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ABSTRACT

Data sets are growing rapidly and there is an dttenneed for
tools that facilitate human analysis of them ifngety manner. To
help meet this need, column-oriented databases“d@umn

stores”) have come into wide use because of tbeirlatency on
analytic workloads. Column stores use a numbeediriques to
produce these dramatic performance techniquesuding the
ability to perform operations directly on compressata.

In this paper, we describe how the Tableau Datairiengan
internally developed column store) leverages a rermbf
compression techniques to improve query performarides
approach is simpler than existing systems for dp®yaon
compressed data and more unified, removing the ssigefor
custom data access mechanisms. The approach asosaome
novel metadata extraction techniques to improvecttzéces made
by the system’s run-time optimizer.

1. INTRODUCTION

Recent years have seen an unprecedented growth amount of
data available for analysis. This data often ndedse processed
manually by a human who understands the semanficdheo

problem domain. Once the initial analysis has hmmmpleted, the
results are often passed on to other interestetiepaVisual

analysis tools such as Tableau [1] enable the ioreaif such

analyses via an intuitive drag-and-drop interface.

In the early days of data analytics, these resuéiee generally
static reports designed to communicate the endltreguthe
analysis to decision makers. Increasingly, howesech analyses
are becoming the starting point for further workor® recent
incarnations of these tools have added an empbasisteractive
visualization and computer-mediated analytic nareat

A low-latency analytic query engine best serveshsinteractive
tools, but the underlying data source may have dridatency,
either due to architectural issues or heavy woddodhe Tableau
Data Engine (TDE) acts as a low-latency relatiatate for visual
analysis in the Tableau system by storing and gging extracts
of a data set under analysis.
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As a commercial desktop product, Tableau’s lackaftrol over
the deployment environment hardware makes scalesbuhe

TDE impossible in many use cases. While we haveagyeuoh to
incorporate some single-node parallelism into tkecation core,
the machines users employ for analytics are oftgrops with
limited energy, disk and CPU resources. This cairdthas given
us a bias towards gaining performance through ghgoic

techniques. The focus of the current work is tocdbe several
such algorithmic approaches centered around opgrairectly
on compressed data.

One important component of many low-latency reltalostores is
the ability to operate directly on compressed da®. In this
paper, we will describe how the TDE leverages vexikinds of
compression during query compilation and executidie
approaches we will describe include:

« New data formats that enable modifying the semantic
of entire columns independent of the number of fows

« Two methods of expressing decompression as a join
operation, one of which we believe to be novel;

e A technique for extracting metadata during query
execution for use by a tactical optimizer.

We will also combine these techniques with a fitd fmport
operator to demonstrate how the system can gengeoel
physical designs during the import process at lost.c

The organization of this paper is as follows. S®tTt2 covers
some background material and related work. In .S8ctve

describe a set of lightweight compression techrighat are used
to quickly improve the physical design of the imeor data set.
Section 4 presents our optimizer-based decompressistem.
Section 5 contains our evaluation setup, including flat file

input system, and we give the results of our evalnan Section
6. We describe our conclusions in Section 7, andti@e 8

sketches avenues for future work.

2. BACKGROUND

In this section, we summarise some previous workhenuse of
column stores for analytic workloads [2,6,10,11] onder to
provide the context for the rest of the paper.

2.1 Lightweight Compression

Lightweight compressiolis a staple of column store physical
storage layers and has been described by [5,6] athdrs.
Examples of lightweight compression includeun-length
encoding and delta encoding These compression techniques
typically work on data of fixed-width types and addten
symmetricalin that compression and decompression have similar



computational complexity. They arkghtweight in that they
require less computation time than reading fromosdary
storage, or even from main memory.

Lightweight compression algorithms are common iducm
stores because the heterogeneous data layout i tereolumnar
layouts make such algorithms easy to apply. The starage used
by the algorithms typically includes actual valugsm the
column, which makes it relatively simple to extrdw values and
use them directly in query processing instead abd®ressing
the data to its full size. Because of the relayivegh performance
of the compression algorithms, column stores canpeess data
during execution to save I/0O bandwidth when spilliesults to
disk.

2.2 Extracts

Tableau is a visual analysis tool based on therBagstem [1],
which allows the user to create analytic queried aarratives
using a simple drag-and-drop interface.

For input, Tableau connects natively to a wide eaofjdatabases,
both relational and hierarchical. In addition tgpgorting a large
number of commercial and open source databasaspitonnects
to extractsof data, which are subset of the original datatisat
may have been filtered, sampled or rolled up.

These extracts are used in various workflow scesaincluding
off-line work, reducing the load on data warehoustsring of
data with third parties, filtering/projecting subsef the data, pre-
aggregating the data and supplementing databasgseither
perform poorly or lack useful functionality such @UNTD or
VEDI AN aggregation.

2.3 DataEngine

Tableau extracts were originally created using Firebird [14]

open source relational engine, but performance iderations
eventually led to its replacement with an in-hoasmponent, the
Tableau Data Engine (TDE).

We first described the TDE in [10]. It is a readyocolumn store
that has been optimized for use with the Tableawalization
environment. We chose to create our own componecause of
business requirements that could not be met by eadsting

commercial, academic or open source system, inafudiollated
strings, single file databases, 32-bit hardware|cutation

language semantics and Tableau’s NULL join semantic

We now provide a brief overview of the salient past the TDE
architecture to provide background for the maircaksion.

2.3.1 Query Plan Generation

The TDE expresses a query plan as a block-iteNabéchno-style

[8] operator tree with two styles of operatorspwil operators

process a block of rows at a time before passiegbthck on to

the next operator; stop-and-go operators must adlathe blocks

of their input before their output is available.eTquery processor
follows the optimization model of [3].

In the first strategic phase, the shape of the optimal plan is
determined. A rule-based component derives pragsefor all tree
nodes based on metadata and performs transforreasoch as
elimination of common sub-expressions, computatiand
filtering move-around, parallelism injection and peassion
simplification.

The second part of optimizatiotactical, is delayed until run-
time, where decisions can be made based on thal atdta. This
time property derivation happens on-the-go and banmore
accurate. In particular, we track minimum/maximumlue or
cardinality or nullability. While the arrangementt aperators is
not affected, their implementation can be optimizesed on
specific input properties. For example, an aggiegabperator
can choose a hash algorithm based on the sizesotret
attributes of the aggregation keys.

2.3.2 Compression

For historical and structural reasons, the TDEagierayer makes
a distinction betweercompressionand encoding of columns.
Compression in this parlance is traditional dictighcompression
with each column owning an associated dictionargt than
contain either fixed width dataaifray compression) or variable
width data fleapcompression). The main data column is always
fixed width and consists of either uncompressedassaindexes
into the fixed width dictionary or offsets into theap dictionary.
This architecture allows the query optimizer tosma about
compression and to optimize computation on compresata by
usinginvisible joins[5]

A second form of compression was included in thgial TDE
design, which operated only on fixed-width dataegénforms of
compression are calleghcodings Encodings are an abstraction
that externally appear as a paged array of fixetthwalues, but
are stored internally in a more compressed foriatodings are
concealed from the rest of the system behind \iitiarfaces that
present a paged interface to an ordered streamte$.lEncoding
and decoding is implemented behind these interfah@ing
insertion and byte range requests. Encodings ameardeally
neutral in that they do not know the type of the&entying data,
only its width. In the first release, the TDE oimyplemented run-
length encoding.

All compression and encoding is performed indepetidat the
column level, so there are no global tables to tgpda

2.3.3 Storage Constraints

One important usage requirement for a TDE datalsadeat the
user should be able to choose it in a file selactimlog, i.e. the
database needs to be represented by a singleWitéle this

restriction does not affect functionality of extiscdue to their
read-only nature, it adds a significant /O burddrcopying the
read-write internal format based on multiple colufites into a a
single file. Compression applied at the column lldvedps reduce
the total size and, thus, the cost of making thsveidable copy.

2.3.4 Hashing and Comparing

While the TDE's strategic optimizer determines #tricture of
the plan, the tactical optimizer makes run-timeiglens based on
the actual data being processed. One of its taske ichoose
algorithms for hashing and comparing used by séwmerators,
including joins and aggregation. String comparig@nformance
is greatly improved by having sorted string heap®se tokens
can be directly compared instead of comparing gtdantents.
This performance benefit is especially importantéhese unlike
many column stores (which only offer simple bineojlation) the
TDE must implement locale-sensitive collations, evhare even
more time consuming to compute. Hashing of stringst also be



performed in a locale-sensitive manner, and impasesmilar
computational burden.

Even with unique string tokens, hashing performasdeased on
the width of the data being grouped or joined. Altwiof 1-2
bytes allows the TDE to use direct hashing withnwls 64K-
element lookup table. With a width of 3-4 bytespeafect hash
function can be constructed, but wider data reguerpensive
collision detection. Minimising data width is, tleéore, an
important physical design goal for TDE columns.

The TDE has more leeway in type design than typiektional
stores because Tableau itself does not model gats tvery
precisely. In fact, Tableau only has Boolean, iategeal, date,
timestamp and locale-sensitive string types. Thisams, for
example, that the TDE can use any representatidikels for a
column that Tableau considers an integer. This tyesign
flexibility can in turn be used to improve hashfpanance.

2.3.5 Fetch Joins

The TDE can also usfetch joins[3] for many-to-one joins if
there is a single join column and the row id of iti@er table is an
affine transformation of the column value. This aypf join
requires no intermediate lookup tables and is tsebt join
available. Detecting when it can be applied impsoyein
performance significantly. This situation happensstnoften in
primary-key/foreign-key joins, and especially ircdmpression of
scalar dimensions via invisible joins.

3. ENCODINGS

In the first TDE paper [10] we listed creating nemcodings as a
topic for future work. After a review of the liure, we settled
on several simple encodings that are compatible thi¢ existing,
non-segmented storage model used by the TDE. Calrvgms to
reduce storage requirements for user extractsybutiscovered a
number of unexpected benefits along the way, whielwill now
describe.

3.1 Encoding Formats

While the encodings being described here are walink in the
literature, we would like to quickly explain theosige format of
each one to facilitate later discussion. This hedu#s been
carefully designed so that some simple header méatipns can
lead to semantically interesting column-level chemng

Each bit-packed stream starts with a header ofgdreral form
shown in Figure 1 followed by blocks of bit-packealues. The
bit-packed values are treated as unsigned valuésebgncodings.

The first 8 header bytes cache the logical siz¢hefstream to
make stream length queries perform well and to leasitiations
where the physical size of the packed data is fatiyan the
logical size. This happens frequently with bit-pagkschemes,
because bit fields must fit into an exact numbevytés.

The second 8 header bytes contain the offset tobitypacked
data. This allows the header to be resized withigttirbing the
bit packing.

0 |Logical Size

B |Data Offset

16 |Block Size | Encoding |Bits| width
24 |Header Data

Bit-Packed Data

Figure 1. Bit-Packed Header Format.

The third 8 header bytes contain the decompressiock size
(i.e. the number of values in the block), the emegdilgorithm,
the width of the data stream elements and the nuotheacking
bits. The block size is a multiple of 32 to enstinat the bit
packing ends on a byte boundary. A decompressiookbinay
also contain header information such as a runnaigl.t Each
physical stream only contains complete decomprasbiocks
(hence the need for the logical size field). Thenbar of values in
a decompression block is typically the same adblbek iteration
size of the query execution system so that onerdpoession call
is needed per iteration block.

The rest of the header contains encoding-specifia,dvhich we
will now describe.

3.1.1 Frame-of-Reference

The frame-of-reference header contains 8 byteolo the frame
value. The bit-packed values are added to this dramdue to
produce the uncompressed values.

3.1.2 Delta

The delta-encoding header also contains 8 bytetold the
minimum delta value. The bit field values are allttethis delta
value to obtain the next value. Each encodingloktarts with
the running total for that block so the data can doeessed
randomly as well as sequentially.

3.1.3 Dictionary

The dictionary-encoding header starts with 8 bygmstaining the
number of dictionary entries, followed by enough®pto contain
2/bits dictionary entries. This allows the diction#&o grow up to
the 27bits limit. Dictionary encoding is limited 215 values to
keep the dictionary in cache and make the commessiickoo
hash table implementation simple and fast.

3.1.4 Affine

Affine data streams are a simplified form of datecoding where
the bit width iszero or (equivalently) where the delta value is
constant. Each value can be simply computedahse = base +
row * delta

The affine-encoding header contains 16 bytes td heo signed
integers for the base and delta values. Againh&aeler reserves 8
bytes for both values even if the actual valuemareower. Affine
encoding does not require any bit-packed valuessatsl the bit
count to 0.

Affine encoding is similar to the virtual columnpresentation in
MonetDB [3] except that the values are physicabypanded a
block at a time instead of being computed in lifide advantage
of treating affine encoding uniformly with the othencodings is



that its applicability can be detected during thenpression stage
e.g. when a column contains sequential values.

3.1.5 Run-Length

Run-length-encoding headers have a different fothettconsists
of a header followed by runs represented by lengthé pairs.
The header contains the logical size of the straathtwo bytes
that contain the width of the two fields. Theséuea are fixed for
the entire stream.

3.2 Dynamic Encoding

The MonetDB/X100 system described in [6,9] demaiss that
lightweight compression can be used during quergcetion
because the compression routines are computatjoctadiap. We
have not implemented the patched variants of tlesmdings
because they require a segmented storage modelné&ded
another mechanism to solve the problem of insenaiges that
lie outside the range currently supported by tHarna encoding.

To accomplish this, we continually track statisfiosa column as
values are inserted. These statistics are simplegather,
consisting mostly of the value range and delta@aig any given
point, we can quickly determine the best of theilalie choices
of encoding for the column. We dynamically encdde ¢olumns
one block at a time, using the block values foolaimn to update
the column’s statistics before inserting the dalacl into the
column’s encoding stream. If the column insertsfdé.g. due to
representation limitations), we can consult thaugwol’'s statistics
and choose a new encoding. When all rows have pexessed,
we can also compare the current encoding with fitenal one
and convert to this optimal format if desired. practice, we
found that the encoding stabilizes quite quicklgncoding the
TPC-H [TPCH] I i neitem table at SF 1 made only two
encoding changes and the rewrites still performess Idisk 10
than writing the unencoded column.

This technique is vulnerable to data sequences dhat cause
constant re-encoding, but we have not investigaitegtions that
might trigger this problem. One approach would bedetect
excessive reformatting and fall back to unencodai dintil the
end. At that point, we could consult the finattistics and decide
whether it is worth encoding the column or leavingnencoded
as the I/O cost has already been paid.

3.3 FlowTable

Applying encodings require a full scan of each owiy therefore,
this functionality needs to be expressed in a plaa stop-and-go
operator. In the MonetDB/X100 project [6], encodimgppens as
part of theSave operator, which writes a table back into the
store. Later on, such a table can be scanned armbidg will
happen behind the scenes.

In order to leverage encodings in the TDE, we ekenthe
existingFl owTabl e operator, whose task is to turn a stream of
row blocks into a table. Note that encoding of eaolumn is
independenttherefore, the computations can be distributedsac
the available cores. This allows more processingigpoto be
substituted for memory and 1/0O bandwidth.

3.4 Encoding Manipulations

column. These manipulations can be advantageous for
downstream processing by reducing the size and lesihpof the
data. The speed of these transforms is a conseguehthe
formats used in the encoding headers as describedeaThe
encoding statistics can also be mined to determ&aéul column
level metadata. TheFl owTabl e operator applies these

manipulations as a post-processing step durirtguils step.

The unifying principle for all these manipulatioris that
lightweight compression makes it easy to transfah@ entire
compressed data set in semantically meaningful waie will
now describe these manipulations in more detail.

3.4.1 Type Narrowing

The headers for frame-of-reference, dictionary aaffine

encodings can all be modified to change the widtlthe data.
For example, if the column is a 4-byte integer omiuunder
frame-of-reference encoding, we can use the bithwahd the
base value to detect when the values can be reypeesby a 2-
byte integer. The header can then be edited tatepihe size,
width and base fields. The offset to the bit fieldta does not
need to change because the offset is stored incthaer.

These operations can be accomplished in O(1) timelfthree of
these encodings except dictionary encoding, wheseoperation
cost is proportional to the number of entries i@&2"bits). Note
that these run times aimdependenbf the size of the column.

Delta encoding embeds the running totals in eaobkb&nd run-
length encoding contains values in each pair, sgetfencodings
are not amenable to this type of header manipuatio is
possible, however, to decompose a run-length emcedéumn
into a value stream and @ount stream, perform the narrowing
operation on the extracted value stream and thleuildea run-
length stream with the original counts and the malues.

If a narrower type can represent a column, thendthenstream
operators may be able to produce a better hastidunihat does
not have collisions for aggregation or joins. Ikcameans that
later computations may produce smaller resultsuagied the
memory, disk and network footprint of the system.

3.4.2 Metadata Extraction

Encoding statistics can help cheaply derive pragerof the
underlying data and, thus, enable tactical optitiora. Delta-
encoding, for example, can indicate whether a colusnsorted.
Detection of sorted columns can be used to imptbeefficiency
of downstream operations such as aggregation, @idssorting.

Affine encodings can be checked to see if the delfa If so, the
column is not only sorted, but als@nseandunique which may
enablefetch joinsdownstream. Filtering the inner table of a join
can mask the applicability of a fetch join, becathe filter will
remove an existingenseattribute of a column (because it may no
longer be valid). IfFl owTabl e is used to build the inner join
table after the filter has been applied, its enegadiomponent can
detect the situation where the filter leaves aigooius sub-range
of the data and reassert thenseproperty, allowing a fetch join to
be generated. This situation is common with datensos, which
are often compressed and filtered to a range aml jthined back

Once a column has been encoded, there are some fagito the main query.

manipulations that can be performed on the headehange the
type of the data, or create a sorted dictionaryafarompressed

The encoding statistics can also be analysed termate the
cardinality of the column domain, the maximum anthimum



value of the column and — because the TDE usemsEnbtlues

for NULL - whether the column contains NULLs. These

properties can be used by downstream operatorsake actical
optimizations, or reported back to Tableau. Tablean in turn
use this metadata to drive choices in the Ul siehviaether to
represent domain values using colors, shapes er othrk types.

3.4.3 Encoding Becomes Compression

Accelerators [3] for string heaps help make smaihg heaps
distinct but an even better outcome is to have a sorteg,he
which means that its tokens are directpmparable The
accelerator also reduces the number of tokens én asd if it
succeeds in keeping the token count low enough, réduction
will result in dictionaryencodingof the tokens.

In this situation, the dictionary encoding entre® the set of
distinct tokens for the strings. Since the numbgsstrings is
small, we can sort them in a relatively short perad time. The
new tokens take up the same amount of space asritjieal

tokens and can be written back out to the dictipmsrcoding
header, with the result that the column now ha# lsomparable
and distinct tokens. Combined with type narrowitigs allows
us to optimize the representation of an intermedimmputed
string column in time proportional to the domaimesand avoid
touching the actual rows of the column — which bararbitrarily
many.

A dictionary-encoded scalar column can be conveited a
dictionary-compressed column by copying the enapdin
dictionary (which is just an array of scalars) imta@ompression
dictionary. The original encoding dictionary igthreplaced with
the compression tokens (again, narrowing themsirdd) and the
column is now a dictionary-compressed column witmimal
width. This can be valuable for scalar dimensisach as dates,
which have relatively few values, but expensivegkations (such
as extracting the month). Converting the columo atictionary-
compressed column enabl@wisible joins on the data if the
containing table is written out as part of an intgoocess.

A similar transformation can be performed with feaof-
reference encoding, with the caveat that the cosspe
dictionary may contain values that are not actuallthe column.
The frame value and the bit width determine theoahvelope of
integer values that are present in the columnhéf anderlying
type has the same bit ordering semantics as theedigtegers
used by the encoding process, thesodedscalar dictionary can
be generated from the base value and the numbleitsoin the
representation. The header can then be modifiecbtain the
unsigned tokens as indexes into this scalar diatyprBecause the
frame range defined an outer bound, we have nagtee that all
dictionary values are actually present in the colurout this
technique looks promising for compressing date aimeéstamp
columns, and may be the topic of future work.

We have not implemented this encoding to scalaticdiary

compression in th&l owTabl e operator because the existence

of non-string dictionaries is something that theergucompiler
needs to be aware of. This technique can, howé&eeemployed
by the more heavyweight operators (likkt er Col urm) used
during the TDE’s global optimization phase to regltiee run time
of that operationAl t er Col umnm can also apply the run-length
decomposition technique described in Sect.3.4.1g¢nerate
dictionary compression columns from the value stregreatly

reducing the optimization cost. This results incalar dictionary
compressed column with a run-length encoded tokkears.

4, DECOMPRESSION JOINS

Strategic query optimizers are typically oblivicaisout details of
the storage layer, such as data compression. Tzafres clear
boundaries of the component but may also limit iepfibn of
optimizations dependent on low-level propertiesiafa. For this
reason certain storage concepts are at times nibdelethe
optimizer to use.

Plan costing is one good example. Row sizes orageecosts of
reads or writes of data stored in different layoare made
available to allow for more precise estimationssdAl non-
standard storage concepts can be expressed byalspgrs of
columns, such as the sparse column set in Micr@&Qft Server
used to model the interpreted storage [13].

Below, we express decompression of data valuesnarmer that
permits the query optimizer to reason about it gigstablished
query optimization techniques. In this model, coesged
columns are expanded using joins against specidkkof tables.

4.1 Dictionary Tables

4.1.1 Invisible Joins

Dictionary compressedcolumns (that is, columns with a
secondary heap, as distinct from the dictioremgodedcolumns
of Sect. 3.1.3) can be introduced to the query plamg an
operator calledDi cti onaryTabl e. This table operator has a
column of the same type as the original, but tHarmao data has
been replaced with the set of unique tokens in teder. For
variable width data (e.qg. strings) this columnhis bnly one in the
table and it has a copy of the original column'seFor fixed
width data, the token column does not have a heaghe table
itself has a second column, which is simply a copthe original
column'’s fixed-width heap.

Length + String

NULL

Alaska

Delaware

New York

10 Washington

Figure 2. Invisiblejoin for a string column.

Expansion of this column can now be expressedfaseign key
join between the main table and the token columntha
Di ctionaryTabl e (see Fig. 2). Further, the strategic
optimizer can rearrange the plan by pushing filtexsd
computations on the column values down to the iside of this
foreign key join. In consequence, computations dre t
compressed data get expressed quite naturally #s obaa
traditional query plan without having to widen timer-operator
interfaces.



4.1.2 Tactical Optimization

Using the encoding manipulations above, there isv ran
opportunity for the run-time (otactical) optimizer to take
advantage of compression. The TD&i n operator takes a stop-
and-go operator as the inner relation, so onceptae contains
flow operators (likeSel ect andPr oj ect ) on the inner side of
these expansion joins, the flow needs to be méirrih usually
by employing theFl owTabl e operator. Fl owTabl e now
extracts metadata during its processing, includimg kinds of
metadata used by the tactical optimizer to decidenuthe join
algorithm.

Consider the common situation where a date coluas feen
dictionary compressed and a range predicate has &eglied.

Assuming the date column heap has been sorted rahge

predicate will produce a dense range of token wluem the

Di cti onaryTabl e, which Fl owTabl e can now detect. The
Joi n operator can in turn use this information to cloem

efficient fetch join instead of some form of haghiat requires
an additional table lookup per row.

Next, consider the situation of a string column tegring URL
requests and a calculation to extract the file resiten of the
request. This will produce a relatively small numbgstrings on
the inner side of the join, but the string functidbrary is
probably unable to estimate the resulting domaieadhof time.
The computation therefore produces a column wittlewtbkens
and an unsorted hedpl. owTabl e can now sort this small string
table quickly and minimize the width of the tokeatal If the
query then aggregates on this computation (e.gntoay the
number of requests for each file type) the aggregabperator
will be able to use a faster hashing algorithm kisato the
narrower representation.

4.2 Index Tables

4.2.1 Rank Joins

A similar “special table” technique can be usedeipose run-
length encoded columns to the strategic optimiZée table is
called anl ndexTabl e and consists of three columns: The
valug thecountand thestart The first two are extracted directly
from the column data and the start values are ctedpas the
running total of the count values.

This| ndexTabl e can be joined to the main table as before with
Di cti onaryTabl e, but in this case, the join is not an equi-
join. Instead, the join condition is a range pratkc

Index.start <= Outer.rank < Index.start + Indexrou

Once again, now that we have expressed the decesipneas a
join, we can push single column arguments downhw ihner
table (see Fig. 3). Predicates and computation$ waiv be
evaluated on the compressed data, with signifipenformance
gains.

Because the join is on the rank column, we havdemented a
new type of join operator calledndexedScan that translates
the range specifications directly into disk accesse
I ndexedScan will access the outer table in the order given by

Start

Count

L= T R S T == |

Fact Table

Figure 3. Predicate push-down on a Rank Join.

the inner table. This allows us to express rangepgkg simply as
a join in the query plan. As we also UdeowTabl e to produce
the inner table, we can apply the same metadatactixin and
type minimisation techniques to any computed colsinamd
present this enhanced metadata to the client of
I ndexedScan.

the

4.2.2 Ordered Retrieval

I ndexedScan also allows us to implement ordered retrieval of
out-of-order run-length values by sorting the inadexthe value
column. This access pattern enables us to use eard@or
sandwiched [Sandwich]) aggregation on columns dhatnot the
primary sort key. This technique must be used watte because if
the runs are too small, performance will be degitads we will
show in our results.

4.3 Other Optimization Concerns

Besides the benefits of new optimizations that caa apply
thanks to the nature of some encodings, the faat data is
compressed might have detrimental impact on then pla
performance if other rewrites are not applied cdhef

FI owTabl e is commonly used as the right hand (or inner) side
of a join operator. Hash joins usually exhibit rand access
patterns against this inner table, and not allefencoding types
have good random access performance. In particskeking
backwards in our run-length encoded columns reguiee
sequential scan from the start of the data str&erefore, during
strategic optimization we restrict encoding choicles the

FI owTabl e nodes on the inner side.

Furthermore, the quality of encodings is sensitivéhe order of
raw data. Therefore, operators that disturb orslech as sorting
or exchange, might affect how well data will be @ihed down the
stream and potentially increase /0.

To give a more concrete example, let us considgmple plan in
which we read a column of datieem disk and apply a filter to it.
Moreover, during extraction the column got dictioRa
compressed and the resulting colubate in the dictionary got
delta-encoded. Note that the tokens follow theioalgorder of
the dates and thus, the achieved encoding isesffici



Since we are dealing with an invisible join scemdretween the
denormalized table and the dictionary, the filtan de pushed
down to the dictionary. The values from the dictipncolumn
Date need to be decoded first to evaluate the filtepnedicate.
Then, the results have to be materialized usihgwTabl e to
build an inner side of a hash-join. The final eringds likely to
be of similar quality, because the filter removedubset of data
but did not change the order of values. Howevennié injects
exchange operators to parallelize the filter, thieo of blocks of
values gets disturbed and the resulting encodirghtrbe much
worse and lead to a physically larger column.

We identify situations of this kind and force theclkange
operator to use order-preserving routing, i.e. nemthe blocks
and output them in order [8]. Our benchmarks shoaveglatively
low, 10-15% overhead, associated with this additi@onstraint.

5. EXPERIMENTAL DESIGN

We performed two sets of experiments to assespdtfermance

of our new features. The first set of experiment®ives using a
high-performance flat-file parsing operator to driwur new

dynamic encoder, and measuring compression and datata
extraction performance. The second set of expetsnereasure

the performance of pushed down filter predicateth widexed

scans on an artificial run-length encoded data set.

We do not measure the performance of the dictioeapansion
as that was evaluated in the original TDE pape}.[10

5.1 TextScan

As part of our experimental setup, we used a texsipg operator

calledText Scan to produce a stream of uncompressed columns

with little metadataText Scan is a flow type operator, which
reads from a memory mapped byte stream and prodilioelss of
typed data. It attempts to perform type and coluame inference
if the schema is not provided, which can furthetuee the need
for user intervention, but it can also be giverchesna if one is
available. The development of this operator produs®me
interesting experimental results of its own, whicke now
describe.

5.1.1 Initial Approach

The first implementation ofext Scan was designed to evaluate
the text cracking process described in [7]. Theratoe was
originally given a text file and a list of columns parse. The
unparsed columns would just be cracked into sepaeat files
for later parsing. The file is assumed to be UTF-8.

The first step in the parsing process is to deteentine field and
record boundaries. A sample set of rows is tokehiasing a
given record separator (which defaults to end+wé)i Simple
statistical analysis is used to determine the feldarator.

Once the field boundaries have been determined,ctthemns
must be typed. A sample block of rows is selected gped by
comparing the results of parsers for each data tymee which
produced the fewest errors. The winning type passthen used
for the eventual scan of the entire text file. Thagsers are then
applied to the first row and if there were no esroit was
presumed that the flat file did not contain a headev and all
values were treated as data. If there were ertbes the values
were taken to be the column names. The schema eadkhrow
information can also be specified as inputs topduesing system.

5.1.2 Parallel Parsing

Because these column parsers were producing indepenputput
from a shared read-only state, it was a simpleanatt run them
in parallel on each block of rows. We were sugatito find that
the performanceegradedoy at least an order of magnitude under
parallel execution. Profiling the code showed ttie problem
was that the native parsers attached to each tppertoin the
TDE's extensible type system were using the C+mdsed library
to parse the fields. The standard library is lecsgnsitive and
each stream parse first needed to obtain and loskngleton
locale object. The lock contention for this objemimpletely
negated any gains from parallelism.

5.1.3 Scalar Cracking

To avoid this problem, we wrote buffer-orientedsaas for all the
different types in the system. These parsersighglyt written C

code and rely on no external state. With thesdangy we found
that parsing the scalar columns in the TPCiHhei t emtable at
SF-30 [4] on a four-core machine was comparabtbealisk read
bandwidth. This suggested that scalar parsing didneed to be
deferred because it could be performed while wgitar the disk.

5.1.4 String Cracking

This discovery naturally led us to ask whethemngtparsing could
be done at the same speed. To create a basetrfe@stvadded a
“compression” style where split strings were simplsitten to a
text file with quotation marks and end-of-line segtars. This is
approximately the same amount of I/O as used fidingra string
heap element consisting of a 4-byte header followgdthe
character data. The corresponding data streamsisted of a
series of ascending offset tokens whose deltas egual to the
length of the string itself. If these tokens wéed into a delta
encoder, the resulting data stream could be higblypressed.
For example, thd _comment column has a maximum string
width of 140 characters, so an 8-bit delta couldubed, adding
about 1 byte per row to the data.

Creating a string column in the TDE makes optiarsa of a heap
accelerator object, which maintains a hash tablalladtrings that
have been seen so far. This allows us to minitthizesize of the
heap for columns with small (< 2731) numbers ahgis and also
ensures that such string columns have distinctmkerofiling of

the import process shows that maintaining this liable appears
to be an execution “hot spot” when the number wifigs is small,

but performance of the entire import process datsppear to be
affected thanks to the gains in reduced disk 1Qe ahcelerator
gives up on hashing once the number of heap elasnpasses the
2731 element threshold.

5.2 Text Data

We conducted a number of experiments to judge énfpnance
and other properties of the combingext Scan / Fl owTabl e

system. For these experiments, we used the oafghe TPC-H
dbgen tool [4], at both SF-1 and SF-30. We also us@&5@B
text version of a 67M row internal testing databaseontaining
ten years of FAA on time flight data (“Flights”).

The only typical import operations that were notfpened were
sorting on a preferred attribute (e.y. orderdate) and
applying dictionary compression to date scalarsorti®y is
expensive but can sometimes help filtering and eggfion
performance. Dictionary compression of dates caprove the



performance of certain date calculations (e.g. mmaxtraction)
by performing the calculation on the date domaid ining the
results to the main query via an invisible join.tBmf these
operations could be performed as a further desgimaation if
the workload suggests it.

Execution speed was only measured for the two l&igles (both
labeled “Large Tables” in the Figures.) Both of dbdfiles are
larger than the disk cache of the test machinghsme were no
cache “warm up” issues. The most important difieezbetween
the two files is that Flights does not have a lamyedom string

column likel _coment , but this is more typical of the data sets

actually analysed by our customers.

The smaller tables from TPC-H SF-1 were used tochestnate
the efficacy of the metadata extraction procesgyTdre labeled
“SF-1 Tables” in the combined Figures.

5.3 Run Length Data

To evaluate the performance of indexed scans, veated

artificial tables containing two run-length encodedlumns

(calledprimary andsecondary. The columns consist of uniformly
distributed random values in the range [0,100), #mal tables

were sorted ascending on both columns. We prepgamedables,

one with 1 million rows and one with 1 billion rovend ran

aggregation queries of varying selectivity againisis data.

Because of the size of the data sets, both coluvens run-length

encoded and the entire data sets easily fit in mmmory.

6. EXPERIMENTAL EVALUATION

6.1 Parsing Performance

We ran the import process for both SFt3thei t emand Flights
5 times on an Intel® Xeon® E5620 single chip maehianning
Windows 7 and averaged the run times. We meadimed for:

¢ Disk bandwidth (summing all the bytes of the tebef)f
¢ Tokenizing the data (finding field boundaries)

e Splitting the file into column files, but not pangi

e Parsing scalars only (numbers and dates)

e Parsing all columns.

Where applicable, we also ran the tests with heaplaration on
and off, as well as with encodings on and off. Tasults are
displayed in Figure 2.

Lineitem

Accel Operation Flights

yes  Banawin [N ]
Tokenise N —
soit ]
All
Scalars
no All
0 500 1000 0 200 400 600 800
Dwuration (s) Dwuration (s)
Encoded yes . no

Figure 4. Split Time versus Compression Time.

By comparing the encoded and un-encoded resultthéofAll”
and “Scalars” scenarios in Fig. 4, we can seeithatl situations

were it was applicable, the system performance withoding
turned on was either comparable to or superiohégperformance
without encoding. This result holds whether or noéap
acceleration is in use.

Moreover, by comparing the adjacent “Split” and I"Aars, we

can see that the system performance with both émgoand

acceleration was comparable to simply splitting flae file into

separate text columns for later parsing, which shtivat there
was no benefit to delayed parsing on these data $be scalar
only parsing also splits the strings for later pays which

similarly appears to provide no additional benkéte.

Encoding and acceleration provide other importaenelfits
beyond eliminating deferred parsing costs, which wit now

quantify.

6.2 Storage

Our original TPC-H SF-1 database from [10] was alG@0OMB.
Applying the new encodings to the columns redubessize of
the database by about 140MB.

We did not have a version 1 database for TPC-H GFs8t we

show the logical and physical sizes of thenei t emtable for all

combinations of encoding and heap accelerationign = The

total disk savings from the original 26GB flat fike 22GB (84%)

and the savings from the logical size (i.e. theenneded size) is
7.5GB (63%).

The version 1 Flights database with only run-lergtboding and
dictionary compression was 4.1GB. Figure 5 alsowshthe
logical and physical sizes of this table. The tdiak savings from
the original 25GB flat file is 21GB (84%) and thavegs from
the logical size is 15GB (85%).

Accel flights lineitem
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Storage Storage
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Figure 5. Compression Savings.

The top section of Fig. 5 shows the effects of haegeleration
without encoding. The effects are more pronounaadHights
because all of its string columns have relativehalt domains.
By contrast| i nei t emconsists mostly of _conment , which
is too large for the accelerator to compress dffelst The
accelerator is designed to be small and fast fomgon usage, but
is not designed to scale and it is doubtful tha 88% disk
savings that would result would be worth the ex@acaused by
heap collision comparisons.

Moreover, Fig. 5 breaks down the contribution oftedype of
encoding to the total savings. This shows thafigeiity of the
TPC-H data provides a number of opportunities fdiine
encoding. One notable example is tbhecust oner name



column, which consists of a set of unique strings/ith the same

length. Each string takes up the same amountaufesip the heap
so the tokens are equally spaced, which the systatines and

encodes accordingly. For systems that store fixemlthw
CHAR( N) style strings, this could be an important sourfcgpace

savings when such strings are unique, because &finoding has
constant storage requirements.

The benefits of reduced storage footprint exterrdubhout the
entire storage hierarchy. At one end, compressibectevely

increases memory bandwidth [6] by trading off CR-aurces for
memory latency. At the other end, smaller storaggiirements
reduce network transfer latency for data set uparatidownload.

6.3 Heap Sorting

Another operation we were able to perform during garsing

stage at no discernable performance cost was ttiagof string

heaps when the column was dictionary encoded. Sib&estring

heap tokens are not dense (being offsets insteadlexes), they
typically end up being dictionary encoded if thardin is small.

Figure 6 shows the extent that dictionary encodazm be

leveraged to improve the generation of sorted gthieaps for SF
1 tables as well as the SF-30 lineitem and Flitdittes.

Note that with no encoding, there were a totaiaf forted heaps
in the table set (the blue bars in the figure), thgodue to the
TPC-H data generation algorithm or other accideMéth

encoding on, however, all string heaps are sortezb one
(I _comment ), which has a large domain with low duplication.

Table

customer [l

lineitem
arders
part

region .
supplier [l
]

SF-1 Tables

flights

Large
Tables

lingitem

0 5 10 15 20
Sorted Heap Count

. no YES
Figure 6. Number of Sorted Heaps.

Sorted heaps improve query performance by coneersining
comparisons to integer comparisons. The resultsvisha here
demonstrate that this benefit can be realized fanymstring
columns at no significant latency cost during theding process.

6.4 Metadata Extraction

The encoding statistics enable the extraction afiumber of
metadata properties. Figure 7 shows the numberxthated
metadata properties for the full set of tables,hbuaith and
without encoding active, and broken down into teed all SF-1
tables and the two large tables. Heap accelerat@mturned on
for these tests.

Encoded

Many of these properties were not even detectel @iicoding
off and the few that were detected owe their d&tacto
fortuitous circumstances such as the string daitagbieserted in

order or as a side effect of the accelerator’'sssizg (e.g. domain
cardinality.)

As we have shown in Sect. 6.1, this metadata waa®d by the
system with no latency costs. The extracted medackat then be
used by both the TDE to improve query performanue lay the
Tableau visual system to enhance the analytic expes.

Property SF-1 Tables Large Tables
carcinaiy N I
dense
aisinc | I
max-value JJ] 1
min-value I I
not-null
ordered
unique
o 20 40 60 0 20 40 60
Extracted Property Count Extracted Propery Count
Encoded . no YES

Figure 7. M etadata Detected.

6.5 Minimal Representations

The use of minimum width representations for ssatard tokens
is another important optimization. When values havi@imal
widths, the system can choose better hashing #igasifor joins
and aggregation. In Fig. 8, we can see that altweetquarters of
the string columns had their token width reducednfthe default
width of 8 bytes, often down to one byte. This ¢aean the
difference between using an imperfect hash functisith
collision detection and using a perfect hash, @nex fast direct
hash during joins and aggregation.
Width flights

1

lingitem

| |

o 10 20 0 10 20

Column Count Column Count

. no
Figure 8. String Token Width Reduction.

A similar transformation can be performed on integelumns.
Integers are parsed with a default width of 8 hytmst often
contain numbers from a much smaller domain. In Bigwe can
again see that about three quarters of the integleimns had
their width reduced, often down to one byte, intliga that the
values are in a very small range near zero.

Encoded YES

These representation transformations were achiewgtobut any
additional import latency costs over simply spiigtithe file.
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Figure 9. Integer Width Reduction.
6.6 Filtering

To test the performance of indexed scanning, weharfollowing
query over both run-length encoded tables:

SELECT | ndex, MAX( O her)

FROM t abl e

WHERE | ndex > (100-sel ectivity)
GROUP BY | ndex

I ndex is one of the two integer sort columns { mary and
secondar y) whose run-length encoding index we are using and
O her is the one we are not filtering.

To evaluate the indexed table operator, we testeghérformance
of three plans:

1. Scan => Filter => Aggregate
2.
3.

Index => Filter => IndexedScan => Aggregate
Index => Filter => Sort => IndexedScan => OrdAggr

Index Column

Primary Secondary

1 Million Rows.
Seconds

1 Billion Rows.
Seconds

i 20 40

B0 B0 100 0 20 40 60

Selectivity Selectivity

Fillered Scan [ Fitiered Index B sorted Filtered Index

Figure 10. Indexed Filter Performance.

The first plan is a control, which fulfills the qyeusing the
existing system. The second plan applies the fitbethe index,
but relies on hash aggregation. The third plan stststhe index,
before scanning to allow the use of ordered aggicaga

Query Plan:

We ran all three plans against both tables foerfikelectivities
between 0 and 100. Each plan was run 12 timegwhextremes
were discarded and the remaining times were avdrage

As can be seen in Fig. 10, the plan that filters thn-length
encoding index outperforms the other two plans iyua a factor
of two when the filtering is on the primary soryke

We can also see that this plan gives the best npeafice for
filtering the secondarysort column on the larger (1B row) table
by nearly a factor of three. This is because weagply a faster
ordered aggregation to the secondary sort columen ¢hough
the table was not originally ordered on this column

The only case where the sorted and filtered indar poes not
outperform the other two plans is when filtering thecondary
sort column on the smaller (1M row) table. In thise, the run
lengths of the secondary encoding are only aboQtra®s long,
and the system ends up processing many more srialksh
which degrades performance past the point whereottdered
aggregation can compensate.

7. CONCLUSIONS

In this paper, we described and evaluated varioechanisms for
operating on compressed data in the Tableau Dagm&n These
mechanisms can be used to significantly improvepréormance
of both data import and query execution operations.

The first mechanism consists of a novel set ofriepkes for post
processing an encoded column without modifyingrtien body
of the column. As part of the encoding process,alge extract
metadata that can be used for later tactical opétigns during
query execution. We have demonstrated that thebaitpies can
be used to significantly reduce storage requiremeand
accumulate valuable metadata during thess loadintpbfiles

without degrading performance.

The second mechanism introduces a new pseudo-tisieed

from a run-length encoded column and a correspongmn

operator that can be used to express decompressiarjoin in a
query plan. We have demonstrated that traditioqingzation

techniques of predicate pushdown can be used tooirapthe
performance of a single-threaded filter and agdeegaery by a
factor of two when filtering primary sort keys. Shiesult can be
further extended to secondary sort keys if the seéary run
lengths are larger than the block iteration size.

As part of our test process, we introduced a newfile import

operator for fast reading of large, well-designednfatted flat
files with latency comparable to that required doty tokenising
and splitting the text files. This initial imporesign should allow
fairly responsive exploration of the data set withmcurring any
loading penalty beyond what was already required.

8. FUTURE WORK

Previous uses of parallel execution in the TDE heentered on
multiple queries, sorting and data flow operatorschs as
Exchange [8]. Distributing the processing of independent
columns across multiple cores in th&extScan and

FI owTabl e operators is new form of parallel processing in ou
execution engine. Our results suggest that therg Ipeaother
places in column stores where work on independeluimmns can
be easily and effectively parallelized with minimal



synchronisation overhead. In the future, we intémdconsider
more uses for parallel computation that operaténolependent
columns.

One possibly interesting use caselfodexTabl e occurs when
it is applied to a sorted date column. A common lydita
calculation on dates is to roll them up to a higlerel (e.g.
rolling a date up to the start of the month or tedane upto the
start of the hour). If this roll-up calculation performed on the

I ndexTabl e , the computed result can then be aggregated on

the rolled up date using N( st art) andSUM count ), which
converts the original index on the raw date to on¢he rolled up
date. In the future, we hope to investigate usimg technique for
implementing parallel ordered aggregation on roligddates (or
any other order-preserving calculation) by pantitig the index
range and running the scan for each partition separate core.

The cost of rewriting a run-length encoding maywmeth paying
if the number of blocks is small compared to tHedet of data in
the column, but we have not investigated or quigatithe use of
this technique.

Because of its read-only, single file database &yrthe TDE is

restricted by design from taking full advantagetloé cracking

approach. In spite of this, we would like to findys to extend it
to be able to reference external flat files anduilebthe database
when the file changes. This would require a repgicicacost, but

the user is most likely willing to incur this cdsthave up-to-date
data. Work along these lines may help us to finglsita integrate
other aspects of database cracking techniquesibposader user
control so as to minimise unexpected O costs.
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