scenarios in Fig. 4, we can see that in all situations

were it was applicable, the system performance with encoding
turned on was either comparable to or superior to the performance
without encoding. This result holds whether or not heap
acceleration is in use.

Moreover, by comparing the adjacent “Split” and “All” bars, we
can see that the system performance with both encoding and
acceleration was comparable to simply splitting the flat file into
separate text columns for later parsing, which shows that there
was no benefit to delayed parsing on these data sets. The scalar
only parsing also splits the strings for later parsing, which
similarly appears to provide no additional benefit here.

Encoding and acceleration provide other important benefits
beyond eliminating deferred parsing costs, which we will now
quantify.

6.2 Storage
Our original TPC-H SF-1 database from [10] was about 660MB.
Applying the new encodings to the columns reduces the size of
the database by about 140MB.

We did not have a version 1 database for TPC-H SF-30, but we
show the logical and physical sizes of the lineitem table for all
combinations of encoding and heap acceleration in Fig. 5. The
total disk savings from the original 26GB flat file is 22GB (84%)
and the savings from the logical size (i.e. the un-encoded size) is
7.5GB (63%).

The version 1 Flights database with only run-length encoding and
dictionary compression was 4.1GB. Figure 5 also shows the
logical and physical sizes of this table. The total disk savings from
the original 25GB flat file is 21GB (84%) and the savings from
the logical size is 15GB (85%).

 Figure 5. Compression Savings.

The top section of Fig. 5 shows the effects of heap acceleration
without encoding. The effects are more pronounced for Flights
because all of its string columns have relatively small domains.
By contrast, lineitem consists mostly of l_comment, which
is too large for the accelerator to compress effectively. The
accelerator is designed to be small and fast for common usage, but
is not designed to scale and it is doubtful that the 33% disk
savings that would result would be worth the extra IO caused by
heap collision comparisons.

Moreover, Fig. 5 breaks down the contribution of each type of
encoding to the total savings. This shows that artificiality of the
TPC-H data provides a number of opportunities for affine
encoding. One notable example is the c_customername

column, which consists of a set of unique strings all with the same
length. Each string takes up the same amount of space in the heap
so the tokens are equally spaced, which the system notices and
encodes accordingly. For systems that store fixed width
CHAR(N) style strings, this could be an important source of space
savings when such strings are unique, because affine encoding has
constant storage requirements.

The benefits of reduced storage footprint extend throughout the
entire storage hierarchy. At one end, compression effectively
increases memory bandwidth [6] by trading off CPU resources for
memory latency. At the other end, smaller storage requirements
reduce network transfer latency for data set upload and download.

6.3 Heap Sorting
Another operation we were able to perform during the parsing
stage at no discernable performance cost was the sorting of string
heaps when the column was dictionary encoded. Since TDE string
heap tokens are not dense (being offsets instead of indexes), they
typically end up being dictionary encoded if the domain is small.
Figure 6 shows the extent that dictionary encoding can be
leveraged to improve the generation of sorted string heaps for SF
1 tables as well as the SF-30 lineitem and Flights tables.

Note that with no encoding, there were a total of five sorted heaps
in the table set (the blue bars in the figure), mostly due to the
TPC-H data generation algorithm or other accidents. With
encoding on, however, all string heaps are sorted except one
(l_comment), which has a large domain with low duplication.

Figure 6. Number of Sorted Heaps.

Sorted heaps improve query performance by converting string
comparisons to integer comparisons. The results shown in here
demonstrate that this benefit can be realized for many string
columns at no significant latency cost during the loading process.

6.4 Metadata Extraction
The encoding statistics enable the extraction of a number of
metadata properties. Figure 7 shows the number of extracted
metadata properties for the full set of tables, both with and
without encoding active, and broken down into the set of all SF-1
tables and the two large tables. Heap acceleration was turned on
for these tests.

Many of these properties were not even detected with encoding
off and the few that were detected owe their detection to
fortuitous circumstances such as the string data being inserted in

order or as a side effect of the accelerator’s statistics (e.g. domain
cardinality.)

As we have shown in Sect. 6.1, this metadata was extracted by the
system with no latency costs. The extracted metadata can then be
used by both the TDE to improve query performance and by the
Tableau visual system to enhance the analytic experience.

Figure 7. Metadata Detected.

6.5 Minimal Representations
The use of minimum width representations for scalars and tokens
is another important optimization. When values have minimal
widths, the system can choose better hashing algorithms for joins
and aggregation. In Fig. 8, we can see that about three quarters of
the string columns had their token width reduced from the default
width of 8 bytes, often down to one byte. This can mean the
difference between using an imperfect hash function with
collision detection and using a perfect hash, or even a fast direct
hash during joins and aggregation.

Figure 8. String Token Width Reduction.

A similar transformation can be performed on integer columns.
Integers are parsed with a default width of 8 bytes, but often
contain numbers from a much smaller domain. In Fig. 9, we can
again see that about three quarters of the integer columns had
their width reduced, often down to one byte, indicating that the
values are in a very small range near zero.

These representation transformations were achieved without any
additional import latency costs over simply splitting the file.

Figure 9. Integer Width Reduction.

6.6 Filtering
To test the performance of indexed scanning, we ran the following
query over both run-length encoded tables:

SELECT Index, MAX(Other)

FROM table

WHERE Index > (100-selectivity)

GROUP BY Index

Index is one of the two integer sort columns (primary and
secondary) whose run-length encoding index we are using and
Other is the one we are not filtering.

To evaluate the indexed table operator, we tested the performance
of three plans:

1. Scan => Filter => Aggregate

2. Index => Filter => IndexedScan => Aggregate

3. Index => Filter => Sort => IndexedScan => OrdAggr

Figure 10. Indexed Filter Performance.

The first plan is a control, which fulfills the query using the
existing system. The second plan applies the filter to the index,
but relies on hash aggregation. The third plan also sorts the index,
before scanning to allow the use of ordered aggregation.

We ran all three plans against both tables for filter selectivities
between 0 and 100. Each plan was run 12 times, the two extremes
were discarded and the remaining times were averaged:

As can be seen in Fig. 10, the plan that filters the run-length
encoding index outperforms the other two plans by about a factor
of two when the filtering is on the primary sort key.

We can also see that this plan gives the best performance for
filtering the secondary sort column on the larger (1B row) table
by nearly a factor of three. This is because we can apply a faster
ordered aggregation to the secondary sort column, even though
the table was not originally ordered on this column.

The only case where the sorted and filtered index plan does not
outperform the other two plans is when filtering the secondary
sort column on the smaller (1M row) table. In this case, the run
lengths of the secondary encoding are only about 100 rows long,
and the system ends up processing many more small blocks,
which degrades performance past the point where the ordered
aggregation can compensate.

7. CONCLUSIONS
In this paper, we described and evaluated various mechanisms for
operating on compressed data in the Tableau Data Engine. These
mechanisms can be used to significantly improve the performance
of both data import and query execution operations.

The first mechanism consists of a novel set of techniques for post
processing an encoded column without modifying the main body
of the column. As part of the encoding process, we also extract
metadata that can be used for later tactical optimizations during
query execution. We have demonstrated that these techniques can
be used to significantly reduce storage requirements and
accumulate valuable metadata during thess loading of flat files
without degrading performance.

The second mechanism introduces a new pseudo-table derived
from a run-length encoded column and a corresponding join
operator that can be used to express decompression as a join in a
query plan. We have demonstrated that traditional optimization
techniques of predicate pushdown can be used to improve the
performance of a single-threaded filter and aggregate query by a
factor of two when filtering primary sort keys. This result can be
further extended to secondary sort keys if the secondary run
lengths are larger than the block iteration size.

As part of our test process, we introduced a new flat file import
operator for fast reading of large, well-designed formatted flat
files with latency comparable to that required for only tokenising
and splitting the text files. This initial import design should allow
fairly responsive exploration of the data set without incurring any
loading penalty beyond what was already required.

8. FUTURE WORK
Previous uses of parallel execution in the TDE have centered on
multiple queries, sorting and data flow operators such as
Exchange [8]. Distributing the processing of independent
columns across multiple cores in the TextScan and
FlowTable operators is new form of parallel processing in our
execution engine. Our results suggest that there may be other
places in column stores where work on independent columns can
be easily and effectively parallelized with minimal

synchronisation overhead. In the future, we intend to consider
more uses for parallel computation that operate on independent
columns.

One possibly interesting use case for IndexTable occurs when
it is applied to a sorted date column. A common analytic
calculation on dates is to roll them up to a higher level (e.g.
rolling a date up to the start of the month or a date time upto the
start of the hour). If this roll-up calculation is performed on the
IndexTable , the computed result can then be aggregated on
the rolled up date using MIN(start) and SUM(count), which
converts the original index on the raw date to one on the rolled up
date. In the future, we hope to investigate using this technique for
implementing parallel ordered aggregation on rolled up dates (or
any other order-preserving calculation) by partitioning the index
range and running the scan for each partition on a separate core.

The cost of rewriting a run-length encoding may be worth paying
if the number of blocks is small compared to the full set of data in
the column, but we have not investigated or quantified the use of
this technique.

Because of its read-only, single file database format, the TDE is
restricted by design from taking full advantage of the cracking
approach. In spite of this, we would like to find ways to extend it
to be able to reference external flat files and rebuild the database
when the file changes. This would require a repackaging cost, but
the user is most likely willing to incur this cost to have up-to-date
data. Work along these lines may help us to find ways to integrate
other aspects of database cracking techniques, possibly under user
control so as to minimise unexpected IO costs.

9. ACKNOWLEDGMENTS
Our thanks to the rest of the TDE team (Chris Stolte, Pat
Hanrahan, Matthew Eldridge, Cristian Vlasceanu, Marianne Shaw
and Dana Groff.) We are also grateful to the members of the CWI
group for valuable conversations and groundbreaking research
that inspired much of the present work.

10. REFERENCES
[1] Stolte, C., Tang, D., and Hanrahan, P. 2008. Polaris: a

system for query, analysis, and visualization of
multidimensional databases. Commun. ACM 51, 11 (Nov.
2008), 75-84.

[2] Boncz, P., Żukowski, M., and Nes, N. MonetDB/X100:
Hyper-Pipelining Query Execution. In International
Conference on Innovative Data Systems Research (CIDR),
Jan. 2005, 225-237.

[3] Boncz, P. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. Doctoral Thesis, Universiteit
van Amsterdam, Amsterdam, The Netherlands, May 2002.

[4] http://www.tpc.org/

[5] Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X.,
Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S.,
O'Neil, E., O'Neil, P., Rasin, A., Tran, N., and Zdonik, S.
2005. C-store: a column-oriented DBMS. In Proceedings of
the 31st international Conference on Very Large Data Bases
(Trondheim, Norway, August 30 - September 02, 2005).
Very Large Data Bases. VLDB Endowment, 553-564.

[6] Żukowski, M. Balancing. Vectorized Query Execution with.
Bandwidth-Optimized Storage. Doctoral Thesis, Universiteit
van Amsterdam, Amsterdam, The Netherlands, September
2009.

[7] Idreos, S., Alagiannis, I., Johnson, R., and Ailamaki, A. Here
are my Data Files. Here are my Queries. Where are my
Results? In International Conference on Innovative Data
Systems Research (CIDR), Jan. 2011.

[8] Graefe, G. Encapsulation of parallelism in the Volcano query
processing system. In Proceedings of the 1990 ACM
SIGMOD international conference on Management of data,
June 1990.

[9] Żukowski, M., Heman, S., Nes, N. and Boncz, P. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of
the 22nd International Conference on Data Engineering
(ICDE), June. 1990.

[10] Wesley, R., Eldridge, M. and Terlecki, P. An analytic data
engine for visualization in Tableau. In Proceedings of the
2011 international conference on Management of data
(SIGMOD), June 2011.

[11] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey
Romer, Shiva Shivakumar, Matt Tolton, and Theo
Vassilakis. 2010. Dremel: interactive analysis of web-scale
datasets. In Proc. of the 36th Int'l Conf on Very Large Data
Bases (VLDB), September 2010, 330-339.

[12] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006.
Integrating compression and execution in column-oriented
database systems. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, (SIGMOD
'06). ACM, New York, NY, USA, 671-682.
DOI=10.1145/1142473.1142548
http://doi.acm.org/10.1145/1142473.1142548

[13] Srini Acharya, Peter Carlin, Cesar Galindo-Legaria,
Krzysztof Kozielczyk, Pawel Terlecki, and Peter Zabback.
2008. Relational support for flexible schema scenarios. In
Proc. VLDB Endow., 1, 2 (August 2008), 1289-1300s

[14] http://www.firebirdsql.org/

