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ABSTRACT
The Count-Min sketch is an important and well-studied data sum-

marization method. It can estimate the count of any item in a stream

using a small, fixed size data sketch. However, the accuracy of the

Count-Min sketch depends on characteristics of the underlying

data. This has led to a number of count estimation procedures

which work well in one scenario but perform poorly in others. A

practitioner is faced with two basic, unanswered questions. Given

an estimate, what is its error? Which estimation procedure should

be chosen when the data is unknown?

We provide answers to these questions. We derive new count

estimators, including a provably optimal estimator, which best or

match previous estimators in all scenarios.We also provide practical,

tight error bounds at query time for all estimators and methods to

tune sketch parameters using these bounds.

The key observation is that the full distribution of errors in each

counter can be empirically estimated from the sketch itself. By first

estimating this distribution, count estimation becomes a statistical

estimation and inference problem with a known error distribution.

This provides both a principled way to derive new and optimal

estimators as well as a way to study the error and properties of

existing estimators.
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1 INTRODUCTION
The Count-Min sketch has proven to be one of the most effective

sketches for obtaining approximate counts for pointwise queries

and for computing approximate inner products. Having such a

summarization has become increasingly important in the current

world of huge streaming datasets. For example, the ad prediction

and reporting problem often relies on computing historical click and

ad impression counts for every ad, across billions of users broken

down by country, IP, and other dimensions [25]. The combinatorial

number of possible breakdowns grows the number of counters

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5552-0/18/08.

https://doi.org/10.1145/3219819.3219975

needed for exact aggregations to the trillions and beyond, making

storage and computation intractable.

However, there are notable cases where the sketch performs sub-

optimally or poorly. For example, when there are few heavy hitters

and a large number of items, the Count-Min sketch can be highly

biased and perform poorly compared to the Count sketch [3]. This

has led to a number of attempts [16], [19], [10], [20], [4] to improve

estimation from the Count-Min sketch in these regimes. In all cases,

these methods can be shown to perform suboptimally in some

regimes or for some sketch parameter settings and often worse

than the basic Count-Min estimator. As a result, it is unclear to a

practitioner which method to choose. Although several empirical

studies [24], [7] have attempted to address this issue, choosing the

best method has required a priori knowledge of the unseen data’s

properties. A second issue with the Count-Min sketch is that there

is no practical estimate of the error that can be reported for a query.

Although it has a probabilistic error guarantee, this guarantee is

extremely loose and of little to no practical use.

This paper introduces methods that provide better accuracy than

existing methods under all regimes and provide tight, practical

error bounds. This takes the guesswork out of count estimation.

Our approach treats count estimation from the Count-Min sketch

as a statistical estimation problem where the irrelevant counts are

modeled as error terms.

The key idea is that the distribution of these error terms can

be estimated from the sketch itself. Equipped with an error distri-

bution, we develop two classes of estimators: ones which use the

full likelihood information and ad-hoc estimators with some good

properties. All existing estimators are shown to be from the latter

class. For these estimators, we show that bootstrap methods can be

used to debias a wide class of estimators and obtain tight confidence

intervals for them. For likelihood based methods, we propose two

estimators: a maximum likelihood estimator and a Bayesian estima-

tor. The Bayesian estimator, while more computationally expensive,

is proved to be optimal even when the sketch is of fixed depth.

The more practical maximum likelihood estimator is empirically

shown to outperform all other methods in all scenarios. Key to the

likelihood based methods is a non-parametric estimate of the error

distribution. We show this can be accomplished with log-concave

density estimation. This estimator has attractive properties as it

requires no tuning parameters and yields a concave log-likelihood

function that ensures maximum likelihood estimation is fast and

easy. This log-likelihood generates robust count estimators even

when the assumption of log-concavity is false.

In addition to the practical improvements motivated by theory,

our work also advances our understanding of the Count-Min sketch
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and related sketches. We serve as a brief survey of existing estima-

tion algorithms and summarize the techniques used. We show that

unlike existing methods which exploit only one or two techniques,

our method is able to exploit all of them to obtain better results.

The paper is structured as follows. First, we review the Count-

Min sketch and define the empirical error distribution relative to a

pointwise query. Next, we give a brief survey of existing work on

improving estimation for the sketch, provide insights into how they

work, and show they can be generalized in natural ways. Section

4 then introduces the bootstrap and shows how simple statistics

can be converted into unbiased estimators for the count and gives

procedures to construct tight error bounds. As simple statistics may

not make full use of the information in the data, section 5 shows that

the likelihood can be non-parametrically estimated from the data

and proposes estimators based on it. Section 7 provides empirical

results on real and synthetic data to show that our estimators are

indeed the most accurate in a variety of settings and that the error

bounds are tight

Throughout the paper we rely heavily on statistical estimation

theory and concepts that we unfortunately do not have sufficient

space to cover in detail. These concepts are the full distribution

based counterparts to the tail probability and concentration inequal-

ity driven theory common in the sketching literature.

2 COUNT-MIN
The Count-Min sketch compresses and aggregates a large and pos-

sibly unknown number of (item, count ) tuples into a finite sketch

of r × k numeric counters. It allows for two basic types of queries:

1) pointwise queries which provide an estimate of the aggregated

count for any item or set of items, and 2) inner product queries

which provide for an estimate for uTv for count vectors u and v
indexed by distinct items. These two basic queries can be used to

formulate more complex queries. For example, aggregated counts

for range queries can be constructed out of pointwise queries that

expand numeric valued items into membership in a set of dyadic

ranges [8]. We focus only on pointwise queries in this paper though

some of our techniques can translate to the inner product case.

The Count-Min summarization technique can be decomposed

into the construction of the sketch and the estimation procedure

for count queries. In this paper, we focus on improvements to

estimation and not on sketch construction. For clarity, we will refer

to the construction as the Count+ summarization and the estimator

as the Min estimator. Here, the plus sign represents the one-sided

errors for the sketch.

An r×k Count+ sketch consists of two parts: a hash based projec-

tion and replication. The first hashes each item to one of k counters.

The k vector of observed counters is obtained by summing the

counts in each bin. The second part simply replicates this process r
times with independent hashes. r and k are often referred to as the

depth and width of the sketch.

More precisely, given a hash function h, the (item, count) pair

(xi , ci ) updates the counter vector V by the rule

V
(new )
h (xi )

= V
(old )
h (xi )

+ ci . (1)

Symbol Definition

n Vector of all counts indexed by item

n̂x Estimated count for item x
I Set of indices that x or S are hashed to

r × k (# of replicates) × (counters per replicate)

h(a) Hash function for replicate a
V Count-Min counters

V
(a)
i , V(a,i ) ith counter in replicate a

ϵ Vector of errors (relative to some item x )
F , F True and empirical distribution of errors

M,M (a)
Projection matrix for the sketch and for replicate a

Table 1: Table of symbols

This process is repeated r times to obtain independent identically

distributed (i.i.d.) vectors V(a)
using independent hashes h(a) for

a = 1, . . . , r .
Estimation from this sketch is simple and relies on the fact that

counts are non-negative. Denote the vector of true counts indexed

by item by n. For any of the k-vectors V (a)
, the counter V

(a)
h (a ) (x )

is an upper bound on the total count nx for item x . The original
Min-estimator for the Count+ sketch takes the minimum over the

r replicates

N̂x = min

a
V
(a)
h (a ) (x )

≥ nx . (2)

Several simple observations can be made from this construction

and estimator. Only the counters that an item is hashed to contain

any information about its count. Removing an item and its count

from the Count+ summarization yields vectors of exchangeable

error terms where the error terms are all non-negative. The Min

estimator is biased as it cannot underestimate the count. More

formally, for any replicate V (a)
,

V
(a)
i = nx 1(h

(a) (x ) = i ) + ϵ
(a)
i (3)

where the ϵ
(a)
i ≥ 0 are identically distributed and exchangeable.

These observations motivate our basic strategy. Take counters

which only contain error terms. Use them to empirically estimate a

non-centered, non-negative error distribution. An item’s counters

plus the error distribution for those counters provides all the avail-

able information to estimate the item’s count. Statistical estimation

techniques then yield count and error estimates. Furthermore, when

the estimated error distribution is correct, an optimal estimator can

be derived.

2.1 Linear algebra of the Count-Min sketch
The Count+ summarization is an example of a linear sketch. In

other words, the sketch is a linear transformation of the underlying

counts n. Specifically, each replicate is a random projectionM (a)

of the counts n where the construction ofM (a)
does not depend on

n. This may be expressed as

V (a) = M (a)n (4)

whereM (a)
is a k × d random binary matrix with precisely 1 non-

zero value per column. More explicitly,M
(a)
ix = 1 if h(a) (x ) = i and



0 otherwise. For succinctness in notation we denote the concatena-

tion of theV (a)
as simply V and likewise forM. We also writeV

(a)
i

by Va,i and similarly forM.

When only a subset S is of interest, the sketch has the form,

V = M·,SnS + ϵ (S ) (5)

ϵ (S ) = M·,Sc nSc . (6)

Note that the equation representing the counters V has the same

form as a linear regression problem where M·,S are the known

covariates and nS are the unknown regression coefficients. The

error terms ϵ (S ) are defined relative to the queried items S . It differs
from typical linear regression problems in that the errors are not

centered to have mean zero, and the distribution of the errors is

not known or assumed. For notational convenience, we will simply

write ϵ for the error term as S is always clear from the context.

2.2 Empirical error distributions
Thus far, we have defined the form of the statistical model modulo

specification of the error distribution. While typical statistical mod-

eling tasks require strong assumptions on the error distribution,

the Count+ summarization allows the error distribution to be non-

parametrically estimated from the sketch itself. For any pointwise

query for an item x , only the r counters that x hashes to provide in-

formation about the count nx . The remaining r (k−1) ≫ r counters
are draws from an error distribution. This large sample of observed

errors is the empirical error distribution.

The significance of having an accurate empirical version of the

true error distribution is that it allows us to improve estimation

and generate tight error bounds. When its functional form is also

estimated, it reduces the count estimation problem to a familiar

problem of parameter estimation with a known error distribution

where the statistical machinery for optimal and efficient estimation

can be applied as we do in section 5.

3 EXISTINGWORK
We first examine existing work on improving the Min estimator and

then show how our work encompasses all previous estimators. The

estimation techniques for the Count+ summary can be categorized

into four basic ideas:

(1) Bias reduction

(2) Linear Regression

(3) Support constraints

(4) Robust objective choice

Each existing estimator exploits only one or two of these ideas. For

example, the Min estimator exploits only the non-negative support

constraint of the error distribution. The Median estimator exploits

only a robust L1 objective choice.

3.1 Debiasing
Most prior work, [10], [16], [4], focus on debiasing the estimator

under different choices of objectives. We describe this debiasing

operation with a more general procedure and list the choices made

by each procedure. This allows us to extend debiasing to a large

class of base estimators, such as any quantile.

Let I be the set of (replicate number, index) ∈ {1, . . . , r } ×
{1, . . . ,k } pairs that item x is hashed to. Let T be some function on

a set of r counters so that

T (VI ) = nx +T (ϵI ). (7)

We refer to this as the translation property in this paper. Obvi-

ous examples of T include the mean, minimum, median, and any

quantile. These are also all special cases of maximizers of the form

T (VI ) = argmaxθ J (VI − θ ). For the mean, J (x ) = ∥x ∥2
2
, and for

the median, J (x ) = ∥x ∥1. Any maximizer of this form has the

translation property.

For any T satisfying this property, T (VI ) − µ is an unbiased

estimate for nx when µ = ET (ϵI ). This yields a general method for

constructing a debiased estimator. 1) Choose a function T with the

translation property, and 2) find an empirical estimate of the bias µ.
For the hCount* estimator [16],T remains the minimum. To esti-

mate the bias, they explicitly query for a small set of items that are

known to have count 0 and take the average of the corresponding

estimates. For the CMM estimators [10],T is taken to be the median.

Rather than explicitly querying to find noise counters, they use

counters that do not to contain the query key to estimate the bias.

Since ET (ϵI ) ≈ ET (ϵI′ ) regardless of the sizes of I and I ′, the

resulting estimate is nearly unbiased.

Bias Aware estimation [4] proposes other debiased Median and

Mean estimators for T . They differ from other debiasing methods

since they use information not contained in the sketch itself. Rather

than directly applying the mean or median to the setVI of relevant

counters, they compute "debiased counters" Ṽi = Vi − β (Wi − 1)
whereWi is the number of items hashed to counter Vi and β is a

per item bias estimate. By construction the error terms T (ṼI − nx )
have mean 0. However, computing this requires knowing and being

able to iterate over the universe of distinct items.

3.2 Regression and Support Constraints
When multiple items counts are estimated together, one item’s

estimate can reduce the error for another item when there is a hash

collision. More formally, equation 5 shows that adding elements

to the set S of desired item counts reduces the number of items

mapping to the error term. When the added items are heavy hitters,

this can substantially reduce the magnitude of the error. The choice

of regression model is thus dictated by what one knows about the

universe of items and the unknown error distribution

Under the assumption that the error distribution is normal and

only a subset S of items are known, one recovers the linear least

squares method of [19]. This is equivalent to the solution of the

maximization problem

n̂s = argmax

θ
∥V −M·,Sθ ∥22 . (8)

If the entire universe of items is known, the Counter Braids

estimation algorithm [20] is guaranteed to be no worse than the

Min estimator and can often recover the exact counts. The Counter

Braids estimator does so via a message passing algorithm that

provides deterministic upper and lower bounds on the estimated

counts. We show in full version of this paper that this algorithm can

be formulated as a standard optimization problem. It is a cutting

plane algorithm [17] for finding the feasible set for an optimization

problem, and the feasible set exploits only the non-negative support

of error distributions.



Exploiting ideas from both methods yields the general class of

regression based procedures that solve the constrained optimization

problem

n̂S = argmin

θ ≥0 s .t .MI,Sθ ≤VI
J (VI −MI,Sθ ) (9)

where J is some loss function. Section 5 will show that an estimated

log-likelihood function yields a good loss function.

3.3 Our methods
When the problem is fully modeled by a statistical model, the four

techniques for improving estimation in the previous section can

be simplified into two: linear regression and modeling the error

distribution. The error distribution encodes the bias, support, and

optimal objective function to use for count estimation while regres-

sion incorporates joint knowledge of multiple counts. Furthermore,

the uncertainty of estimates can be inferred from the error distribu-

tion. It yields the exact sampling distribution of an estimator and

corresponding tight confidence intervals (CIs).

We propose two methods based on non-parametric modeling

of the error distribution. First, we propose a class of bootstrap

estimators which do not require explicit estimation of the error

distribution. This class of estimators can be based off statistics that

are fast and easy to compute and implement. It covers all existing

debiased estimators and allows for the easy generation of new

estimators with good properties. Second, we propose full likelihood

based estimators based on a non-parametric estimate of the error

density or mass function. These methods ensure all information

contained in the sketch can be exploited to yield optimal estimation

and can incorporate regression techniques to exploit information

about the universe of items.

4 BOOTSTRAP ESTIMATORS
The bootstrap [13] is a technique that yields properties of an es-

timator T by resampling the existing data rather than needing to

draw a new independent sample. In particular, it can be used to

estimate the bias and variance of an estimator. In our case, the näive

bootstrap will not work since there are only a small number r of
relevant counters to resample. However, given any statistic T with

the translation property, the translation property allows the r (k−1)
error counters to be used to estimate the sampling distribution of

the statistic: T (VI )
d
= nx + T (ϵR ) where R is an set of r indices

spanning the r replicates and
d
= indicates equality of distributions.

From this,it is easy to debiasT by takingT (VI )−ET (ϵR ) = nx +δI
where δI are now zero-mean error terms. Likewise, a confidence

interval for 0 based onT (ϵR ) can be translated to a confidence inter-
val for nx . This results in unbiased estimates as shown in theorem

4.1 and tight confidence intervals 4.3.

Theorem 4.1. Let T be any function that satisfies the translation
property. Consider an item x and the collection of indices I (x ) that
x is hashed to. Consider the empirical distribution of the counters
excluding those inI (x ), and denote expectation under this distribution
by EI (x )c . Let Yr be r i.i.d. draws from this distribution. Then,

n̂x = T (VI (x ) ) − EI (x )cT (Yr ) (10)

is an unbiased estimator for the count nx .

Proof. Denote by ϵ = V −M·,xnx the vector of error terms for

item x . By independence of the replicates, the error terms ϵi ∼ F for

i ∈ C are i.i.d. from some distribution F whenever each i belongs
to a different replicate. ChooseC to contain one index per replicate

and such that C ∩ I (x ) = ∅. It follows that ET (ϵI (x ) ) = ET (ϵC ) =
EI (x )cT (Yr ). Hence, En̂x = nx + ET (ϵI (x ) ) − ET (ϵC ) = nx . □

While this theorem constructs an unbiased estimator out of any

base statistic T that satisfies the translation property, we note it

is possible for the resulting estimate to be negative. When the

true counts are always non-negative, it is sensible to truncate the

estimate at 0 to ensure all estimates are non-negative as well. This

results in a slightly biased estimator. We apply this truncation to all

estimators, and hence refer to them as debiased and not unbiased

estimators. We also point out that the base statistic T cannot be a

truncated statistic as truncated statistics cannot have the translation

property.

4.1 Tight error estimation
Although the Count-Min sketch has been useful for estimating

counts, the problem of returning a practical error bound has not

been addressed before. Figure 1 shows that in the heavy tailed

regime where the Count-Min sketch performs well, the existing

Markov inequality based confidence intervals are an order of magni-

tude wider. We show that the empirical error distribution and boot-

strap not only yield practical error bounds, but that these bounds

are tight.

Previous analyses derive probabilistic bounds using Markov’s

inequality, P (n̂Min
x > nx + cEϵ1) = P (ϵ1 > cEϵ1)

r ≤ c−r where r
is the sketch depth and ϵ1 is the noise in a single counter. Since

Eϵ1 ≤ ntot /k , this yields a one-sided 1 − α confidence interval

with width w = ntotα
−1/r /k where k is the sketch width. This

bound is poor when data is heavily skewed since an item with

large count can have an arbitrarily large effect on the bound but

is highly unlikely to affect the estimate for any given item. While

this bound has been improved [9], [6], the improvement depends

on knowledge of the top heavy hitters or a strong assumption that

the count distribution is Zipf.

By comparison the bootstrap on aT with the translation property

gives not an inequality, but the equality

P (T (VI ) ≥ nx +w ) = P (T (ϵI ) ≥ w ) (11)

which can be computed almost exactly from the empirical error

distribution without any additional knowledge of the heavy hitters

or distributional assumptions.

More precisely, theorem 4.2 shows the bootstrap can be used to

construct confidence intervals that have the correct finite sample

coverage in all situations. A confidence interval R (V ) for nx at

level 1 − α is a probabilistic error bound which guarantees that

P (nx ∈ R (V )) ≥ 1 − α . These intervals may be one-sided like

those obtained fromMarkov’s inequality, symmetric, or asymmetric.

Corollary 4.3 shows any of the bootstrap confidence intervals are

tight in the sense that any procedure that always produces shorter

intervals must violate the desired error bound.

Theorem 4.2. Letuq be theq quantile of the empirical distribution
G of T (Yr ). The interval [T (VI (x ) ) −ub ,T (VI (x ) ) −ua] is a (b − a)
confidence interval for the count nx . The coverage of the interval is



G(ub ) − G(ua ) where G(y) denotes the probability a draw from the
empirical distribution is strictly less than y rather than less than or
equal to y.

Proof. By symmetry of the errors, P (T (ϵI (x ) ) ∈ [ua ,ub ]) =
E(G(ub )−G(ua )) ≥ (b−a). SubstitutingT (ϵI (x ) ) = T (VI (x ) )−nx
and rearranging gives the desired result. □

Corollary 4.3. Any shorter interval [T (VI (x ) ) − ũb ,T (VI (x ) −
ũa] with [ũa , ũb ] ⊊ [ua ,ub ] has coverage strictly less than b − a.

Proof. G(ũb ) − G(ũa ) < (b − a) □

In addition to more precise error bounds, figure 1 also shows

the actual coverage of the confidence intervals matches or exceeds

the desired coverage while being as tight as possible. The coverage

exceeds the desired coverage primarily when the intervals are nar-

row. In these cases, we verified that excess coverage is due to the

discrete jumps in probability in a discrete distribution. Attempts to

shorten the intervals yielded insufficient coverage. For example, re-

ducing the intervals by 0.5 on each side and effectively turning the

interval from a closed to open interval for discrete counts, reduced

the empirical coverage for a 90% CI for the MLE estimator from

0.91 to a less than advertised coverage of 0.88. Thus, the empirical

results verify the theory which states they are tight as possible.

In addition to returning error bounds at query time, section

6 demonstrates how tight confidence intervals can be converted

to power calculations. This provides a way to optimally tune the

sketch parameters based on a small pilot estimate of the count

distribution. Figure 3 illustrates the improvement in sketch error

obtainable by optimizing the sketch parameters.

4.2 Computation
Bootstrap quantities can pose some computational difficulty as they

are typically calculated via Monte Carlo simulation. However, in

some cases, the quantities can often be easily computed from the

empirical distribution [14]. In particular, the mean and the distribu-

tion of any quantile or order statistic can be easily approximated.

The order statistic X (i ) of a set of items X1, . . . ,Xr is the ith small-

est value in that set. For example the Min estimator is the order

statistic equal to the smallest value in a set of r values.
This can be done by relating the distribution of the order statis-

tics from F distributed random variables to those ofUni f orm(0, 1)
random variables. Recall that the inverse c.d.f. transform gener-

ates a F distributed random variable from aUni f orm(0, 1) random
variable via Yi = F−1 (Ui ) forUi ∼ Uni f orm(0, 1). Since F is mono-

tone, the order statistic Y(i ) = F−1 (U(i ) ). The distribution ofU(i ) is

well-known and isU(i ) ∼ Beta(i, r − i + 1).

When applied to debiasing operations, this givesEY(i ) ≈ F−1 (EU(i ) ) =

F−1 (i/(r + 1)). In particular, the Min estimator can be debiased us-

ing the estimated bias µ = F−1 (1/(r + 1)) where F is the empirical

distribution of the errors. More importantly, an exact confidence in-
terval can be computed directly from F by using an outer confidence
interval [21].

For the Min estimator, a "one-sided" 95% confidence interval

for the error is [0,F−1 (b95)] where b95 = Beta−1r (0.95) is the 0.95
quantile of a Beta(1, r ) distribution. This leads to algorithm 2 which

debiases the Min-estimator and provides a confidence interval. We
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Figure 1: Top: The confidence intervals deliver the promised
coverage. Overcoverage is due to the discreteness of the data
and probabilites when the accuracy is high. Bottom: The ex-
isting probabilistic bound based on Markov’s inequality is
extremely poor, typically being off by an order ofmagnitude
on a heavy tailed distribution. Except for the "one-sided" in-
terval, all intervals are the two-sided intervals given in algo-
rithm 1.

refer to this as a "one-sided" confidence interval since the upper

bound cannot be violated. A two-sided interval for the Min or

any quantile estimator can be similarly estimated. For the ith order

statistic, compute a 1−α confidence interval [a,b] forU(i ) . Theorem

4.2 gives that [T (VI )−F
−1 (b),T (VI )−F

−1 (a)] is a 1−α confidence

interval for the estimate. For implementation purposes, note that T
is the base estimator prior to debiasing.

Even when the bootstrap quantities cannot be directly computed

from the distribution of error counters, they can be computed just

once and applied to all count estimates. Since quantiles are always

robust and most estimators T that we consider are also robust to

large errors, there is little difference in estimating the bias µ and

interval [ua ,ub ] using all counters rather than only the counters

that do not contain a given item. This yields algorithm 1 which

debiases an estimator and returns a confidence interval.

5 LIKELIHOOD BASED ESTIMATION
In contrast to bootstrap methods, likelihood based methods must

explicitly estimate the error distribution. The benefit is that the



Algorithm 1 Bootstrap debiasing with Confidence Interval

function Pre-process Errors(T ,V ,a,b)
for i=1,. . . ,k do

Yi = {V(j,i ) : j = 1, . . . , r }
Zi ← T (Yi )

end for
Let G be the empirical c.d.f. of the {Zi }
(ua ,ub ) ← (G−1 (a),G−1 (b))
return µ = EGZ and [ua ,ub ]

end function
function Debiased-Estimator(x ,T ,V , µ,ua ,ub )

I ← {(i,h(i ) (x )) : i = 1, . . . , r }
n̂raw ← T (VI )
return n̂x = max{0, n̂raw − µ} and [n̂raw − ub , n̂raw − ua]

end function

Algorithm 2 Debiased Min estimator with Confidence Interval

function Debiased Count-Min(x ,V , ℓ)
I ← {(a,h(a) ) : a = 1, . . . , r }
n̂min ← mini ∈I Vi
µ ← kth smallest value of V (i.e. F−1 (1/r )).
b ← BetaCDF−1 (ℓ, 1, r )
ub ← (b · r · k )th smallest value of V (i.e. F−1 (b)).
return n̂x = max{n̂min − µ, 0} and

CI [max{n̂min − ub , 0}, n̂min].

end function

statistical machinery for efficient estimation and inference can then

be applied.

The setup of likelihood based inference is as follows. Denote the

unknown true error distribution’s cumulative distribution function

(c.d.f.) as F and its density or mass function as f . When Y is drawn

from a distribution with c.d.f. F , we write Y ∼ F . In the case of

a pointwise query for a single item, the distribution of a counter

Va,h (a ) (x ) ∼ F (· − nx ). Estimating the count nx is a parametric

estimation problem from the one-parameter location family {F (· −
θ )}θ ≥0 of distributions.

As can be seen from above, the estimation problem depends pri-

marily on a good estimate of the error distribution. Unlike the boot-

strap case, the functional form of the error distribution is needed

for count estimation. We show how this can be estimated non-

parametrically and without any additional tuning parameters. This

allows the easy application of maximum likelihood estimation as

well as Bayes optimal estimation under moderate assumptions. Fur-

thermore, the likelihood based approaches provide a framework

for performing joint estimation of counts via regression to obtain

even more accurate estimates.

5.1 Log-concave density estimation
To ensure good performance under all possible count distributions,

we use a non-parametric estimate of the error distribution under the

modest assumption that the distribution of the log-errors are log-

concave. The concavity has the added benefit that the continuous

relaxation of the maximum likelihood objective is easily maximized

by standard concave maximization algorithms. Furthermore, unlike

other non-parametric methods such as kernel density estimation, a

log-concave density has a consistent maximum likelihood estimator

[11] that requires no tuning of parameters such as the bandwidth.

Log-concave densities cover many common distributions. These

include the Poisson, Binomial, Exponential, Normal, Negative-Binomial,

among others.We remark that heavy tailed distributionswith proba-

bility f (y) ∝ y−α for largey have a log density or log mass function

that is log-convex in the tails rather than concave. In this case, we

compute a log-concave projection of the trimmed density which

results in linearly decaying tails. The resulting objective function is

a robust objective which can perform well even when the assump-

tions are not met. This robustness is illustrated in the long version

of this paper.

We also note that in many commonly used distributions where

the log-concavity assumption is invalid, the density or mass func-

tion is monotone decreasing. Though non-parametric density es-

timators for decreasing densities exist, they are unnecessary for

count estimation since theorem 5.1 shows any decreasing density

yields the Min estimator as the MLE. For any decreasing density

with unbounded support, a log-concave density estimator will also

recover a decreasing density as its estimate by theorem 5.2.

We are not aware of precise statements on the computational

complexity of the log-concave density estimation algorithms. How-

ever, the final estimate of the log density is always a linear spline.

Estimating the density with a spline is an optimization problem

with constraints equal to the number of knots. We find that our

final solutions typically have a small number of knots, 10 to 40, so

that fitting the density is inexpensive.

Theorem 5.1. Let ϵi be i.i.d. non-negative random variables from
some decreasing density or mass function f (x ) with support [0,∞)
or the non-negative integers N. The maximum likelihood estimator
for n given Vi = ni + ϵi is n̂ = mini Vi .

Proof. This trivially follows from comparing the likelihood at

n̂ to any other point. □

Theorem 5.2. Let f be a decreasing probability mass function
with finite entropy and ˆf be its log-concave projection. It follows that
ˆf is decreasing.

Proof. Given in full version of the paper. □

5.2 Maximum likelihood estimation
When the error density f is known, a standard estimation tech-

nique is maximum likelihood estimation. The maximum likelihood

estimate (MLE) for the count nx is given by

n̂x = argmax

θ

∑
i ∈I

log f (Vi − θ ) (12)

where I is the set of counters that item x hashes to. Although the

problem of estimating the count is a non-regular estimation problem

where standard asymptotic efficiency arguments for maximum

likelihood do not apply, maximum likelihood estimation can still

be shown to be asymptotically efficient in regimes where the Min

estimator does not achieve the best asymptotic rate [15]. This helps

explain why its performance dominates other methods. Figure 2

empirically shows the MLE is always the best estimator identifies
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Figure 2: Performance of Debiased estimators under differ-
ent error distribution shapes.We consider shifting themode
of a distribution (lower figure) and changing the heaviness
of the tails. The MLE is always the best or nearly the best es-
timator. For a truncated normal (left), the Min estimator is
optimal in the regimewhen themode is near 0, and theMean
is optimal when it is far. For a heavy-tailed t-distribution
(right), no simple statistic can match the MLE when the
mode is away from 0.

regimes in which it returns significantly more accurate results than

any simple statistic.

In practical scenarios where the sketch is shallow and there are

a small number of replicates, the asymptotic regime is not reached,

and the MLE can be biased. However, since the estimator is of the

form given in section 3.1, it can be debiased by the bootstrap proce-

dure in section 4. Empirical results show this additional debiasing

step is important for obtaining the best performing estimator in

all scenarios as shown in figure 4. Computation in this case can be

moderately expensive, however, as there is no analytic form for the

sampling distribution of the estimator, unlike for the Min- or other

quantile estimators.

5.3 Bayesian estimation
For finite samples, knowledge of the likelihood yields optimal Bayes

estimators given a prior and loss function. Given a prior distribution

π for the unknown count nx and error density f , the posterior

distribution for Nx is given by

p (nx |VI ) ∝ π (nx )
∏
i ∈I

f (Vi − nx ) (13)

where I is the set of indices x hashes to. Replacing the error density

f with its estimate
ˆf gives an estimated posterior. Given a loss

L(θ ,nx ), the optimal Bayesian estimator is the minimizer

n̂x = argmin

θ

∫
L(θ ,nx )p (nx |VI )dnx . (14)

This leads to the optimality result in theorem 5.3. In simple terms,

it states that if the number of replicates and average number of

distinct items per counter stays the same but the number of error

counters goes to infinity, then the Bayes optimal estimator using
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Figure 3: Tuning sketch depths r to optimize the confidence
interval width given a Negative-Binomial (30, 0.01) count dis-
tribution and fixed memory budget. Left: Shallow, wide
sketches outperform deep sketches except at high confi-
dence levels. Right: Two previously suggested depth settings
are compared to the optimized one for each level. Optimized
parameters can yield much narrower confidence intervals.

the approximate posterior converges to the true optimal estimator

in probability.

Theorem 5.3. Let {Ni }i be a sequence of infinitely exchangeable
counts with bounded marginal mass function д. Consider a sequence
of Count+ summaries on the first Poisson(d ) counts where d → ∞
such that d/k → λ > 0 and sketch parameters r is fixed and k → ∞.
Let fλ be the mass function of a Compound-Poisson(λ,д) and Fλ be
its c.d.f.. Let noptx be the optimal Bayes estimator given in equation
14 using a bounded loss function and n̂estx be the estimator using the
approximate posterior obtained by estimating f using the maximum
likelihood log-concave density estimator and an atomic mass at 0.
Assume fλ is log-concave and has finite entropy. Further assume
that the objective J (θ ) =

∫
L(θ ,y)p (y |V )dy has a well separated

maximum with probability 1. That is, given the maximizer θ0, if
J (θi ) → J (θ0) then θi → θ0. Then,

n̂estx − n
opt
x

p
→ 0. (15)

Proof. Given in the full version of the paper. □

We note that this optimality result is a strong finite sample

result, as only r counters contain an item’s count, rather than an

asymptotic optimality result or an even weaker rate result that is

typical in the literature. Only finitely many replicates are observed

for each item of interest.

6 TUNING SKETCH PARAMETERS
Although our methods take the guesswork out of what estimation

procedure to choose, the sketch creator must still choose the num-

ber of replicates r and the number of counters per replicate k , or
width. The original Count-Min paper [8] suggests choosing these

to minimize the space required to achieve a desired error guarantee.

For the guarantee, P (n̂x ≤ nx +ϵ ∥n∥1) < δ , their error bound yields
the suggestion r = ⌈log(1/δ )⌉ andm = ⌈e/ϵ⌉. It has been suggested

[6] that typically r ≈ 10 − 30 in practice but can be as low as 4 [7]

without obvious ill-effects. Several industry implementations such

as the RedisLabs module [23] choose a default of r = 10.



The previous suggestion finds the smallest sketch that will guar-

antee a certain confidence level and interval width based on a loose

confidence bound. The same can be applied to our tight confidence

intervals. We demonstrate how this can be done efficiently without

trial and error by using the counter distribution of a sketch. It is

easy to show that the counter distribution for a sketch is asymp-

totically Compound-Poisson(λ,д) where λ is the mean number of

distinct items per counter, and д is the distribution of item counts.

We first consider the natural case where there is a fixed memory

budget B = rk , and one desires the smallest interval width. Since the

asymptotic theory suggests the region where the Min estimator is

optimal or near optimal is the best regime, it is sensible to minimize

the width of the Min estimator’s interval. Let Fλ be the distribution

function of a Compound-Poisson(λ,д) distribution and Betar be

the distribution function of a Beta(1, r ) random variable. Given a

desired confidence level ℓ for the one-sided confidence interval, the

choice of r is

r̂ℓ = argmin

ρ
F−1ρ ·d/B (Beta

−1
ρ (ℓ)). (16)

where d is the number of distinct items.

This is easily computed from a single 1×B Count+ summary and

without knowledge of the number of distinct items. The summary

provides the error distribution Fλ0 where the rate λ0 = d/B and a

corresponding density estimate of fλ0 . The superposition theorem

for Poisson processes [18] easily gives that the error distribution for

any choice of parameters r×k can be computed as the convolutional

power f ∗rλ0
. This can be efficiently computed using a Fast-Fourier

transform. Figure 3 illustrates how the interval width changes with

r for a range of confidence levels and fixed memory budget.

Furthermore, the underlying data can be downsampled using

coordinated or bottom-k sampling [5] to estimate error distributions

with even smaller rates. This allows one to explore the confidence

interval widths for a range of sketch sizes as well.

As an illustration of how this can be applied in a database system,

consider the Google N-gram viewer which deals with the canonical

natural language processing task of computing counts of n-grams.

An n-gram is of a sequence of n words. For example, "An n-gram

consists" is a 3-gram. The number of n-grams and possible pointwise

queries is very large. One study [26] found there were on the order

of 10
10

unique 5-grams in 100 million English web pages out of

which ≈ 10
9
appeared at least 5 times. Naively tuning parameters

is costly. It requires computing a large number of exact counts as

well as repeatedly computing a sketch and estimated counts for

a large number of parameter settings. Our method shows that no

true counts need to be computed, the error is obtained by a single

quantile calculation, and only one sketch needs to be computed for

all parameter settings.

Even when prior information about the error or count distribu-

tion is unavailable, the asymptotic theory provides guidance on

how to choose the sketch parameters as wider sketches tend to be

closer to the "super-efficient" regime where the Min estimator is

nearly optimal.

7 EMPIRICAL RESULTS
We test our MLE estimator in a variety of real and synthetic situa-

tions. It is shown to match or best other estimators in all situations.

We also empirically show that our confidence intervals provide the

correct coverage. A comparison of these tight bounds with prior

bounds shows that they are orders of magnitude better.

For synthetic simulations, we use the family of Zipf-Mandelbrot,

or discrete power law, distributions. These distributions have prob-

ability mass function given by p (x ) ∝ (a + x )−α on the positive

integers. Here a is some offset that adjusts the mass near 1 with

smaller values having a larger mass at 1, and α controls the tail

behavior with smaller values having heavier tails. For α = 2, the

distribution has infinite variance. We always consider a universe

with d = 10
6
items.

For real world datasets, we used a network and a natural lan-

guage processing dataset. For network data, we used the CAIDA

Anonymized OC48 Internet Traces dataset [1]. In 15 minutes of

network traffic there were 21.8 million packets from 1.6 million

distinct source addresses and ports. We use a Count+ summary to

estimate the number of packets for each source. For natural lan-

guage processing data, we used the Google N-grams dataset [22]

for all 2-grams starting with the letters ’ta’. There are 1.4 million

distinct 2-grams out of a total of 713 million.

We used the R package logcondens [12] to perform log-concave

density estimation thoughwe note there is a corresponding package

logcondiscr [2] for discrete distribution. We chose the continuous

valued density estimation package so that the resulting objective

function is continuous and can be easily solved by a standard real-

valued optimizer.

Although we do not consider timings for our simulation to be

representative for practical implementations as R is slow, we report

that count estimation for 2000 counts for a sketch of size 8 × 106

took roughly 4 ms per count on a 2.4Ghz CPU when running on

a single thread. Each count estimate used roughly 16 evaluations

of the objective function when using the function optimize which
does not make use of known gradient or Hessian information.

To compare the sketches, we use the root mean squared error

and the relative efficiency. The relative efficiency of estimator ϕ1
to ϕ2 on random data X is

RelativeEfficiency (ϕ1,ϕ2) =
E∥ϕ2 (X ) − θ ∥2

2

E∥ϕ1 (X ) − θ ∥2
2

(17)

where θ are the true values being estimated. For unbiased estimators

of real valued θ this computes the ratio of the variances, and under

regular assumptions where the variance scales inversely to sample

size, the relative efficiency of β represents needing β times more

data for estimator ϕ1 to achieve the same error as ϕ2
We compare the following estimators: the Min, Debiased Min,

Debiased Mean, Debiased Median, MLE, and Debiased MLE es-

timators. Of these, the MLE estimators are the only completely

new estimators. Other estimators benefit from our computational

simplification when applicable. For all these estimators, the tight

confidence intervals are from our new bootstrap procedure. For

each sketch, we estimate the counts for the top 2000 heavy hit-

ters. In simulations, the sketch sizes range in depth from 2 to 16

replicates and width from 10
4
to 5 × 10

5
counters per replicate.

Figure 4 shows the empirical error and efficiency under the real

and synthetic scenarios. The debiased MLE estimator is clearly the

best estimator under all scenarios.
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Figure 4: The figures on the top show the performance of different estimators over a range of distribution skews and sketch
parameters while the bottom figures are on real world datasets. The Debiased MLE estimator is the most accurate estimator in
all scenarios. The Debiased Min estimator is competitive when there are heavy tails and particularly in the real datasets, but
the basic Count-Min estimator (orange dashed) is significantly worse than the Debiased MLE (solid blue) estimator. For the
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have very large errors that do not fit within the axes.



Figure 1 shows the coverage of the corresponding confidence

intervals for each of the estimators. They match the desired confi-

dence levels at all levels in a multitude of settings. The resulting

error bounds are orders of magnitude better than those available

from theoretical analysis. The long version of this paper also pro-

vides experimental results showing the improvement obtained by

joint estimation of the counts using regression with an empirically

estimated error distribution.

8 DISCUSSION
We discuss the applicability of our techniques to other counting

sketches and address computational issues that arise with using

empirical error distributions and likelihood based estimators.

The same idea of empirically estimating an error distribution to

improve count estimation can be applied to other counting sketches

and modifications of the Count+ summary. It is straightforward to

apply to linear sketches such as the Count sketch [3] and modifica-

tions to the Count+ summary that preserve linearity, for example

the time adaptive Ada-sketch [25]. However, that there is little rea-

son to prefer the Count summary over the Count+ summary for

pointwise queries. The Count summary is the same as the Count+

summary except item x ’s counter is randomly incremented by ei-

ther −nx or nx rather than nx . Thus, the error terms are necessarily

more noisy than those in a Count+ summary, and estimation should

not be expected to be better when exploiting the full likelihood.

Non-linear sketches such as the Conservative Update Count-Min

(CU-CM) sketch result in summaries where the error terms are no

longer exchangeable and cannot be used to improve estimation. As

a result, there is no debiasing operation nor confidence intervals

for it. Hence, it necessarily has poor performance in the same

regimes where the standard Count-Min sketch is biased and has

poor performance. In these regimes, the error and bias of CU-CM

grows linearlyO (λ) with the number of items λ in the sketch while

the error of the Count+MLE estimator will grow with the standard

deviation O (
√
λ).

Thus far, estimation of the empirical error distribution has been

assumed to have manageable computational cost. This is aided by

the fact that if a sketch does not change, then the error distribution

only needs to be estimated once. This may not be the case in stream-

ing settings. Furthermore, in extremely high throughput situations,

the maximum likelihood estimator may also be relatively expen-

sive to compute in comparison to simple estimators like the Min,

Mean, and Median. These problems may be alleviated in two ways.

First, the estimated error distribution can be updated infrequently.

If the empirical distribution is updated only when it can differ by

δ so that ∥Fn − F̂current ∥∞ < δ , then the number of times the

estimated error distribution is updated is logarithmic in the stream

size. The amortized cost of adding a count to the sketch goes to 0.

Second, rather than using the MLE estimator, the tight error bounds

can be used to periodically select the best simple estimator. Thus,

the estimator can smoothly transition from the regime where the

Min estimator is optimal to ones where the Mean or some quantile

estimator is better.

9 CONCLUSION
This paper addresses a number of practical problems for counting

sketches and advances our understanding of the mechanisms by

which they work. We provide two distinct primary contributions.

1) We give the first method that produces practical and tight error

estimates for a pointwise query, and 2) we derive improved and

optimal estimators that make full use of the information contained

in the sketch. Besides their immediate contributions to counting

sketches, we show they help solve other problems facing a practi-

tioner including which sketch and which count estimator to use

and how to select optimal sketch tuning parameters.
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