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Abstract

Minimization of disclosure risks is a key challenge in publicly avail-
able visualizations that can potentially reveal personal information.
Such risks are inherently dependent on the amount of information
that adversaries can gain by manipulating visual representations
and by using their background knowledge. Conventional risk quan-
tification models proposed in the field of privacy-preserving data
mining suffer from a lack of transparency in letting data owners
control privacy parameters and understand their implications for
disclosure risks. To fill this gap, we propose a visual uncertainty
model for letting data owners understand the relationships between
privacy parameters and vulnerable visualization configurations. Our
main contribution is a probabilistic analysis of the disclosure risks
associated with vulnerabilities in privacy-preserving parallel coordi-
nates and scatter plots. We quantify the relationship among attack
scenarios, adversarial knowledge, and the inherent uncertainty in
cluster-based visualizations that can act as defense mechanisms. We
present examples and a case study to demonstrate the effectiveness
of the model.

1 Introduction

We live in an era when the need to protect personal data against
potential adversaries is one of the biggest socio-technical challenges.
To develop defense mechanisms against attacks, data owners have
to carefully evaluate disclosure risks involving publication or visu-
alization of potentially sensitive data on online platforms. The im-
plications of disclosure risk and adversary’s background knowledge
have been studied in depth [36] in the field of privacy-preserving
data mining. However, privacy-preserving data visualization being
a nascent field [27], no rigorous methodology exists for analyzing
how visualizations can ensure disclosure risk is minimized.

The amount of information that can be inferred from a privacy-
preserving visualization is not just a function of the underlying data
model, but it also depends on the visual representation. For example,
the k-anonymity model of privacy combines a minimum of k records
belonging to the quasi-identifier group (attributes when combined
can identify an individual, like age, sex, zip code, etc.) into one
cluster for protecting disclosure of individual records. In privacy-
preserving parallel coordinates and scatter plots, k-anonymized clus-
ters are displayed as trapezoids or rectangles instead of lines or
points (Figure 1). But precise borders of clusters divulge informa-
tion about individual records. If adversaries already know that an
individual’s data exists in the visualization and know any single data
point, they only have to make a limited number of guesses to know
both coordinates of the record. Previous research had demonstrated
that purely data-based metrics, such as k-anonymity are not sufficient
for understanding the degree of anonymization in a visualization [9].

Visual uncertainty [8], which is the inherent uncertainty that
stems from the visual mapping process between the data space
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Figure 1: Illustrating the k-anonymity model of privacy preservation
applied to cluster-based visualizations using pixel binning [11] that en-
sures at least k records belong to a group (where k = 2). Cluster edges
represent data points and are more vulnerable to disclosure than the
non-edge points, shown by dotted lines and points.

and the screen space of limited resolution, can act as a defense
mechanism for confusing adversaries and reducing disclosure risk
probabilities. The merits of integrating uncertain data models and
privacy models have been studied in the data mining community [1],
but such analysis is absent in privacy-preserving visualization. To
fill this gap, we build a visual uncertainty based model for analyzing
disclosure risks from a visual perspective, and in a manner that is
transparent enough for data owners to understand the dependency
between privacy parameters and visualization configurations.

The contributions in this paper can be summarized as follows:
1) identify the useful sources of visual uncertainty that can act as
defense mechanisms against adversarial attack scenarios, 2) develop
a model for transparently evaluating disclosure risks associated with
cluster-based visualizations, and 3) demonstrate how a data owner
can control and configure the privacy parameters of a visualization,
by accounting for disclosure risks in the presence or absence of
adversarial background knowledge.

2 RelatedWork
In the field of privacy-preserving data mining [2], the goal of the
k-anonymity model [37, 38] is to prevent re-identification by linking
quasi-identifiers that co-exist in public and private databases. This is
done by making k records identical to each other (Figure 1) and thus
preventing identity disclosure as an adversary is unable to identify a
particular individual. The k-anonymity model has its shortcomings
for preventing attribute disclosure, where the identity of an individual
is linked with sensitive values of an attribute (e.g., disease name
as cancer). The field of privacy-preserving data visualization [7,
11, 39, 40] has adapted and extended models from the data mining
community for striking a balance between privacy gain and loss
of utility in anonymized visual representations. However, with the
exception of the work by Chou et al. [6], which analyzes effects of
perceptual masking of graph visualizations, relatively less attention
has been paid to understanding the vulnerability and disclosure
risks in a privacy-preserving visualization. This is important for
understanding how such visualizations can be attacked and for data
owners to get guidance on privacy parameters which guarantee a
satisfactory level of non-disclosure guarantee.

Metrics like l-diversity [29] and t-closeness [25] have been pro-
posed for analyzing attribute disclosure risks in privacy-preserving
data mining. In this paper we restrict our scope to analyzing risks
associated with identity disclosure, as that is a first step towards



ensuring disclosure risk in any form is minimized, and focus exclu-
sively on the visualization adaptation of the k-anonymity model. In
the context of privacy-preserving visualization [11,13], k-anonymity
is achieved by the k-member clustering algorithm [3] that has been
adapted based on screen-space metrics [10, 12]. The analysis pro-
vided in the work reported here is based on the axis-pairwise cluster-
ing approach applied to both parallel coordinates and scatter plots.

In our previous work, we had examined a number of scenarios
where visualization techniques might be used by adversaries to
violate data privacy [13], implying that new methods need to be
developed for minimizing disclosure risks, which is the focus of
our work reported here. While analysis of disclosure risks [30, 36]
has been studied in the context of databases, our focus is to exploit
uncertainty in the screen-space to defend against attack scenarios.
Uncertainty in the screen-space, or visual uncertainty [8] is a new
perspective to deal with the uncertainty problem in visualization.
So far, most existing work in visualization relates to data-space
uncertainty (e.g., [21, 31, 35]) and uncertainty involving geometrical
primitives, like iso-surface rendering [32]. The conceptualization of
visual uncertainty takes communication of information into account
and looks at both the encoding and decoding aspects of uncertainty
on screen. The latter is similar in principle to the idea of uncertainty
due to perception [33] and to the differentiation between input and
output uncertainty [19]. Study of the sources of uncertainty can
help data owners and visualization designers refine the visualization
output for effective privacy preservation.

3 Visual Uncertainty Vs Disclosure Risk
Sources of visual uncertainty in cluster-based, privacy-preserving
scatter plots and parallel coordinates can act as a defense mechanism
against adversarial attacks. In this section, we describe the attack
scenarios and our visual uncertainty model.
Attack Scenarios: Once data is anonymized, the main threat to
privacy is the risk of re-identification [16, 24] of either the sensi-
tive attributes or the individuals associated with them. When an
adversary is able to learn about individual values of quasi-identifiers
or sensitive attributes, this type of attack is categorized as attribute
disclosure. In privacy-preserving visualization, where clusters have
edges representing data points (Figure 1), those are particularly vul-
nerable to this type of attack. On the other hand, continuous cluster
edges across different axes can lead to disclosure of multiple at-
tributes and potentially reveal the identity of an individual, leading to
identity disclosure. These disclosure risks are affected by how much
an adversary knows about the data. Two kinds of re-identification
scenarios [22] can be imagined based on the background knowledge
of the adversary. The first one is called prosecutor re-identification
scenario, where an intruder (e.g., a prosecutor) knows that a partic-
ular individual (e.g., a defendant) exists in an anonymized database
and wishes to find out which record belongs to that individual. In
the second one, known as the journalist re-identification scenario,
an adversary tries to re-identify an arbitrary individual. The intruder
does not care which individual is being re-identified, but is only
interested in being able to claim that privacy breach is possible. We
describe how these scenarios affect disclosure in privacy-preserving
visualization in later sections.
Visual Uncertainty as Protection Against Disclosure: We follow
the classification of causes and effects of visual uncertainty described
by Dasgupta et al. [8]. Figure 2 describes how sources of visual
uncertainty can act as a defense mechanism and how adversaries
can try to exploit vulnerabilities, causing unintended disclosure of
attribute values or records. We describe these sources below:
Cluster configuration: With or without any background knowledge,
an adversary can analyze internal configurations of clusters, such
as: determining the number of data points in a cluster, finding
connections among them, determining if a specific record is in a
particular cluster, finding coordinates of a two-dimensional record,
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Figure 2: Illustrating the relationship between adversarial attack sce-
narios and sources of visual uncertainty in cluster-based parallel co-
ordinates and scatter plots. Uncertainty due to cluster ranges and con-
figurations helps in privacy-preservation when an adversary attempts to
gain knowledge about the data at a lower level of granularity than what
is shown, in case of journalist re-identification scenario. Uncertainty
due to overlaps and split helps in privacy-preservation when an adversary
attempts to determine the cluster membership of a known data point
in case of the prosecutor re-identification scenario. These scenar-
ios may not follow a particular sequence and one scenario can lead to
another.

and so on. It is not difficult to combine such basic attacks with
acquired knowledge to enable complex attack actions, for instance,
given a disclosed value of a record (i.e., an end point on an axis),
find all other values of this record (i.e., all end points of this line; or
given a disclosed line in a cluster, find all other lines in the cluster.

Cluster overlaps: If an adversary knows that a certain data point or a
record exists in the database in case of a prosecutor re-identification
scenario, overlaps can make it difficult for them to identify which
cluster that entity belongs to. In absence of such a background
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Figure 3: Illustrating different cluster configurations. From left to
right, a cluster can be defined by: all edge elements, a combination of
edge and pivot elements, and also no edge element when k >= 4. Edge
elements are shown in blue, pivot elements in red, and free elements in
green.

knowledge, overlaps can also confuse the adversary if a data point at
all exists or not. Both of these cases thus lead to identity uncertainty.

Cluster splits: Once adversaries find out a point on an axis, they
would want to find the point on the adjacent axis. Due to axis-
pairwise clustering [11], clusters appear to be non-contiguous and
it can be difficult to trace the path of the record across different
axis-pairs (Section 5). However the splitting points can also reveal
locations of data points and lead to attribute disclosure.

Cluster range: Cluster range causes precision and granularity uncer-
tainty which have to be overcome to gain knowledge about number
of records per cluster (which is at least k) and lack of spatial accuracy
which has to be overcome to know the exact coordinates of a point.
Exact coordinates of points can also be revealed by cluster splits
between adjacent axes, for which traceability uncertainty needs to
be overcome.

4 Uncertainty Due to Cluster Configurations

A two-dimensional cluster configuration (Figure 3) in scatter plots
and parallel coordinates is defined by the pixel coordinates of the
data points within the cluster. A pixel coordinate in scatter plots
is represented by a point, while in parallel coordinates, it is a line,
by the point-line duality principle [20]. For the sake of clarity, we
refer to the points/lines as elements within the cluster. The shape of
a cluster in parallel coordinates can be a quadrilateral or a triangle
and the same in scatter plots is either a rectangle or a line. In case
of triangular clusters, the uncertainty is very low, since coordinates
of the two borders or end-points are always known. Thus k = 2 has
no anonymization effect in case of triangular clusters. In case of
numerical dimensions, the probability of occurrence of quadrilateral
clusters is much higher than triangular or linear ones. In this section,
we study the orientation of the elements within clusters for different
values of k, how they cause different types of uncertainty and their
relation to privacy for different values of k.

4.1 Different elements in a cluster

Location of the elements within the cluster determines the uncer-
tainty associated with them. We define the different elements within
the cluster as follows:
Edge elements: In parallel coordinates these are the lines connect-
ing two pairs of corner points: they can be either the borders or the
diagonals. In scatter plots these are the corner points. These are
marked in blue in Figure 3. These are most vulnerable to disclosure
as one of the coordinates of the corner points is always known to the
adversary.
Pivot elements: In parallel coordinates these are the lines that con-
nect corner points to free points. In scatter plots these are free
points located on the edges. These are marked in red in Figure 3.

k=2

k=3

k=4

Figure 4: Base configurations in a) parallel coordinates on which the
configurations for higher k are based upon. Arrowheads denote edge-only
configurations, while others are mixed edge configurations.

These are less vulnerable than the edge elements, as only one of the
coordinates is revealed by the visualization.
Free elements: In parallel coordinates, these are the lines that con-
nect a pair of free points. In scatter plots, these are the non-corner
coordinates. These are marked in green in Figure 3. These have the
highest degree of privacy as they can be located anywhere within the
cluster and both coordinates are difficult to guess. In triangular or
linear clusters, free elements can be located only on one of the axes,
therefore the uncertainty is much lower as one of the coordinates
is always known. Depending on the value of k, a configuration
can be defined by only edge elements, a combination of edge and
pivot elements, or only pivot elements. These are also shown in
Figure 3. In the following sections we define and quantify how
different configurations can be formed by the cluster elements.

4.2 Base Configurations
To define a cluster configuration minimally, the edges or the corners
have to be defined first. We term those cluster configurations as
base configurations, which are concerned with the orientation of
edge elements, and from which others can be derived. Base con-
figurations (nbk ) for k = 2, k = 3 and k = 4 are shown in Figure 4.
When the number of edge elements is equal to k, we call the config-
uration a edge-only configuration. Otherwise, it is either a mixed
edge configuration, made of edge elements and pivot elements or
for k >= 4 there can be pivot edge configurations made of edge
and pivot elements. For triangular clusters, there can be only one
edge-only configuration. The following analysis therefore, applies
to quadrilateral clusters.
Edge-only configuration: Configurations that are formed by only
edge elements. Let the number of possible edge-only configurations
for a certain k be nelk . For k = 2, nelk = 2. For k = 3, there can be
four additional configurations as shown in Figure 4 and For k = 4
there is one added configuration as all the edge elements can form
edges. For k > 4, there cannot be any new edge added, so nelk = 7.
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Figure 5: Illustrating derived configurations based on edge-only con-
figurations for k = 2. The dotted red lines represent the possible pivot
edges that can be added and the dotted green line denotes a free edge
that can be added, giving a total of five degrees of freedom for a derived
configuration.

Mixed edge configuration: In a mixed edge configuration, two
pivot elements can define an edge/corner while the other edge/corner
consists of an edge element. Since a minimum of three elements are
needed, for k = 2 there is no mixed edge configuration. For k = 3,
there can be four different possibilities for a one-edge configuration
and four more, for a two-edge configuration, giving a total of 8
mixed-edge configurations (nemk ). These are shown in Figure 4.
Pivot edge configurations: Configurations where no edge/corner
is formed by an edge element but only by the pivot elements are
referred to as pivot configurations (nepk ). These configurations have
a higher level of privacy as in absence of real edges, there can be
many different possibilities for connection among corner and free
points. Pivot configurations are only possible for k >= 4 and their
structure depend on the number and distribution of free points.

Let the number of free points be f , the number of data points
within a cluster be k, and the number of corner points on each side
be 2. The maximum number of free points possible for any k is
given by fmax = 2(k− 2) = 2k− 4. Figure 6 illustrates how pivot
configurations are built from free points in parallel coordinates. Let
p and q be the free points. If they have to define the corner points,
then they can connect with either the top corner point or the bottom
one on the other axis: lines from p and q either intersect or do not.
The same argument applies to r and s and this is how the false edges
denoted by the dotted lines are formed. This denotes an ordered
selection of free points on each axis, the order (pq in the left image
and qp in the right image) being the direction. A minimum of 4
free points are needed to define a pivot configuration and from the
formula of fmax, we can deduce that pivot configurations are not
possible for k < 4. The number of possible pivot configurations
when k = 4 is thus given by the number of possible selection of two
points for each axis, that is 2!∗2! = 4. For higher k, this is similar to
a combinatorial problem when we have to select n different things,
taken r at a time and the order matters. Here n refers to the free
points, that is f and r refers to the available locations, i.e., 2. To
define a pivot configuration, the minimum number of free points on
one axis is 2 and so the maximum number of free points on the other
axis is fmax − 2. The total number of pivot configurations is thus
given by:

nepk =

fmax−2∑
i=2

P(i,2)∗P( fmax −2− i,2) k > 4 (1)

The total number of base configurations is given by the sum of the
edge-only, mixed and pivot edge configurations.

nbk = nelk + nemk + nepk

4.3 Derived Configurations
Derived configurations are those that can be constructed from the
base configurations for k = 2,3,4 as the added elements become pivot
elements or free elements. The pivot elements have four degrees of
freedom: they are attached to any one of the four corners. For the free
element there is an added degree of freedom, giving a total of five
degrees of freedom for a derived configuration. For example, if k = 5,
a configuration can be built with an edge-only configuration with two
edge elements (these are the two possible edge-only configurations
for k = 2). Each of the additional three elements have 5 degrees of
freedom each, and therefore total number of possible configurations
with two edge elements is 2∗3∗5 = 30. The formation of a derived
configuration from a edge-only configuration for k = 2 is shown in
Figure 5.

Now let us generalize the formula for any k. If the number of
edge elements is i, the number of non-edge elements is k− i. From
the discussion above, the number of derived configurations (ndk ) is
given by:

ndk =

kmax∑
i=2

nbi ∗ (k− i)∗5 nbi = neli + nemi + nepi (2)

where kmax = k if k< 4 and kmax = 4 if k => 4. The factor of (k− i)∗5)
is a multiplicative factor that gives the configurations for added pivot
elements and free elements, without adding edge-elements.

The total number of possible cluster configurations is given by:

nck = nbk + ndk

4.4 Useful Uncertainty
In this section we quantify granularity uncertainty caused by cluster
configurations and also look at the potential reduction in uncertainty
about a configuration from visual artifacts. The most fundamental
metric for analyzing the disclosure risk within a cluster is the number
of data entities in the cluster. k> 1. One could assume that all records
have equal probability to be identified, the risk for a specific record
Li to be identified is thus:

P(Li) =
1
k
, i = 1,2, . . . ,k

In practice, this almost equates to a scenario where k records are
put into a bag, and an adversary can pick one record out of the bag
randomly. This may be an over-simplification in analyzing the risks
of cluster-based parallel coordinates and scatter plots, because, to
know the connection among the elements within a cluster, or in
other words, all the two-dimensional coordinates, an adversary has
to guess the correct configuration, i.e., the orientation of the records
within the cluster. The probability of a correct guess is given by the
following equation:

P(ck) =
1

nck

(3)

4.5 Disclosure Risk of Cluster Configurations
Uncertainty about a cluster configuration can be reduced from the
knowledge of free points. Here we quantify the disclosure risk of
particular cluster configurations due to knowledge about free points.
If the adversary knows that the number of free points on one of
the axes (the jth axis in the following equation) is zero, then there
have to be real edge elements that define the edges of the cluster.
This would imply that the configuration is edge-only as no pivot
configurations or mixed edge configuration are possible. If c j

k is a
cluster on the jth axis, then it follows:

P(c j
k | f

j = 0) =
1

nelk
since nepk , nemk = 0 (4)
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Figure 6: Illustrating how free points define false edges. The dotted
lines represent false edges. For each pair of free points, pq or rs, there
are two options: either they cross or do not cross. There are thus two
ways for each free point to be associated with a corner point: top or
bottom. This denotes an ordered selection of points for defining a false
edge.

From our computation we found that for increasing k, the possible
number of edge-only configurations remains constant at seven and
thus poses a higher risk than the other two types of configuration.

If an adversary knows that the number of free points is non-
zero but less than two on any axis, then there cannot be a pivot
configuration, because a minimum of two free points are needed to
define both edges of a cluster, as discussed earlier in Section 4.2.
Thus the number of possible configurations is given by the following
equation:

P(c j
k | f

j < 2) =
1

nelk + nemk

since nepk = 0 (5)

The increase in number of pivot configurations is much steeper
than that of mixed-edge configurations as k goes higher than 6. In
case of pivot configurations, although an adversary can tentatively
guess a configuration from the distribution of free points, the con-
nections among those points and the precise location of those would
still be unknown in most cases. Even if the location of the free points
were revealed by the visualization itself, the configurations do not
reveal information about the connection among the free points. So,
the uncertainty reduced due to analysis of cluster configurations,
would be mostly restricted to knowledge about the corner elements.

5 Uncertainty Due to Cluster Overlaps

Overlapping pixel ranges of clusters are an artifact of their overlap-
ping data ranges. Some of these overlaps are less risky and some are
more risky from a privacy breach point-of-view. In parallel coordi-
nates there is the additional case of overlap between clusters across
adjacent axis pairs, that leads to uncertainty in tracing the records
within the clusters, across multiple axes. In this section we study the
role of cluster overlaps in potential privacy breach scenarios.

Number of Splits: The number of splits is bounded by the number
of records in each cluster, i.e., if a cluster contains k records, then
there can be a maximum of k splits. If there are fewer than k splits,
then there is a higher probability of uncertainty in tracing which
records belong to which split clusters. On the other hand, if there are
exactly k split clusters, then each split cluster contains a record each
from the originating cluster and there is no uncertainty in guessing
the distribution of records.

Knowledge about configuration: With user selection of clusters in
parallel coordinates or scatter plots, clusters that contain the same
record for all axes are visible and therefore the split configurations
on both sides of a two-dimensional cluster can be known. Two such
configurations are shown in Figure 7(c). For the left image, free
points on both sides are known. Since the number of free points on
both side is one, it follows from our discussion in Section 4, that the
cluster cannot have a pivot edge configuration and thus, has at least
one real edge line. In the second case, any free points that might
exist are not revealed. So, the configuration of a cluster is not known
exactly and one has to work through a large number of combinations
for guessing the exact location of the end-points of the records.

Cluster Split No Cluster Split

C
A

B

C C
S

(a) A cluster may or may not split, depending on the interval
relationship between clusters across adjacent axes.

A

B

A
B

A:B = N A:B = O

C C

(b) Relationship between split cluster determines if we know
the free points.

All free points known Some free points known

(c) left: Free points known, not a pivot configuration, right:
Free points not known, might be edge or pivot configuration.

Figure 7: Illustrating how the different types of cluster overlaps and
splits reveal information about the clusters. N denotes no overlap
between clusters A and B, while O denotes an overlap between clusters
A and B.

5.1 Useful Uncertainty Due to Overlaps

In this section, we formally model the uncertainty caused by over-
laps based on two types of uncertainty: identity uncertainty and
traceability uncertainty; and also discuss any uncertainty reduced
due to the overlaps.

Identity Uncertainty: Between adjacent axes, cluster overlaps can
lead to identity uncertainty about the existence of a data point or
about the cluster membership of a data point, based on the adver-
sary’s background knowledge. In that case, if we assume an adver-
sary knows the existence of a record, the probability of inference
would be reduced, proportional to the number of overlapped clusters.
If the adversary does not know if the data point exists or not, the
uncertainty would further depend on the overlap type. If the point
under consideration lies at the meeting point of lines (case E), then
the probability is not affected as the precise location is revealed.
However, if the point lies in an overlapped region (case O), then
the probability of inference is further reduced, proportional to the
area of overlap. The overlap entropy metric [9] that quantifies the
uncertainty due to overlaps can be used to measure this.

Traceability: Traceability uncertainty is about the confusion in
knowing the distribution of the records in the split/continuing clus-
ters, once the configuration of a cluster is known. This depends on
the number of splits. If the number of splits is equal to the number
of records within the cluster, then the split clusters share one record
each with the originating cluster. This is a less uncertain case than
when the number of splits is less than the number of records in each
cluster. Then the distribution of records in the continuing clusters is
not immediately known.

Let t be the number of splits where t < k. The number of records
in each split cluster can range from 1 to k − t + 1. The problem



of finding the number of possible distributions of records in the
split clusters then reduces to finding the number of t-subsets of k
elements. Let us assume the worst-case scenario of the adversary
knowing the records within a cluster and then trying to find out their
distribution in the split clusters. This is analogous to the problem of
distributing k distinguishable objects (the records) in t non-empty
indistinguishable boxes. This is given by Stirling number of the
second kind [34], S (k, t) which is given by the following standard
formula:

S (k, t) =
1
t!

t∑
i=1

−1iC(t, i)(t− i)k (6)

where C(t, i) denotes the combination of t things, taken i at a time.
A two-dimensional table of values for the above formula relating k
to t is readily available in the discrete mathematics literature [28].
The number of possibilities when the number of splits approaches
k increases drastically and thus, if the adversary does not have any
further background knowledge about the data, it would be very
difficult to know the distribution of records in the split clusters.

5.2 Disclosure Risk Due to Cluster Splits
Since cluster borders are formed by data-points, elements located
at the edge or corner of a cluster have high vulnerability. On the
other hand, the cluster coordinates that are not on the corner have a
higher level of privacy. We term these as free points. Knowing about
location and number of free points can lead to attribute disclosure
and also enable adversaries to know about cluster configurations
which is described in Section 4. Here we focus on disclosure risk of
free points due to cluster splits. In case of an overlap (O) between the
originating cluster and split cluster, free points are revealed, while in
case of an edge-meeting (E), they are not. Let f j denote the number
of free points on the jth axis. The ability of an adversary to know the
exact number of free points depends on the overlap relation between
the originating cluster and the split clusters. If t j is the number of
split clusters on the jth, C j is the originating cluster, and Ci

j is a
corresponding split cluster, then the number of free points known is
given by:

f j =

t∑
i=1

 1 if C j : Ci
j = O

0 if C j : Ci
j = E

For a given dimension, we calculate the net risk of known free
points on the jth axis by the following formula, where f i

j denotes the

number of split clusters on the jth axis for the ith originating clusters,
n being the number of originating clusters:

R( f j) =
1
n

n∑
i=1

f i
j

tij
0 < R( f j) < 1 (7)

In case of all free points known for every cluster, R( f j) = 1. The
lesser the value of R( f j), the lower is the risk for the jth dimension.

6 Uncertainty Due to Cluster Range
Cluster configurations are not affected by pixel resolution. For a
detailed analysis of the attack scenarios, we have to take the pixel
range of clusters into account and analyze the varying k and varying
cluster range affect disclosure risk. When an adversary has back-
ground knowledge about some attribute values (end points in parallel
coordinates) and/or is interested in discovering attribute values, the
plan of attack would be based on working through a number of
combinatorial cases for overcoming the uncertainty caused by lack
of spatial accuracy owing to the pixel ranges of clusters.

In this section we study the disclosure risk attached with knowl-
edge of end points. The methods for determining the amount of
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Figure 8: Three basic scenarios about adversary’s knowledge about
the end points of a line. This relates to spatial accuracy in guessing the
exact locations of the points on the axes.

uncertainty or vulnerability about end points can also be extended to
scatter plots, except that the notion of end points is transformed to
coordinates of sample points in a scatter plots. Since for a triangle-
shaped cluster one end is always known, we focus our analysis
on two-dimensional quadrilateral-shaped clusters between adjacent
axes. Figure 8 shows two example scenarios where an adversary
would try to breach privacy: in relation to two attributes (a) and (b),
the adversaries may have the knowledge that a specific line must be
in the cluster, but not much more. Hence the adversaries have to
make wild guesses about possible values on axes (a) and (b). These
guesses translate visually to the guesses of both green end points on
the two axes. Second, the adversaries may have already discovered
an attribute value on axis (a) about this target line, and want to find
out attribute value on axis (b). In other words, they need to guess
where the green end point is.

In the following subsections, we first examine scenario 2, and
provide a method for quantifying the uncertainty in relation to the
number of lines in the cluster, k, and the resolution of the visualiza-
tion. Building on the analysis for 2, we examine the scenario 1. We
assume that the adversary has some kind of background knowledge
using which they can confirm the existence of a line, given two
correct attribute values (i.e., both end points).

6.1 Disclosure Risk of One End-point of a Specific Line
Considering Figure 8(b), let k be the number of lines in this cluster.
Without losing generality, we assume that the adversary has discov-
ered the value of attribute (a) associated with a specific line Li. If
the adversary does not gain any knowledge from the visualization
about the possible location of the other end of the cluster, then the
probability of a correct guess depends on a number of combinatorial
cases. We can compute the number of valid combinations of k lines
that pass through some of the nb pixels, that is the cluster range on
axis (b) as:

G(k,nb) =

{
1 nb = 1
nk

b −2(nb −1)k + (nb −2)k nb > 1
(8)

where the first term in the case of nb > 1 is the number of all possible
combinations, the second term defines the number of invalid cases
where no line passes through either of the corner point, bmin and
bmax, and the third term defines the number of cases where no line
passes through either bmin nor bmax.

Consider two numbers that define the number of combinations of
k lines with at least one line passing bmin and bmax respectively. The
two numbers can be defined by using the same recurrence function:

B(0,nb) = 0
B(1,nb) = 1
B(2,nb) = 2nb −1 (9)

· · ·

B(k,nb) = nk−1
b + (nb −1)B(k−1,nb)

Therefore, for the target line Li to pass through either bmin or bmax,
the number of combinations will be B(k− 1,nb), since there must
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Figure 9: Vulnerability of an unknown point. Given the adversary
knows one end point of a line, the plot shows the certainty (or vulnerability)
of the other end-point as a function of k and nb where nb is the cluster
range on axis b. Whether or not the end-point is a corner point poses
different risk factor.

be at least one other line that passes through the other corner point.
Meanwhile, for Li to pass through a free point, bmin < bx < bmax, the
number of valid combinations is simply G(k−1,nb).

Let Li ( ρ denote that the line Li passes a point on axis (b),
where ρ can be one of the values, bmin,bmin + 1, . . . ,bmax −1,bmax.
The vulnerability or certainty of this specific line that is to be guessed
depends on its position on axis (b). For k > 1,nb > 2, we have:

P(Li( ρ) =


B(k−1,nb)

G(k,nb)
if ρ = bmin or ρ = bmax

G(k−1,nb)
G(k,nb)

if bmin < ρ < bmax

(10)

As shown in Figure 9, when k is relatively small, there is a
significant difference between lines that pass through corner points
(bmin or bmax, and lines that do not. Such a gap closes when k
increases (i.e., there are more lines) as there can be a large number
of pivot configurations that are possible due to the addition of pivot
lines. In general, the higher value nb is, the lower the certainty is,
except that when k = 2, the resolution does not affect the uncertainty.

6.2 Disclosure Risk of Both End-points of a Specific Line
Building on the above analysis, we now consider scenario 1 in
Figure 8(a). Assume that the adversaries know the fact that a specific
line is in a cluster, but do not know the value of either attribute. As
the probabilistic distributions on the two axes are independent, we
can derive the joint distribution from the distributions on individual
axes.

Let Li � (ρa,ρb) denote the line Li passes two points on axes
(a) and (b) respectively, where ρa can be one of the integer values
between amin and amax. For k > 1,na > 2,nb > 2, the vulnerability
or certainty of this specific line is to be guessed is:

P(Li� (ρa,ρb)) =



B(k−1,na)B(k−1,nb)
G(k,na)G(k,nb)

ρa and ρb are corners

B(k−1,na)G(k−1,nb)
G(k,na)G(k,nb)

only ρa is a corner

G(k−1,na)B(k−1,nb)
G(k,na)G(k,nb)

only ρb is a corner

G(k−1,na)G(k−1,nb)
G(k,na)G(k,nb)

neither is a corner

(11)
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Figure 10: Vulnerability of two unknown points. Given the adversary
only knows the containment of a line in a cluster but not the end points, the
plot shows the certainty (or vulnerability) of both points with two different
combinations of na and nb.

Figure 10 shows the vulnerability in the case of both end points
are unknown. It shows two situations when na = 9,nb = 3 and when
na = nb = 6 respectively. It is useful to note that the first situation
is slightly more vulnerable than the second, though the sum of the
pixel resolutions on both axes are the same. This indicates that the
lower pixel resolution on the right axis incurs more risks. When the
sum of the pixel resolutions on the left and right axes are the same, a
cluster patch of a trapezoid shape is more risky than a parallelogram.
In comparison with Fig. 9, the risk is noticeably lower.

7 Case Study

We use the German Credit dataset [17] to illustrate some real-world
examples about attack scenarios. We demonstrate that k-anonymity
is a necessary but not a sufficient condition for privacy-preservation
in the screen space; we need additional metrics to guide the ap-
pearance of clusters and subsequent user interaction. The dataset
has 1000 instances which classify bank account holders into credit
classes Good or Bad. Each data object is described by 20 attributes
that include 13 categorical and 7 numerical attributes. Since the
privacy model is mostly applicable to numerical attributes, we leave
out the other categorical attributes, and use the following attributes:
duration of loan, creditamount, and age. The quantification of differ-
ent sources of visual uncertainty can be used for iterative refinement
of the design of privacy-preserving parallel coordinates and scatter
plots. In this section we perform a probabilistic analysis of the dis-
closure risks when an adversary uses background knowledge and
interaction for breaching privacy.

7.1 Journalist Attack scenario

In an attempt to randomly breach privacy in case of the journalist
attack scenario, adversaries will try to reorder the axes in such a
way that the axis with the most vulnerable clusters is adjacent to the
sensitive attribute dimension. From our model, that axis is the one
that i) produces the most number of edge-only configurations when
put adjacent with a sensitive attribute and ii) lowers the disclosure
risk of free points of the clusters. In light of these two attack goals
we examine the possible defense mechanisms.

Analyzing Disclosure Risk of Cluster Configurations: In a jour-
nalist attack scenario, the next step after exploiting adjacency config-
urations is to analyze cluster configurations that are most vulnerable.
These are the edge-only configurations. How does the probability
of edge-only configurations vary with respect to k? In Figure 11a
the number of edge only configurations, computed using Equation
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Figure 11: Number of edge-only configurations decreases with in-
creasing k, while the disclosure risk for free points can increase with
increasing k due to the uncertainty involving cluster splits.

4 is plotted for increasing k. The decreasing number of edge-only
configurations means that the probability of the number of pivot
configurations increases with an increasing k. This correlation with
k apparently signifies more privacy as increasing probability of pivot
configurations makes it difficult to guess the edge records. However,
in Figure 11b we see that the probability of knowing the location of
free points, computed by Equation 2, can increase with increasing k.

While this can be counter-intuitive, given our model and metrics,
it is not difficult to reason about this apparent anomaly. One reason
for the revelation of free points with increasing k is the increasing
number of pivot configurations (as computed by Equation 3). An-
other factor is the number of overlaps cases as we had described in
Section 5: the condition for overlap for meeting of edges (condition
E) is exceeded by the same for overlap of edges (condition O), with
greater k. These two factors lead to a higher probability of free
points being known with increasing k. With free points being known,
this can lead to disclosure of other data points within the cluster.
This signifies higher k is not sufficient and necessitates additional
measures, that would objectively compute the probability of disclo-
sure given such uncertain patterns with higher k-anonymity. For this
we will use the parameterized measures (the parameter being cluster
range) derived in Section 6.

7.2 Prosecutor Attack Scenario

A journalist attack scenario that leads to disclosure of attributes, can
lead to a prosecutor attack scenario. The latter can also be initiated
by an adversary’s background knowledge about the data.

Assumption about background knowledge: In many real world
datasets, certain types of knowledge can be assumed. For example,
in a disease dataset, with the sensitive value being breast cancer,
the adversary already knows about the most probable gender of the
patient, and can use that knowledge for breaching privacy further.

(a) Variation of disclosure risk of edge coordinates of the
sensitive clusters, when one of the coordinates of a record
is known.

(b) Variation of disclosure risk of free coordinates of the
sensitive clusters, when one of the coordinates of a record
is known.

Figure 12: Disclosure risk when an adversary knows that an indi-
vidual belongs to a group but exact points are unknown. By analyz-
ing disclosure risks with respect to assumptions about the adversary’s
background knowledge, data owners can use thresholds for disclosure
probability and choose a k accordingly. In this case, a data owner sets
the threshold for disclosure probability to be less than 0.1 and therefore
the initial choice of k is 4.

In this dataset, we make the assumption that the adversary knows
very young or very old people are more likely to have bad credit
history. We examine the clusters that belong to people of these age
groups (where we assume old age to be above 60 and young to be
below 20), having sensitive value, for two cases: case A, where the
adversaries know a person belongs to this group but does not know
specific data points and case B, when the adversaries know a person
belongs to this group and knows one of the data points, for example
they know the age but not their loan or credit amount.
Identifying Sensitive Clusters: Cluster range is one of the input
parameters for computing the disclosure risks quantified in Equa-
tions 8−12. For this dataset we compute the interquartile range of
the cluster ranges on the axis for the sensitive clusters. Then based
on equations 8, 9, 10, and 11; we perform a detailed analysis for
deciding the k that can be used for an axis pair or for the dataset.
In this case the average interquartile range for the chosen set of
dimensions is 5 to 22, with the median being 10. Since disclosure
risk is a function of both k and cluster range, we examine the prop-
erties of the graphs where disclosure risk values are plotted against
different k, for the cluster range values of 5, 10 and 22. It should
be noted that by selecting a smaller subset of probable sensitive
clusters, we are assuming a worst-case scenario for disclosure: the
fact that an adversary has been able to break through the inter-cluster
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Figure 13: Disclosure risk with background knowledge, when an
adversary knows that an individual belongs to a group but one of the
points is known. In this case a data owner changes his/her choice of k
from 4 to 6, so that the disclosure probability stays below the modified
threshold of 0.2.

uncertainties due to overlaps and splits and are faced with the chal-
lenge of negating intra-cluster uncertainty due to cluster range and
configurations.
Analyzing disclosure risk of sensitive clusters: In Figure 12a, the
disclosure risk of edge points vs k, for case A when none of the
coordinates is known by the adversary, is plotted using the first
condition in Equation 10. By looking at the graph, the data owner or
the visualization designer sets a threshold of disclosure probability
to 0.1, as he/she desires that the disclosure risk of edge points to be
below this probability. It can be observed in the graph that k = 4
gives that desired probability for this dataset. In Figure 12b, the
disclosure of non-edge or free points is plotted for varying k using
the second condition in Equation 10. While the disclosure risk
for those points increase with increasing k as we had observed in
Figure 11a, the disclosure probability is below 0.1 when k = 4.

Next the data owner would want to examine case B, that is when
the adversary knows that an individual belongs to a group and also
one of the data points. The relation between k and disclosure risk is
plotted using the first condition in Equation 11. As we can observe
from the graph, the initial threshold for disclosure risk of 0.1 will
necessitate a very high k, but that will degrade the utility to a large
extent as we had shown in our earlier work [9].

To address this the data owner would ideally decide to increase
the risk threshold to about 0.2 which allows for modifying k to 6.
Since the disclosure risks for lower cluster ranges are a bit higher,
the data owner can choose to constrain brushing by not displaying
those clusters on interaction. To verify if k = 6 poses a risk for the
free points in case B, we plot disclosure risk against k for the edge
coordinates and free points (Figure 13). We can observe that the

disclosure risk here is below 0.2 and therefore the final choice of k
is 6. While we illustrated probabilistic analysis of a few disclosure
risk scenarios, there can be others as perceived by the data owners.
Using a systematic and step-by-step analysis as detailed above, they
can choose an appropriate k and control interaction based on reorder-
ing and brushing, by evaluating the different configurations of the
visualization using our metrics.

8 Discussion

In this section, we reflect on the limitations, applicability, and gener-
alization of our proposed model.

Limitations of our model: While we have modeled some aspects of
the background knowledge that an adversary might possess, there are
other aspects that can still be incorporated in the analysis, like multi-
dimensional background knowledge and other types of knowledge
based on attribute types. The fact that background knowledge is sub-
jective and therefore hard to model has been widely acknowledged
in the privacy-preserving data mining literature [15]. There has been
some recent work related to modeling of background knowledge
in the context of PPDM [26] and we would like to integrate our
visualization model with the data-based model.

Applicability in open data: Modern open data portals publish both
data and visualizations for helping public and domain experts find
relevant data for their analysis. Researchers have demonstrated that
open data could be vulnerable to unintended disclosure through
adversarial attacks [14]. To mitigate such risks, data owners can
leverage our visual uncertainty model for evaluating visualizations
before publishing them via data-sharing interfaces [18].

Generalizability of our approach: The basic premise of this work
is to analyze how the low-level aspects of visual encoding using
shape and size of clusters and location of records can lead to infor-
mation disclosure. In this specific application scenario of privacy-
preservation our goal is to minimize such disclosure by controlled
visual uncertainty. We believe our work has important implications
beyond the realm of privacy preservation: a generalized model of
visual uncertainty can enable visualization designers build displays
that would be optimized for maximizing insight from an interactive
visualization system. Some recent developments [4, 5, 23] have indi-
cated that it may be feasible to formulate a generalized model for
visual uncertainty that takes into account the background knowledge
of users. Such a model would enable visualization designers to opti-
mize interactive visualization systems in a systematic and rigorous
manner.

9 Conclusions and FutureWork

In this work, we have presented a detailed analysis of the relation-
ship among visual uncertainty, attack scenarios and their associated
disclosure risks, and privacy-preserving visualization in the context
of scatter plots and parallel coordinates. We have quantified the
different types of visual uncertainty and illustrated how they help
in creating an additional layer of defense besides k-anonymity to
prevent disclosure of attributes. We are currently working on two
aspects that would be natural extensions of this work. We are work-
ing on a client-server based privacy-preserving visualization system
where the disclosure risk metrics along with previously proposed
metrics for privacy and utility will be integrated for optimizing the
rendering of the clusters. data owners can control the visualiza-
tion from the server-side using a risk-based evaluation based on
our metrics. The system will be integrated with open data portals
such that data owners and stakeholders can get immediate feedback
about potential disclosure risks while providing publicly accessible
visualization of the data. This will be a step towards more trans-
parent privacy-preservation integrated with accessible data-sharing
practices.
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