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Figure 1: Levels of Automation in Data ScienceWork. From our interviews we illustrate the desired level of automation accord-
ing to level of technical expertise in data science.We ground our findings in the levels of automation proposed by Parasuraman
et al. [41] and Lee et al. [34]

ABSTRACT
AutoML systems can speed up routine data science work and make
machine learning available to those without expertise in statistics
and computer science. These systems have gained traction in en-
terprise settings where pools of skilled data workers are limited. In
this study, we conduct interviews with 29 individuals from orga-
nizations of different sizes to characterize how they currently use,
or intend to use, AutoML systems in their data science work. Our
investigation also captures how data visualization is used in con-
junction with AutoML systems. Our findings identify three usage
scenarios for AutoML that resulted in a framework summarizing
the level of automation desired by data workers with different levels
of expertise. We surfaced the tension between speed and human
oversight and found that data visualization can do a poor job bal-
ancing the two. Our findings have implications for the design and
implementation of human-in-the-loop visual analytics approaches.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI.
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1 INTRODUCTION
Organizations are flush with data but bereft of individuals with the
technical expertise required to transform these data into actionable
insights [45]. To bridge this gap, organizations are increasingly
turning toward automation in data science work beginning with
the adoption of techniques that automate the creation of machine
learning models [13, 46]. However, the adoption of this technology
into enterprise settings has not been seamless. Currently AutoML
offerings have limitations in what they can flexibly support. End-to-
end systems encompassing the full spectrum of data science work,
from data preparation to communication, are not yet fully real-
ized [34, 54]. Consequently, AutoML systems still require human in-
tervention to be practically applicable [42, 46]. This mode of human-
machine collaboration presents a number of challenges [2, 35], chief
among them being the importance of balancing the speed afforded
by AutoML with the agency of individuals to interpret, correct,
and refine automatically generated models and results [20]. Data
visualization can play an important role in facilitating this human-
machine collaborative process [20, 46], but there are few studies
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that examine if and how data visualization is used in real-world set-
tings together with AutoML. To fill this gap, we conduct interviews
with 29 individuals from organizations of different sizes and that
extend across different domains to capture how they currently, or
plan to, use AutoML to carry out data science work. We examine
specifically if and how participants use data visualization as a way
to integrate the human in the automation loop.

Our investigation reveals that the practical use of AutoML tech-
nology in real world settings requires considerable human effort.
This effort is complicated by the need to trade-off data work be-
tween individuals with different expertise, for example data sci-
entists and business analysts. This trade-off is exacerbated by a
data knowledge gap that participants believe AutoML technology
is widening. While participants saw the value of data visualization
as one way to facilitate human-in-the-loop interactions with Au-
toML tools, many still reported using visualization in a limited way.
Participants found that creating quality visualizations for AutoML
was often too difficult and time consuming and had the effect of
slowing down automation often with limited benefit. Moreover,
participants reported a lack of useful visualization tools to support
them in some of their more pressing needs, such as collaborating on
data work among their diverse teams and with AutoML technology.
Altogether our study makes the following timely contributions to
the existing literature on AutoML and the design of human-in-the-
loop tools for data science:

• An interview study that presents real world uses of AutoML
technologies in enterprise settings with a focus on the role
of the human-in-the-loop facilitated by data visualization

• A summary of three use cases for AutoML according to
different organizational needs

• A framework that illustrates the level of automation that is
desirable for individuals with different levels of technical
expertise.

As AutoML systems continue to gain traction in enterprise set-
tings, our contributions will be a resource to the research commu-
nities developing human-in-the-loop approaches that support an
appropriate balance of automation and human agency.

2 RELATEDWORK
We review prior work that investigates the use of AutoML in data
science, the ways that humans act within these processes, and
current data visualization approaches that mediate these processes.

As we reviewed this work, we were challenged by the varied
use of the term ‘AutoML’. The preliminary goals of automation
in machine learning began with the objective of removing the hu-
man specifically from hyper-parameter tuning and model selection
steps [50]. However, it quickly became clear that other steps, such
as data preparation or feature engineering, were also critical to the
success of hyper-parameter tuning. The scope of the term AutoML,
and more recently “AutoAI” or “driverless AI”, began to encompass
broader steps in the data science workflow [46, 54]. We observed
that the terms AutoML, AutoAI, and the phrase ‘automation in
data science’ are often used interchangeably in the literature. Here,
we use the term AutoML to broadly encompass automation across
multiple data science steps, from preparation to monitoring to de-
ployment.

2.1 AutoML in Data Science
Data science leverages techniques from machine learning to derive
new and potentially actionable insights from real-world data [3, 6,
12]. AutoML systems have been developed to automate the com-
putational work involved in building a data analysis pipeline that
enable individuals to derive these insights from data. Several com-
mercial systems already exists and are used within different types of
organizations, including AWS SageMaker AutoPilot [24], Google’s
Cloud AutoML [26], Microsoft’s AutomatedML [29], IBM’s Au-
toAI [28], H20 Driverless AI [27], and Data Robot [25]. There are
also implementations of AutoML that build upon widely used data
science packages, such as the scikit-learn [43] python library, auto-
sklearn [15, 16] and TPOT [38, 39]. The focus of these AutoML
systems are toward largely supervised tasks concerning feature en-
gineering, hyper-parameter tuning, and model selection [14, 50, 54].
Recent innovations have proposed possible end-to-end solutions
that also support data preparation [34, 50, 54] and it is likely that
AutoML technologies will continue to expand toward broader end-
to-end support.

The means and extent to which AutoML systems integrate with
a computational data science pipeline is variable. Some AutoML
systems exist as a single component within a larger pipeline, such
as automated feature selection step, that the analyst or data scien-
tist creates. At other times, AutoML systems can also create these
pipelines with minimal user input. In their comprehensive analysis
of existing AutoML tools, Zöller et al. [54] describe three common
configurations for including AutoML in data science work. The two
configurations are "fixed structure pipelines”, where the AutoML
system assumes a very specific configuration of computational
pipeline. The authors differentiate between fixed pipelines that
are optimized for specific AutoML methods (for example, neural
networks or random forests) compared to those that are not. While
these fixed systems are common, they have limitations when con-
fronted with different data types and tasks. For example, image
data or text data demand more flexibility within the structure of the
computational pipeline. The second category is a “variable struc-
ture pipeline”, which refers to a fairly recent approach that aims
to learn the appropriate steps within a data science pipeline [54].
TPOT [38, 39] is an example of one of the first variable pipelines.
Unlike fixed models that execute a pre-determined set of processes,
variable structure approaches learn a network of process in response
to different datasets and user objectives.

While the stated goal of many of these AutoML systems is to
effectively remove humans from many aspects of data science
work [50], a view that data scientists themselves express [46], to-
day these systems still rely on considerable human labor to be
of use [19]. These limitations stem from both the complexity of
data science work and the brittleness of fixed structure pipelines
that are in common use [54]. Our study catalogs this human labor
across data science work and examines how visualization is used
by individuals engaged in data work.

2.2 Automation and the Human-in-the-loop
Human-in-the-loop approaches provide a way to explicitly incor-
porate human interaction within automated processes. Identifying
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Figure 2: Example Illustrations of Fixed and Variable Structure Pipelines. Adapted with modification from Zöller et al. [54].

when and how to add the human-in-the-loop within AutoML pro-
cesses is important in order to appropriately balance the speed that
automation affords with the importance of human guidance. Para-
suraman et al. [41] proposed a model to help designers identify the
appropriate type and level of automation for information-seeking
processes. They define four broad functions for how automation is
used : 1) information acquisition; 2) information analysis; 3) deci-
sion and action selection; and 4) action implementation. They argue
that the level of automation, from none to fully automated, should
be evaluated against human performance consequences, automa-
tion reliability, and costs of actions. When the impact of automation
is both significant and potentially harmful, human intervention is
essential. The question of when, how, and how much to automate
remains critical to the discussion of AutoML technologies today.

A number of recent studies in the HCI literature have examined
this trade-off between automation and human intervention as it
relates to AutoML technology.

Lee et al. [34], Gil et al. [17] and Liao et al. [35] describe a set
of interaction modalities for users to engage with AutoML sys-
tems. Lee et al. [34] categorizes Parasuraman’s et al. [41] levels of
low to high automation into three different modes of interaction:
‘user-driven’, ‘cruise-control’, and ‘autopilot’. In ‘cruise control’ a
user directs an AutoML algorithm to a set of possible configura-
tions to explore, as opposed to specifying a single and immediate
next configuration. As an example, configuration can mean the
user setting a parameter for hyper-parameter tuning during model
creation. Gil et al. [17] describe a framework for human guided
machine learning (HGML), which is predicated on the ability to
effectively map user actions to a so-called ‘AutoML planner’ capable
of translating and executing the action. Similar to Gil e al., Liao
et al. [35] proposes a declarative way for the user to specify their
objectives while allowing the system to automatically generate the
underlying processes. By their descriptions, the systems proposed
by Lee et al., Gil et al., and Liao et al. are akin to variable structure
pipelines that were described in the previous section, in that they
learn the processes in the pipeline. Studies have also examined
human-ML/AI collaboration as it pertains to model authoring and
interpretation specifically. While these studies are not exclusive
to AutoML, they highlight key challenges for interacting with and
interpreting machine learning models in enterprise settings. As an
example, Hong et al. [22] interviewed 20 individuals across different
domains (the majority of whom identified as data scientists), and
found that collaboration among different organizational roles was
of chief importance for operationalizing machine learning models
into organizational practices.

Honeycutt et al. [21], Liao et al. [35], and Amershi et al. [2]
describe the ways that information can be shared between humans
and AutoML systems throughout a variety interactions. Honeycutt

et al. [21] identifies ‘relevance feedback’ and ‘incremental learning’
as two general ways that humans can provide feedback to AutoML
systems. Humans can provide relevant feedback, which informs the
AutoML systems about whether its actions were effective or not.
For example, humans may provide labeled data or correct errors
when they arise. Humans may also provide new information in
the form of incremental feedback to AutoML systems, which can
be used to correct for issues like concept drift in models that have
been deployed into production settings. Liao et al. and Amershi et
al. focus on the flow of information in the opposite direction, which
concerns the types of information humans require to interpret the
results of from AutoML systems. Liao [35] conducted interviews
with 20 UX design practitioners using a question bank to surface
limitations in guidance targeting the development of explainable
AutoML technologies. Their work demonstrates that the importance
of the ML/AI results and their presentation is highly dependent
on the question posed by the individual. Finally, Amershi et al. [2]
proposes a comprehensive set of 18 design guidelines that outline
the appropriate modes of interaction when experts, a) initially
interact with an AutoML system; b) as the system is churning; c)
when errors surface; and d) throughout user interactions.

Studies that examine how people use AutoML technologies and
how they respond to human-in-the-loop features are also emerging.
Wang et al. [46] interviewed 20 data scientists across industries to
interrogate their practices and perceptions of AutoML. They found
the benefits of AutoML for augmenting, but not replacing, human
intuition were valued and appreciated by practitioners. Passi et
al. [42] conducted an extensive six month ethnographic study that
involved over 50 data scientists. Their findings surface the differ-
ent organizational needs and challenges of data workers as they
collaborated with each other in the context of automation in data
science work. Zhang et al. [53], Drozal et al. [13], and Honeycutt
et al. [21] conducted controlled experiments to evaluate decision
making and trust in AutoML technologies, but their studies did
not recruit current practitioners. Both Zhang et al. and Honeycutt
et al. conducted their research via Mechanical Turk and Drozal
et al. recruited undergraduate and graduate students in quantita-
tive disciplines. Zhang et al. and Honeycutt et al. both found that
reporting accuracy data alone was not sufficient for improving
confidence and trust in the results produced by AutoML systems.
Honeycutt et al. observed that the act of interacting with a machine
learning model reduced confidence of individuals in the model’s
performance even when the human guidance increased accuracy.
These findings by Zhang et al. and Honeycutt et al. underscore
the challenges of designing useful feedback mechanisms between
humans and AutoML systems.

While many human-in-the-loop approaches to support AutoML
processes, and by extension data science work, exist, there are few
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studies aimed at understanding how they are integrated by practi-
tioners in enterprise settings. We found two studies that concretely
explore AutoML in enterprise, and we build upon these findings in
our present study in order to further assesses attitudes of individu-
als in enterprise settings toward human-in-the-loop approaches.

2.3 Data Visualization and AutoML
Our work specifically focuses on visualization systems that sup-
port human-in-the-loop interactions for AutoML. Two prior and
comprehensive state-of-the-art surveys capture the role of visual-
ization in explaining [7] and building trust [8] in machine learning.
Recent work by Yuan [51] demonstrates visual analytic approaches
throughout the data science process, including prior to model build-
ing (data prep and feature engineering), during model building, and
after model building (verification, deployment). These surveys show
the diversity of approaches that are taken to support decision mak-
ing throughout the data science pipeline. Here, we highlight five
systems that collectively capture this diversity. Google Vizier [18]
and ATMSeer [47] a) surface the complex latent space of models, b)
search this space through interaction and visualization, and c) triage
machine learning models. These systems present users with results
from multiple models across their hyper-parameters through mul-
tiple coordinated views of the data. As with GoogleVizier, Pipeline-
Profiler [40] and AutoAIViz [48] make use of parallel coordinate
plots to help users navigate the model search space and to highlight
possible hyper-parameter settings. AutoAIViz shows the utility of
conditional parallel coordinates plots to visualize subsequent steps
in an AutoML pipeline based upon the user’s current selections.
One limitation of visualization for AutoML in data science pipelines
is the assumption of a fixed structure (see Section 2.1), making it
difficult to visually compare variable AutoML pipelines. To address
this limitation, PipelineProfiler was developed as a wrapper for
the auto-sklearn [15] package, supporting the visualization and
comparisons of different end-to-end AutoML implementations.

Taken together, we believe that these systems represent a ‘cruise-
control’ mode of including a human-in-the-loop, balancing between
the slower ‘user-driven’ and faster, but less transparent, ‘autopi-
lot’ modes for executing and interacting with AutoML. Moreover,
these systems, co-created with experts in design and data science,
represent real implementations of the existing design guidance
toward the use of visualization to help interrogate AutoML sys-
tems. However, it remains to be understood how such systems that
are intended to build trust or transparency in AutoML actually get
used, or perhaps more concerning, whether they get used at all. Our
study sought to surface the visualization strategies within AutoML
in enterprise settings.

2.4 Situating our Research
The current state of the art in AutoML is informed by multidisci-
plinary research endeavours spanning machine learning, human
computer interaction, and visualization. Given this research effort,
there exist a number of AutoML offerings with varying types of
pipeline configurations, from fixed to variable, and that support
different modes of interaction so that “intelligent services and users
may collaborate efficiently to achieve the user’s goals” [23]. How-
ever, there remain few studies on how this technology is applied

Table 1: Summary of the Participants.

in enterprise settings, whether users can effectively leverage the
benefits of this technology, and how adding the human-in-the-loop
via visualization is viewed by enterprise users. Moreover, existing
studies [22, 42, 46] looking at enterprise settings focused on specific
themes, namely collaboration and trust, and did not closely examine
how AutoML broadly intersects with data science work. Building
on these prior findings, our study conducts a broader examination
of AutoML and data science work that surfaces how AutoML is
situated within organizational processes.

3 METHODOLOGY
We conducted semi-structured interviews to develop an understand-
ing of how AutoML is used to automate data science work. We were
also interested in surfacing the role of the human-in-the-loop as
it is mediated by data visualization tools, such as those used to
explore data or support model tuning and selection.

3.1 Interviews and Data Collection
We recruited participants through a snowball sampling approach [9],
with the first point of contact being individuals that had participated
in prior studies, were known to the authors, or other collaborators.
We recruited and conducted interviews with 29 individuals that
self-identified as data scientists, or analysts engaged in data science
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type work, or a manager overseeing a team comprising either en-
tirely data scientists or a mixture of data scientists with others. The
semi-structured interview format prompted participants to discuss
data science work in their organization; if and how they currently
use AutoML systems, or plan to deploy AutoML systems; and the
ways they use data visualization, using the Tableau platform or
other tools.

Interviews were scheduled for approximately 60 minutes, audio-
recorded, and transcribed. Our participant screening questionnaires
and interview guides are provided as supplemental materials. Due
to the nature of semi-structured interviews, the range of topics that
participants chose to touch upon were quite broad. Moreover, due
to the novelty and diversity of uses for AutoML technology the
perceptions and pain points described by our participants were not
always overlapping. All interviews were conducted over video con-
ferencing software. A summary of participants, their organization
size, and domain are summarized in Table 1.

3.1.1 Sensitization to Emerging Concepts. Sensitizing con-
cepts are an important component of qualitative research, as they
ground the analysis in important emergent features and operate as
a key interpretative device in data analysis [4]. At the outset of our
study, we had some preliminary concepts that we were sensitized to
from prior research we conducted that examined the nature of data
science work and workers [10]; we used this prior research as part
of selective coding processes. In addition to this prior framework,
we also had our own notions of concepts that could be pertinent to
AutoML, visualization, and human-in-the-loop interactions specifi-
cally and these informed our initial interview questions.

As we completed interviews we debriefed and conducted initial
thematic coding of transcripts, we became sensitized to particular
themes in our analysis that further refined our existing concepts
of data science work and generated new ideas that we had not
previously considered. Specifically, these emerging themes included
the importance of different types and levels of participant expertise
and participants’ use and attitudes around “click” (low or no-code
solutions) as opposed to “code-based” solutions. Analysis of par-
ticipant pain points surfaced issues of tool switching, trust, and
collaboration. Finally, we also found that predictive modeling was
the primary way that these organizations applied AutoML tech-
nology. As we became sensitized to these concepts, we revised our
interview guide to ask more pointed questions about these themes.
We provide both the preliminary and modified interview guides in
our supplemental materials.

3.1.2 Participant Characteristics and AutoML Use. Partici-
pants self-identified as either analysts or managers. Analysts were
individuals that were engaged in the day-to-day tasks of data anal-
ysis, including data scientists, business analysts, or other technical
analysts engaged in data science work. Managers oversaw teams
that often contained a mixture of data scientists, business analysts,
or other types of organizational decision makers. In total, 17 partic-
ipants in our study were analysts and 12 were managers. Overall,
participants had high data science expertise, although one could be
classified more as a citizen data scientist, which did not have formal
training in data science but was exploring this field with the aide
of AutoML. Participants also represented organizations of different

sizes performing a variety of functions. Four participants were at or-
ganizations with fewer than 100 individuals, 10 with between 100 to
1,000 individuals, 4 with between 1,000 and 10,000, 2 with between
10,000 and 50,000, and 9 with more than 50,000 individuals. Partic-
ipants worked in a broad range of organizations across different
industries that were focused on data analytics, finance, government,
healthcare, management and consulting, security, telecommunica-
tions, and travel.

We further stratified participants according to their current us-
age of AutoML technology. Active users were those who reported
that they, or members of their team, used a specific AutoML tech-
nology to conduct their work. We did not stipulate some required
frequency of use (daily vs not) or the number of individuals cur-
rently using this technology. Experimenting users were those that
reported creating proof of concepts or described at least some pre-
liminary projects specifically for the purposes of exploring AutoML
technologies. Unlike active users, those that were experimenting
with the technology articulated that their use of AutoML was in the
early stages and exploratory in nature. Finally, those individuals
that we categorized as knowledgeable had high context for data
science work including AutoML, but were not using or planning to
use this technology in their work. Among our 29 participants 8 were
active users, 10 were experimenting, and 11 were knowledgeable.

3.2 Selective Coding Process
A prior study [10] used an open coding process to define a frame-
work of data science work that comprises four higher-order pro-
cesses and fourteen lower-order processes. We use the set of codes
from this prior study to carry out a selective coding of our interview
transcripts. Selective coding is a stage in grounded theory research
that serves to organize the analysis around a core set of variables [5],
in this case the processes of data science work, rather than derive
and organize a new set of codes as is done in open and axial coding.
The reason we use selective, as opposed to more commonly used
open and axial coding approaches [37] is due to AutoML technol-
ogy being relatively new and as a result participants having varied
experiences with it. While our interviews captured a rich diversity
of experiences with AutoML this diversity also led to spareness in
our data that made it difficult to achieve theoretical saturation in an
open coding process. Using a selective coding process allowed us to
scaffold our analysis around a cohesive narrative of how AutoML
is used across data science work. The selective coding process still
makes use of constant comparison that allowed us to eventually
achieve theoretical saturation in our findings.

The set of four higher-order processes and fourteen lower-
order processes in this framework for data science work were:

• Preparation: Defining Needs, Data Gathering, Data Creation,
Profiling, and Data Wrangling

• Analysis: Experimentation, Exploration, Modeling, Verifica-
tion, and Interpretation

• Deployment: Monitoring and Refinement
• Communication: Dissemination and Documentation

The authors of [10] also indicated two lower-order processes,
Collaboration and Pedagogy, that were identified as emergent but
did not have sufficient context to place within the higher order
categories.
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Figure 3: Example of Annotating Interviews with processes
from an existing framework of data science work and work-
ers [10]

In Figure 3, we exemplify how we performed a selective coding
for these processes across our interviews. Some statements made
explicit references to data science processes, for example, “Hard
part - data discovery, data curation” are explicit references to the
preparation higher-order process, as the terminology used can be
linked directly to a higher order or lower order processes in the
existing framework. By comparison, some references to processes
were more implicit and were inferred by the authors with other
context from the interviews. For example, “still need to educate,
and visualization is important for that. Still need someone who is
thinking through the problem” was determined to be an implicit
reference to communication processes although there were not
explicit terms specific to communication.

As with putting any model into practice, the prior framework
not only deepened our analysis, but also generated natural tensions
between our observations and our framing of data science. We lever-
aged these tensions as points of inquiry that allowed us to critique
or expand upon these frameworks based upon the participants’
reported experiences. We reflect on our approach and propose mod-
ifications to it that we describe in Section 5.4 (as these modifications
were motivated by our analysis) and again in discussion (Section 6).

4 RESULTS
We first present our general findings regarding prevailing attitudes
toward AutoML and the role of automation of data science work.
Then, we examine the intersection of AutoML in data science work
at a level of higher-order processes.

4.1 Attitudes Toward Automation
In this section, we describe prevailing attitudes toward adopting
automation in data science as described by our participants. We
identified four primary themes that encapsulate these attitudes:
the role of AutoML to drive productivity, the importance of tool
integration, the concerns about automating bad decisions, and,
finally, the desire to limit the role of the human-in-the-loop.

4.1.1 Improving Productivity. AutoML was embraced with
cautious optimism by participants at organizations of different
sizes, but we found that it tended to be more widely used or ex-
plored at larger organizations. It is not clear what is driving these
differences, but we believe that it may relate to different amounts
and rates of data collection at larger organizations that motivate a
greater need for automation. Among larger organizations that had
implemented data science automation tools, the primary reason for
investing in AutoML was that it “just makes data scientists more

productive” (P01) by automating aspects of their work and allowing
them to triage to focus on more pressing problems. As a specific
example, P07 indicated that there is

Lots of waste determining which models to work on.
[I] Wonder [if we] should focus on managing the
pipeline so [that] the things get through have more
impact. [We] need a predictive model to figure out
which predictive models are the ones to work on.

The automation of routine work, like model tuning and selec-
tion, was seen as a desirable way to shift the effort of human labor
toward model verification and, if needed, correction tasks. While
some participants felt strongly that technical expertise was required
to safely use AutoML technology for productivity gains (a topic
we return to in 4.1.3), others (P03, P12) saw the benefit of AutoML
to democratize data work. Individuals without a background in
statistics and computer science that occupy roles of “business an-
alysts” or “moonlighters” [10, 33] would benefit from the lower
barrier to entry that AutoML affords. This democratization effort
may improve productivity in those roles, but it also opens a door
to capabilities across self-service analytics that were previously
inaccessible.

Overall, AutoML systems reduce the amount of code that is
needed to use data within data science workflows. Individuals with
high technical expertise, such as data scientists can leverage Au-
toML systems to improve speed and efficiency of routine tasks. For
non-experts, AutoML systems can also democratize the accessibility
of data science workflows and machine learning solutions.

4.1.2 The Importance of Integrating Tools. Participants re-
ported using a variety of commercial tools to facilitate AutoML
work and the need to create custom solutions for preparation, de-
ployment, and communication data science processes. Participants
used or were actively investigating platforms like Alteryx (n=5) for
automating their workflows and integrating with Data Robot (n=3)
or H2o.ai (n=3) to facilitate automatic modeling steps. Dataiku was
also used in lieu of Alteryx and was seen as a better tool for facil-
itating collaboration across processes. Participants also reported
using Sagemaker (n=2), PowerBI (n=2) (Azure), and Data Bricks
(1). Participants report leveraging libraries like TensorFlow (n=4),
scikit-learn(n=2), and mxnet (n=1) for their AutoML work. Python,
R, and their attendant notebook environments were described as
being used by roles that had higher technical expertise. However,
P02 observed that “businesses can’t deal with the notebooks” be-
cause “data scientist(s) are now [needing] to build things that can
run in a production environment” in order to operationalize models.
Moreover, as organizations seek to spread out the data work from
data scientists to others in the organization, P15 observed that they
were “starting to see heavier reliance on data science products that
don’t require heavy coding.”. For individuals without a data science
or computer science background the need to write code appear to
be a barrier, but our participants comments indicate that AutoML
can lower, or potentially remove, this barrier. Moreover, there is
an increasing appetite for a “platform [that] helps people move
between tools that they have selected”(P04) and where “75% of the
organization could work”. Tool switching is common in data science
because there are “Different tools for different analysis” and yet we
found most users would “prefer to stay in one environment”(P06).
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Importantly, data science processes are not linear but occur in a “big
recursive” (P09) loop . Constantly changing environments within
multiple cycles of iteration and refinement is time consuming and
impractical. Participants did report visualizing their data via sys-
tems like Tableau, or via charting libraries in R or Python, but many
described their limited use:

As organizations scale, they’re going to spend less and
less time doing visualizations [...] the job is to deliver
results of a model in some form[...] Data scientists
aren’t going to deploy with ggplot, but they may use
it for static reporting or just for their information.
(P17)

This participant didn’t see visualization tools as scaling well
alongside AutoML and other data science work, leading to aban-
donment, especially within results communication. Two other par-
ticipants had to awkwardly move back and forth across modeling
and visualization tools, and as a result the role of visualization was
limited throughout the process.

4.1.3 Concerns of Automating Bad Decisions. Participants
also clearly understood that blind trust in AutoML could lead to po-
tentially catastrophic failures. P20 worries that “lots of people will
try to predict things without really understanding. [...] People will
make horrific mistakes and not realize they’ve made them.” P12 col-
orfully indicated that “having this [AutoML] tooling may just allow
people to make stupid mistakes easier!” P05 observed that it’s “bad
to slap together models and try to make decisions from it without
understanding how things work. [That’s like] giving a loaded gun
to a child”. Participants were also concerned about regulatory con-
straints, for example the European GDPR legislation, that requires
organizations to be able to explain decisions made by automated
data science technologies. Even without legislative pressures, there
were internal organizational concerns around these technologies,
especially when large financial decisions were involved. A toler-
ance for errors and failure was an important factor in evaluating
the use of AutoML technology; however, in many cases perfection
was not required. For instance, P12 observed that there were “lots
of business use cases where 80% accurate could be okay”. P29’s
observation echoes P12’s that it is desirable for automation to help
your surface failure points in your data preparation and analysis
processes:

I think they [executives] want you to use those [auto-
mated insights] to look at a graph and say, “Oh wow,
this is life changing. Let’s go make this change in our
business.” We didn’t use it like that. We used it to
make sure that the results we were getting back made
common sense.

A surprising finding was the general concern around the use of
AutoML by “citizen data scientists” or domain experts that were not
formally trained in data science, statistics or computer science. P12
stated that while they understand organizations want to democ-
ratize data science work, it still worries them because “in practice
you’ll still have to be pretty technical” to analyze data. P22 raised
the issue of the overhead needed to ensure those “who aren’t as
well versed...in the data science space are able to not make silly
mistakes that they shouldn’t be making”. Perhaps the strongest

stance we heard was from a participant who stated that they would
“restrict it [AutoML] just to the data scientists” and “use it to get
efficiency after demonstrating they know they are doing” (P05).
This attitude was a recurrent theme in our study.

Overall, from participants’ responses we see that the promise
of automating data science is tempered by very real concerns of
how things could go wrong. However, this does not mean that
organizations are pulling back from their investment in these tech-
nologies. As P02 noted: “ambition is still ‘industry 4.0’ with lots of
automation.”

4.1.4 Limiting theHuman-in-the-Loop. Concerns toward safety
and trust of AutoML inmanyways highlight the value of humans-in-
the-loop approaches to balance automation with human oversight.
However, participants also expressed concerns about the inclusion
of humans within the AutoML loop. For example, while P02 ex-
pressed that there was still “lots of room for humans-in-the-loop”
innovations in their industry, they also stated that “the manual part,
where you have to visualize something, is getting cut out as much
as possible”. P01 stated that even as "there are lots of automated
tools in place making decisions”, at the same time there was a lot
of “anxiety in the firm about what people do with ML,” stemming
from concerns of automating decisions at scale. We interpret these
seemingly contradictory positions to mean that human-in-the-loop
approaches are valuable when applied at the right time and in the
right way.

4.1.5 Summary. We briefly summarize the key takeaways for
participant attitudes toward AutoML. While participants expressed
concerns about the potential to automating bad decision-making,
there was also a growing interest in using AutoML technology to
produce a ’good enough’ result that could scope out the viability and
possible issues with the data or machine learning product. AutoML
allows for the creation of sophisticated tools with minimal code
and offers opportunities to ‘fail fast’, which enables data scientists,
and even so-called ‘citizen data scientists’, to surface issues earlier.
However, what is most clear is that applying AutoML technology at
suitable points in data sciencework is very important, otherwise it is
dismissed as intrusive. To further explore when and where AutoML
technologies could support data science, we analyzed interviews
through the lens of an existing model for data science work.

4.2 AutoML in Data Science Work
In this section we summarize our findings on the use of AutoML in
the data science process. We consider places where considerable
human labor is required either to support the creation of a machine
learning model or to interpret, communicate, and act on its find-
ings. Following the framework described in Section 3.2, we begin
by examining AutoML in data preparation, followed by analysis,
deployment, and communication.

4.2.1 Data PreparationContinues to be aRate Limiting Step
for Automation. Participants understood that without robust data
preparation the AutoML portion of their Data Science processes
would be ineffective. P02 succinctly stated that,

AutoML has never been the solution - it’s a shiny toy.
[It’s] always going to be about the quality of the data
- do you understand what you are modeling?
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In our interviews, participants identified several challenges in
data preparation work that still required a lot of human labor, from
gathering data, profiling it, and wrangling it into shape for analy-
sis. It is important to emphasize that participants rarely began by
cleaning a single tabular dataset, but often needed to bring several
data sources together. P12 reported that “40-50% of my team’s time
[was spent] on Alteryx to bring data together”, while P23 reflected
that “the most difficult part of my day is getting the data that I need
to work with”. Once the data were gathered, participants faced
difficulties with data profiling, a challenge that was also surfaced
in prior work by Kandel [31] and Alspaugh [1]. P19 expressed that
automation in

Data profiling would be a huge win. I spend a ton of
time having to explain the shape of data, and what
shapes work best, how to explore the data, and how
to refactor as needed

Even when participants have data gathered and profiled, they
still need to assess its utility for further downstream analysis. Rapid
iteration via AutoML plays a role in speeding up thismanual process.
P23 described that they “get [the data] to a point where maybe it’s
60% [clean], and they start to run algorithms...[in order to]...expand
on the data itself”. The workflow described here resonates with
rapid prototyping and failing fast to discover issues or limitations in
the data. This observation also echoes data reconnaissance and task
wrangling processes previous described in [11], inwhich individuals
acquire and quickly view data in order to assess its suitability for
analysis and decide whether to pursue additional data sources.
Despite the usefulness of AutoML-driven prototyping, challenges
associated with data preparation remain. This reflects an emerging
theme from our analysis that there is a growing need to more tightly
couple investments in data prep and model building. For instance,
the experience of these challenges led P03 and their team to make
more significant investments toward “tools for democratization of
data prep and (to a lesser extent) model building”.

It is not surprising that data preparation is both time consuming
and important to the successful application of AutoML and data
science more generally. Prior studies [33, 46] with data scientists
and other domain experts have routinely pointed to this bottleneck
for years, and visualization tools such as Trifacta (and its academic
predecessors Wrangler [32] and Profiler [30]), and Tableau Prep
have been developed to address this challenge. It is disconcerting
that preparation continues to be such a significant bottleneck de-
spite existing tools. Our observations suggest that one reason for
this may be that existing tools for data preparation do not easily fit
within a data workers’ analytics environment. By extension of these
observations, AutoML technology needs to be well-integrated with
existing tooling environments, while also surfacing the manual
labor and lack of adequate tooling for data preparation.

4.2.2 Use ofAutoML inAnalysis Varies byData ScienceRole.
Perhaps as a testament to the advancement of AutoML technology,
participants reported that model building “is fast and easy”(P12).
P25 further elaborated that

If I can actually get through all the data stuff, then
getting the predictive model is not really that hard.
There’s a huge bunch of code to get the data ready for

the model, then a tiny bit of code for the model. And
then the rest of the work is delivery to the customer.

The desired amount of oversight and control over AutoML in the
analysis appeared to vary by level of technical expertise. P26 felt that
individuals with high expertise in statistics and/or computer science
were less likely to use automation because “they want everything to
be customizable”, whereas thosewith less technical expertise, whom
they refer to as “citizen data scientits” were “focused on integrating
intelligence to their app” and tended to prefer higher levels of
automation. This latter group is growing as P03 observed : “the vast
majority of data science type work is done by non-data-scientist[s]”.
From participants’ responses we also noted that this group with a
low or evolving technical expertise often needed heavy guidance,
low or no-code AutoML implementations, and visualization. P29
also observed how individuals with higher technical expertise could
act as a rate limiting step to analysts engaged in data work, but that
automation could serve as a catalyst:

[Analysts] maybe can do their own little, their own
little predictions, off to the side. And they can do
them fast [...] PhDs could always do it better, but are
they there? Do they have time? The answer is almost
always no. You can either do good or you can do
nothing. Better is there, but you’re not getting better.
They’re [PhDs] busy, working on the big problems.

Moreover, summarize that individual withwithout high technical
expertise benefited from proper guidance, no-code solutions, and
data visualization to help situate themselves within the analysis
process given many “steps in (data science) workflow contain lots
of details that are hidden” (P03).

It was surprising that visualization was not more widely men-
tioned to steer the model authoring processes even though there
exists a number of visualizations systems to help individuals do
so [7, 8, 53]. One possibility is that individuals with high technical
expertise are constructing novel and bespoke models that exist-
ing data visualization tools cannot easily support. Instead, these
technical experts might benefit from highly customized visualiza-
tions for certain classes of models, such as those generated by
tensorboard [49]. In contrast, individuals with lower technical ex-
pertise lack the background knowledge to orient themselves and
effectively interact with visualizations exposing the mathematical
underpinnings of machine learning models. They rely on the Au-
toML systems to make model decisions and it may not be easy for
them to correct and refine these models.

While participants did raise concerns that AutoML-derived mod-
els and results were a ‘black box’, it also appears that technical
acumen in statistics and computer science was perceived as nec-
essary and possibly sufficient to ‘open up the black box’. Echoing
concerns we summarized in Section 4.1.3 participants saw AutoML
as potentially contributing an existing “knowledge gap [that is]
becoming wider” (P19) because the availability of AutoML meant
that individuals with lower technical expertise could harness the
power of machine learning without having to seriously engage
with its technical and nuanced underpinnings. Our interpretation
of these concerns was that trust in the individual conducting the
data analysis was as important as trust in the AutoML process
itself. Moreover, collaboratively sharing knowledge or including
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human oversight may mitigate some of these concerns and could
be achieved through visualization of data science processes. The
differences in data science roles and the extension of data science
work to individuals without formal training in statistics and com-
puter science has several implications for the design of AutoML and
visualization tools. While AutoML tools reduce or even eliminate
the need to write code it becomes important to consider what kinds
of guard rails might need to be put in place. We believe that data
visualization tools are an important component of such guardrails,
but that we require a finer-grained understanding of data workers
to design such tools effectively.

4.2.3 ‘Good Enough’ Rapid Prototyping to Bootstrap Anal-
ysis. Participants used AutoML technologies to rapidly prototype
viable solutions in both data preparation and analysis. The need
for rapid prototyping stems from the challenges of generalizing
AutoML to a variety of problems, which requires manual effort. P21
acknowledged that “AutoML is really hard, and I think we have so
many operations with such nuance that we actually most of the
time really... just want to be doing simple stuff correctly, rather than
adding additional layers of complication.” P24 was much more ex-
plicit in stating that “every customer is different [...] [but] AutoML
is supposed to be a generalized framework. So, that is a problem”.
The challenges of AutoML to generalize to a variety of problems
are known, especially when it concerns fixed structure computa-
tional pipelines (which is the most common implementation of
AutoML) [54]. Despite this lack of generalizability, participants
found that they could leverage AutoML to rapidly prototype data
science solutions. P23 offered description of such a use case:

I talk to clients daily. If I could get ML done just real
quick, as a prototype into what we could build (in
depth), that would be super helpful. [...] Can you
get me 50% of the way to answering some question
quickly, that would benefit me

P21 reported using automatically generated results to start a
conversation with others ahead of making serious personnel or
infrastructure investments. They shared that “when starting out
with a client, we’ll run the default model andwe’ll say, ‘Hey, here are
some of the topics, some of the interesting trends that are coming
out’ ” and then use the clients reaction to further refine upon default
model or craft a different solution altogether. As we previously
reported, P12 and P29 alsomake the case for ’failing-fast’ to discover
issues in the data or analysis without expensive upfront investment
in fully developing an automated data science pipeline. This rapid
and iterative use of AutoML to drive different data conversations
evokes a complex picture of a data worker operatingwithinmultiple
loops of data science and organizational processes. This prototyping
scenario offers an evocative example of how the limitations of
AutoML technology can be beneficial leveraged through human-
in-the-loop interactions. We argue that with adequate guardrails
in place AutoML systems may also be able to further support the
process of surfacing potentially more complex issues of bias.

4.2.4 Inadequate Support for Governed and Managed De-
ployment Processes. The majority of machine learning models
often do not advance to production environments where they are
applied to real data. Those that do are often required to go through

a set of governed processes before they are deployed and are con-
stantly monitored once they are out in the wild. These governed
processes vary as P01 described :

[A] Governed workflow [is important]. Looking at
what all teams are doing - are there divergences around
governance, etc. e.g. models with a financial impact
have a very stringent governance process.

The volume and variety of both data and models makes it chal-
lenging to monitor and govern AutoML models deployed in pro-
duction. P03 reported that their practice was to “err on the side of
letting people use tools [they preferred]” and to “monitor what tools
are being used”. They emphasized that vigilance was important to
ensure mistakes do not “clog up the server with bad content”, which
might happen when pushing a model generated by AutoML into
production without adequately vetting it. These problems exist for
all software code in general, but may be further exacerbated by the
novelty and complexity of AutoML. Moreover, the amount of data
produced by automation can make it overwhelming to effectively
govern models that need to be continually validated, and have a
process that employs someone to “look for drift, look to increase
accuracy and effectiveness of these models over time”(P07). Larger
organizations working under enforceable regulatory constraints
struggle to find the right balance between integrating a potentially
valuable new technology like AutoML while conforming to these
constraints:

[There are] areas where critical models are developed
that will likely have very strict controls, often imposed
by a regulator [...]if you have no clue what that [model
result] means, you are on pretty thin ice (P03)

As with preparation, the processes of governing deployedmodels
still requires considerable human effort. Moreover, we believe that
adding some sort of automation to these processes is desirable in
order to reap the efficiency benefits of AutoML. Dashboards are
often used to monitor changes in data [44], but participants did not
report using dashboards for AutoML work even though they may
already use dashboards for other types of work. We hypothesize
that this relates to the tooling environment and that monitoring
and the governance of AutoML systems require more specialized
dashboards that are not well supported by existing tools. There
may be fruitful work here for visualization and HCI research to
improve governance processes through better monitoring and, at
least, help them triage governance violations. Improved awareness
and consideration for governance throughout the visualization
design process can also inform the implementation of guardrails
for AutoML throughout data science work.

4.2.5 Correction and Repair of Deployed Models. Human
oversight of automation is critical to detecting when something
new or unexpected has happened, identifying the source of what
has happened, and implementing appropriate corrective actions as
needed. While there may be some ability to automatically detect
anomalies, and thus make governed workflows easier to monitor,
participants expressed doubt that such an approach would work in
practice. P12 stated that if “the forecast is clearly wrong a human
can detect this” whereas it is harder for the AutoML tool to do so.
Still, other participants articulated the limited abilities of analysts
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to intervene appropriately, suggesting that some analysts “wouldn’t
necessarily knowwhat to do next...[whereas]...a data scientist might
know what to do next - for improving forecasts, for analyzing how
good it might be.” P26 succinctly summarized that as “you’re only as
good as what you debug”. These observations align with a recurrent
theme in our findings that trust between the underlying technology
and the data science teams is critical for the wider adoption of
AutoML. Moreover, these observations expose the brittleness of
AutoML technology and its reliance on iterative loops of correction
and refinement with humans. In the next section, we also emphasize
that AutoML loops are not closed systems; rather these are loops
that interact with many other loops of business processes and
pre-existing modes of human collaboration. Thus, ‘debugging’ not
only requires technical expertise that spans the preparation to
deployment processes, but includes sufficient domain expertise
to recognize and account for other ‘loops’ that interact with and
beyond data science.

4.2.6 Communication andCollaboration Build Trust in Au-
toML. Communication and collaboration are essential data science
processes, including but not limited tomodel automation [33, 46, 52].
AutoML systems require communication between humans and the
technical system. P22 expresses one such mode of communication
in which the AutoML system helps guide users in analysis by com-
municating “this is what it is that you’re about to do, and this is the
impact it will have” and should also prompt users with respect to
certain actions with “are you sure you want to do this?”. P17 also
noted that more could be done to “walk the user through that [a
data analysis, for example] given a kind of data to predict, here are
the kinds of models and visualizations to use”. AutoML introduces
a new mode of collaboration between humans as well. This new
frontier can also be challenging to navigate as P29 observed:

So, there’s human interaction along the whole life cy-
cle. And interpreting that human interaction is what
we’re trying to get machine learning to do.

However, participants indicated that these diverse individuals
must still work together to deliver actionable and safe results from
automating technology. A common theme emerged around the de-
sire to broaden data engagement across the organization, bringing
more people into the data sensemaking loops. In P21’s words,

[We] need our workforce to be more data savvy across
the board. An engineer needs to be able to play with
data as much as the MBA does [...] [and] giving them
better tools will help with ramp up.

A big part of having teams work more effectively together is to
provide more situational awareness of data science workflows and
who has done which task. For instance, P06 described what would
be needed to support teams working together across workflows.
This support includes surfacing "notification[s] that people [are]
working on the same step ...[and]... underlying metadata about how
people were using the platform ” (P06). Integral to this collaboration
was the ability to hand-off different aspects of the data or analysis
processes to different team members, likely with a different data
science role:

They can create a workflow, share it with other people,
people can build off of that workflow, grab a table

from that workflow and then build their own. That
collaboration aspect of it was important to us. (P29)

In order to improve collaboration some participants defined a vi-
able solution around making workflows visual, interrogable, and
extensible.

Participants also highlighted the importance communicating to
individuals that were one step removed from the data analysis pro-
cesses, most often communication to executives or other business
leaders

In this process, visualization plays a clear role as a communica-
tion tool. A theme emerging from the analysis was that participants
often framed this part of the process as more difficult than the
modeling itself. This was due in part to the extra work required.
For example, P19 describes the additional labor it takes, especially
when the visualization tools are not well integrated into existing
processes :

There is a gap once your analysis is done on present-
ing the results. Nobody wants to spend more hours
in another tool to build charts for explanation.

For instance, P05 described the challenges of authoring compelling
visualizations and how “nice visualizations feel like a hack that the
average user can’t build themselves”.

The other challenge often cited was around the efficacy of visual-
izations as a medium of communication to drive business decisions
or processes. Participants described the challenge of translating
their work to business users that were not versed in modeling
vernacular. In one participant’s words, “we don’t want people to
actually understand model jargon, we want to help them under-
stand what the model is saying in business terms.” This participant
relies on interactive visualizations to support the dialogues that
they anticipate will happen when showing a snapshot of results to
bridge the gap. Still, despite efforts to translate for business users
this participant’s team experienced a range of challenges in opera-
tionalizing their models. P26 describes how “the challenges that we
saw as the data science team is...we give this [model or results] to
them, but then actually, the action of implementation of this in the
market sometimes doesn’t always pull through. So it’s like we did
all this work, you said it was good, but now you have to take it to the
last mile, actually get to marketing, creative, and content, and get it
out to market.” They point to communication difficulties between
data scientists and others at the organizations as exacerbating this
‘last mile’ problem, which results from “either lack of funding or
sense of disbelief in prediction models and ML techniques” (P26).
Validation measures may also be required for regulated industries
that can slow this process down.Taken together, the collaborative
nature of data science work imposes constraints on the design of vi-
sualization tools, which must be usable across the organization and
interoperable by individuals embedded within a variety of analytic,
business, and governance processes.
4.2.7 Summary. Our examination of AutoML technology along
the data science pipeline, both where it exists and where it does not,
helps us to understand the current capabilities of this technology
and how the technology and its surrounding ecosystem can be fur-
ther developed to support data scientists and others. We see gaps
for AutoML technology outside of data analysis processes and that
translate to unmet tooling needs in data preparation, governance,
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and deployment processes. These are also processes where consid-
erable human labor is still required to make AutoML technology in
data analysis viable. Automation that extends to these other pro-
cesses, ideally with appropriate guardrails, could improve both the
quality and speed of data science work. Moreover, the relationship
between automation and data science expertise emerged as a criti-
cal consideration for what future tools should support, including
the types of guardrails that should be built in. We were surprised
to surface some of the tensions that existed between data science
experts, and data workers with different training. Emerging from
this tension was one heavy-handed guardrail strategy to restrict
access to AutoML technology that many sought to implement. We
believe this view has surfaced from a lack of adequate tools to
support the safe creation, deployment, and governance of these
models and that there are many fertile opportunities for visualiza-
tion research in this space. However, our analysis of participants’
comments reveals that existing visualization tools are falling short
of their needs. Moreover, that data visualizations tools can have a
steep learning curve and their is little motivation to use following
intensive analysis. We underscore that it is critical to understand
the diversity of teams that carry out data science work and the
ways they intersect with many organizational processes. In other
words, visualization tools need to work for many humans engaged
in many loops.

5 INTERPRETATION OF FINDINGS
We now reflect on our findings and summarize the central themes
that emerged from our analysis.

5.1 Three Usage Scenarios for AutoML Emerge
The general attitudes toward AutoML suggest three usage scenarios
for this technology that are conditioned on the technical expertise
(statistics and computer science) of the individual analyzing the
data and the magnitude of consequences associated with errors.
The first usage scenario is automating routine tasks, thereby re-
ducing the coding efforts of data science teams and improving the
speed of the analysis processes. A second usage scenario is the rapid
exploration of potential data science solutions through low-effort
prototyping. Such prototyping approaches can be used by individu-
als with varying degrees of technical expertise. Its possible that for
individuals with high technical expertise (such as, data scientists,
generalists, research scientists, ML/AI engineers, and data shapers)
prototyping allows them to quickly create a base framework that
they further develop into novel solutions for arising technical chal-
lenges. For other individuals, prototyping enables them to have a
conversation around the data with customers and other members
of their organization. Prototyping also enables individuals and data
science teams to fail fast and discover issues with their data and
analysis before investing in considerable engineering effort. A third
and final usage scenario is the use of AutoML toward democratizing
the ability to create a machine learning model, empowering indi-
viduals that would not be able to build a model otherwise. In this
third scenario, we argue that individuals require heavy guidance
and guardrails from an AutoML systems and may have very limited
ability to identify errors or correct them.

The delineation of these usage scenarios is intended to guide
visualization researchers as they explore opportunities to develop
techniques or systems for AutoML.

5.2 Varying the Level of Automation Across
Data Science Processes

Considerable human labor is still expended to prepare data, govern
and deploy a model, and to communicate the results to impacted
individuals and other decision-makers. An end-to-end AutoML so-
lution capable of addressing the full scope of such data science
work does not currently exist, and as a result data workers, which
includes individuals that are and are not data scientists, are finding
ad hoc ways of bootstrapping AutoML technology into their work.
In Figure 1, we outline a common set of eight steps synthesized
from participants’ responses describing AutoML use in enterprise
settings. We further align these steps within higher order data sci-
ence processes. For data preparation and analysis, these tasks were
prototyping, exploring the results, and settling on a solution to
implement. Should this solution reach a certain level of maturity it
is deployed into production following a verification of the solution
(including compliance of regulations), where it is consistently mon-
itored while in production. Finally, these deployed models can be
used to take action through an inspection of the results that surface
new insights for decision making. We illustrate the levels of automa-
tion [41] that we believe are desirable for future AutoML systems
to support, considering the range of participant challenges and
concerns this study surfaced. Importantly, the level of automation
is not consistent across all data science processes. Human oversight
is still required throughout data science work and is dictated by
both regulatory requirements and organizational practices. Most
automation likely needs to adopt a ‘cruise control’ mode of interac-
tion [34], where humans can oversee and steer AutoML systems
without needing to guide the systems at each step. Even this would
be an improvement over current AutoML systems that appear to
oscillate between ’autopilot’ and ’user-driven’ modes. We further
illustrate the level of automation required by individuals with high
expertise in computer science and/or statistics (Data Scientists,
ML/AI or Data Engineers), and low or an evolving technical exper-
tise in these areas (Business Analysts, Moonlighters). Individuals
with high expertise can benefit from full automation, for example
when speeding up routine work (Usage Scenario One) or to rapidly
prototype and explore new solutions (Usage Scenario Two). Even in
these two usage scenarios individuals with high technical expertise
still rely on considerable manual effort, but this in fact might be an
appropriate use of their expertise and focus on “bigger problems”,
especially if other trivially automated tasks are reliably handled by
an AutoML system. Individuals with lower or and evolving techni-
cal expertise require much more support and guidance and would
rely much more on full automation to rapidly prototype solutions
(Usage Scenario Two) or even to begin to engage in data science
work more generally (Usage Scenario Three). However, while these
individuals rely on AutoML systems to guide them, their domain
expertise still needs to be incorporated in downstream steps.

While Figure 1 is a useful illustrative summary of our findings,
it needs to be further validated in future studies that assess its
generalizability. We suggest how to do so in our Discussion section.



CHI ’21, May 08–13, 2021, Yokohama, Japan Crisan and Fiore-Gartland, et al.

5.3 Eliciting Tasks for Visualization Design
Taken together, these usage scenarios an levels of automation im-
pose a set of constraints for the design of visualization tools that op-
erate together with AutoML technologies. Visualization researchers
need to carefully consider where and how automation is currently
deployed, the diversity and expertise of the data science teams, and
the full breadthof data science processes. We have illustrated a set
of steps and proposed the levels of automation in Figure 1 that
data workers with different levels of expertise desire. Importantly,
by illustrating an end-to-end pipeline, we encourage visualization
researchers to consider how changes across a workflow influence
the kinds of data to be visualized and the fundamental tasks that
these workflow steps support. For example, ‘prototyping’ may have
different tasks associated to it depending on whether the analysts
want to develop a new model, fail fast, or prototype some solution
for a customer. The ‘monitor’ process in deployment could rea-
sonably rely on high automation until the system requires human
action, much like auto pilot in aircraft. Alternatively, ‘exploration’
may require less automation if the user is expected to steer the
algorithm. Without a concrete understanding of usage scenarios,
data science steps, and level of automation, researchers risk elicit-
ing inappropriate tasks and creating visualization tools that will
be dismissed because they are not well integrated into end-to-end
data science workflows. Visualization researchers can reference our
findings and the summary in Figure 1 as a guide to support their
own task elicitation for the design and evaluation of visualization
tools.

5.4 Modifications to our Analytic Framework
Lastly, we briefly reflect on our findings and propose modifica-
tions to the framework of data science work and workers reported
in [10]. We remind the reader that this framework is described in
Section 3.2 and delineates a set of higher and associated lower
order data science processes that we used as part of selective cod-
ing analysis. First, we propose that Collaboration be added as a
lower-order processes of Communication. While collaboration
was part of the original framework there was not enough evidence
to determine how it should be incorporated. This analysis sug-
gests it belongs as a component of Communication alongside
documentation and dissemination lower order processes. Moreover,
collaboration emphasizes the ways that individuals engage in multi-
directional exchanges of knowledge and data products (data, code,
models, documents), whereas dissemination refers to a more uni-
directional exchange of knowledge from an individual to others.
Second, we propose that governance be included as a lower-order
process of deployment. While governance processes can technically
encompass all of data science work, our findings point to its specific
importance in managing the process of launching, monitoring, and
refining machine learning models deployed into production set-
tings. Finally, we propose a new higher order process, Guidance,
which follows communication. We assign three lower order guid-
ance processes based upon our analysis : human-machine guidance,
human-human guidance (or pedagogy), and organizational guid-
ance. Human-machine guidance describes the interplay between
AutoML tools surfacing new data insights to humans and humans
making corrections and refinements of AutoML models and results.

Human-human guidance describes the collective work in building a
data savvy organization and other efforts to bridge the data science
“knowledge gap”. Alternatively this could be referred to as peda-
gogical process. Finally, organization guidance refers to regulations
and other organizational processes that impose constraints on the
use of data, models, and the level of automation.

6 DISCUSSION
Visualization and HCI researchers have used enterprise studies to
discover unmet needs of practitioners that have inspired new re-
search trajectories that have ultimately led to new techniques and
tools. As we consider the future of AutoML in enterprise, we believe
a “cruise control” level of interaction [34] (Figure 1) is more likely to
be adopted. However, we see significant barriers to implementing
such a level of automation that stem from the diversity among data
workers with different types expertise, a complex tooling environ-
ment that needs to be integrated, and brittle workflows that still
rely on considerable human effort. Although visualization can play
a role in supporting ‘cruise-control’ type automation, it was not
being widely used to that effect and, in some cases, getting actively
removed from automated data science workflows.We believe this
lack of uptake is that visualization tools are potentially misspecified
for the tasks they need to support and that this stems from poor
understand of how automation is used in data science work and
where there are opportunities for human-in-the-loop interaction.
Our study fills this gap by surfacing usage scenarios and illustration
of automation throughout data science work, which informs the
goals and tasks feeding into visualization design and evaluation.

6.1 Implications for Automating Data Science
Work

Throughout our analysis, we found both AutoML and human-in-
the-loop to be misnomers for the processes that participants were
describing. First, we noted in Section 2 that AutoML is used to refer
to an ever-expanding set of data science processes from preparation
to deployment and as such is being used interchangeably with
‘automating data science’ (among other phrases). We argue this
is limiting as not all automation of data science needs to be in
service of machine learning systems.Moreover, the notion of end-to-
end AutoML obscures the human labor required for these systems
to work, now and in the future, leaving inadequate support for
human-machine collaboration. Echoing Wang’s [46] language, we
encourage researchers to augmenting data science with AutoML
rather than automating it. It is more than a matter of semantics
– the idea of augmenting data work explicitly makes space for
human engagement and brings humans needs to the forefront of
consideration.

Second, when we make explicit space for human engagement
we are encouraged to consider the diversity among data workers.
As we summarize in our three usage scenarios, this type of en-
gagement will vary depend on the goals of data workers and their
level of technical expertise. Along with prior studies [42, 52] we
found collaboration among data workers to be of critical impor-
tance to the success of data work. Commensurate with findings
from Hong [22] we also show that trust amongst individuals en-
gaged in data work was as important, or more so, than trust
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in AutoML. Surprisingly, AutoML technology appeared to erode
trust among collaborators of different technical expertise by en-
abling so called “citizen data scientists” to potentially automate
bad decision making. In theory, a human-in-the-loop paradigm for
augmenting data science work can also be useful to understand the
types of engagement between humans and machines that could
ameliorate some of these trust concerns. However, here, too we find
that human-in-the-loop is a limiting term. An AutoML correction
and refinement loop not only exists within a wider scope of data
science processes but also within organizational processes. While
the nomenclature of human-in-the-loop is not exclusive to a single
individual interacting with AutoML, we argue that the notion of
“humans-in-the-loops” more accurately captures how this technol-
ogy is used within enterprise settings. We note that a limitation of
our findings was that study participants were primarily, although
with some exceptions, experts in data science. While several were
managers who oversaw mixed teams, we none-the-less believe it
is useful to follow-up our findings by soliciting the views of those
individuals that are not data scientists, but work closely with them.

As Visualization and HCI researchers continue to explore ap-
plications of technology like AutoML in data science work, we
encourage them to consider the diversity of humans involved in
data science work, their different needs and varying degrees to
which they benefit from AutoML technology as well as the myriad
organizational loops that are entangled within AutoML and data
science.

6.2 Implications for Data Visualization
Systems

Overall, we see that there are opportunities for visualization tools
in data science work, especially in areas where there already ex-
ist considerable human labor. We especially see that participants
struggle to get an overview of data work and that this complicates
their ability to effectively handoff data, models, and results within
their organizations. A visual overview of data science workflows
emerged as an organic solution and is a promising area of future
research. But beyond this specific example, we hope that the usage
scenarios we present will help researchers identify new unmet visu-
alization needs toward the use of AutoML that we did not surface
here. However, the most troubling findings from our study concern
the ecological validity of data visualization systems. We hypothe-
size that one reason visualization tools were not more widely used
by participants was because they did not integrate well into existing
data science tooling environments. This may be because existing
visualization tools are developed as stand-alone systems where it
is difficult to import data and export results, or because existing
systems do not scale well to the volumes and varieties of data that
organizations collect, or even because these visualization systems
are themselves too brittle to flexibly adapt to variable data science
or AutoML workflows. Moreover, visualization tools may not cater
well to individuals across the gradient of technical expertise, and
thus may be too rudimentary for those with high technical exper-
tise and too complex for those with lower expertise. We encourage
researchers to use our findings as a guide for surfacing these threats
of ecological validity early.

Another fruitful area for visualization researchers is the creation
of guardrails that surface and alert individuals of potential issues
with their data, models, or results. The development of guardrails
can help to examine concerns toward automating bad decisions. Our
research indicates that their design is contingent upon individual
expertise, the context in which individuals are using AutoML, and
the level of automation that is expected. Some areas, like data
preparation, will require more human labor alongside tools that
automate their processes. Others, like monitoring a deployment
model would rely on human labor primarily to respond to events,
like the detection of model drift. Guardrails in both scenarios can
help analysts contextualize and triage problems as they arise, but the
design of these guardrails will differ between these two scenarios.
Well designed guardrails may also increase trust and collaboration
not only between data workers and automated processes, but also
among data science teams. While prior research has suggested
design considerations [2] and potential analytic pitfalls across visual
analytics processes [36], research is needed to bring these together
to explore dynamic and adaptive visualization guardrails that are
appropriate for an individual’s current analytic context.

6.3 Limitations and Future Work
The lack of existing studies on AutoML use in enterprise settings
was the motivating factor for carrying out this research. Our find-
ings support prior research and shed new light on the challenges
and uses of AutoML in enterprise settings. However, we also found
that participants had quite different experiences in their use and
expectations of AutoML. As a result, our findings were simulta-
neously rich in capturing the diversity of experiences and sparse
in that some of our findings relied on a handful of observations.
To produce a cohesive analysis of these experiences we used an
existing framework for data science work and workers as a scaffold.
This sparseness of data and reliance on a scaffold is the primary
limitation of our findings. Further work is needed to validate the
generalizability of our findings, but this may be difficult due to the
novelty of AutoML technology itself. One fruitful area of future
work is to take the key insights from our research as constructs
around which to develop a survey instrument that probes into
AutoML uses more specifically than our current interview study.
We did not take this approach here because we felt we needed
additional information on AutoML use in the enterprise settings
and beyond. A future survey instrument could also be used within
a large mixed-methods approach, such as sequential explanatory
design, which uses the survey results, in lieu of the framework we
use here, as a more data-driven approach to inform a subsequent
qualitative analysis.

7 CONCLUSION
Automating data science work through AutoML technology will
continue to be commonplace in enterprise settings, especially at
large organizations that work with large volumes of data. We iden-
tified three usage scenarios for AutoML that we argue are routine
in current enterprise environments. These are automation routine
work, rapid prototyping for a potential solution, and democratizing
access to machine learning technology and data science work more
generally. Moreover, we surface the complex handoff of data work
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between AutoML systems and data workers, as well as between
data workers having different levels of technical expertise. Indeed,
AutoML systems still rely on considerable human effort to be effec-
tive and even as this technology improves, human oversight will
still be required to be sure it is safe and effective. While data visual-
ization can play an important role together with AutoML, we find
that it is used infrequently and is actively being minimized in data
science work. We see our findings as having important implications
for recasting the role of visualization in conjunction with AutoML
and data science more generally.
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