
EUROVIS 2022/ T. Höllt, W. Aigner, and M. Agus Short Paper

Blocks: Creating Rich Tables with Drag-and-Drop Interaction

Allison Whilden, Dirk Karis, Vidya Setlur, Rodion Degtyar, Jonathan Que, and Filippos Lymperopoulos

Tableau Software

Abstract
We present Blocks, a formalism that enables the building of visualizations by specifying layout, data relationships, and level of
detail (LOD) for specific portions of the visualization. Users can create and manipulate Blocks on a canvas interface through
drag-and-drop interaction, controlling the LOD of the data attributes for tabular style visualizations. We conducted a user study
to compare how 24 participants employ Blocks and Tableau to complete a target visualization task. Findings from the study
suggest that Blocks is a useful mechanism for creating visualizations with embedded microcharts, conditional formatting, and
custom layouts. We describe future directions for extending Blocks in visual analysis interfaces.

CCS Concepts
• Human-centered computing → Information visualization;

1 Introduction

Visual analysis tools help support the user in data exploration and
iterative view refinement. Some of these tools are more expressive,
i.e., giving expert users more control, while others are easier to
learn and faster to create visualizations. These tools are often driven
by underlying grammars of graphics [Wil05] that provide various
formalisms to concisely describe the parts of a visualization. Rea-
sonable defaults are applied to infer missing information to generate
a valid graphic. The downside of these concise representations is
that the support for expressiveness for visualization generation in
these tools is either limited or difficult for a user to learn how to do.

Drag-and-drop is one paradigm for supporting task expression
through user interaction where the visibility of the object of interest
replaces complex language syntax. VizQL [STH02] is one such
formalism that supports the expression of chart creation through
direct manipulation. While the language enables users to create
charts through its compositional algebra, there is still a tight coupling
between the query, the visualization, and the layout. Users often
spend significant time generating complex visualizations when they
have a specific structure in mind. The other paradigm for promoting
expressiveness for chart creation is through the programmatic use
of declarative specification grammars [Bos12, SRHH16, SMWH17].

Despite the prevalence of these tools, creating expressive data
visualizations still remains a challenging task. Beyond having in-
sight about how the data can be best visualized, users need to have
sufficient knowledge in using these tools for generating visualiza-
tions. So, how can we support users in their analytical workflows
by enabling a greater degree of flexibility and control over nesting
relationships, layout, and encodings yet providing the intuitiveness

of a user interface? In this paper, we explore this dichotomy between
expressibility and ease of use when creating rich tables.

Specifically, our contributions are as follows:

• We introduce Blocks, a formalism that builds upon VizQL by
supporting the nested relationships between attributes in a visu-
alization using a drag-and-drop interaction. Every component of
the visualization is an analytical entity to which different nesting
and encoding properties can be applied.

• We implement a Blocks System that provides a user increased
flexibility with layout and formatting options through the direct
manipulation of Block objects in the interface.

• We conducted a user study with 24 participants involving rich ta-
bles using Tableau and Blocks. Findings from the studies indicate
that Blocks is a promising paradigm for the creation of rich tables
and opens up additional research directions to pursue.

2 Related Work

2.1 Declarative specification grammars

Declarative visualization languages address the problem of expres-
siveness by allowing developers to express how they would like to
render a visualization. Vega [SRHH16] and Vega-Lite [SMWH17]
support the authoring of interactivity in the visualizations. While
these specification languages provide a great degree of flexibility in
how charts can be programmatically generated, they provide limited
support for displaying different levels of granularity within a field in
a visualization. Viser [WFB∗19] addresses this gap by automatically
synthesizing visualization scripts from simple visual sketches pro-
vided by the user. Specifically, given an input data set and a visual
sketch that demonstrates how to visualize a very small subset of

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0003-3722-406X

Allison Whilden et al. / Blocks: Creating Rich Tables with Drag-and-Drop Interaction

this data, their technique automatically generates a program that
can be used to visualize the entire data set. Ivy [MC21] proposes
parameterized declarative templates, an abstraction mechanism over
JSON-based visualization grammars. Harper and Agrawala [HA16]
convert D3 charts into reusable Vega-Lite templates. While our work
is similar to that of declarative grammars and template specifications
for abstracting low-level implementation details from the user, we
specifically support nested queries, layout, and encoding flexibility
through drag-and-drop interaction in the Blocks interface.

2.2 Visual analysis interfaces

Visual analysis tools have developed ways to help users in getting
started. The basic form of these tools for chart generation include
chart pickers [Ahl96]. Tableau and PowerBI, along with systems
like Charticulator [RLB19] are built on a visualization framework
that enables users to map fields to visual attributes using drag-and-
drop interaction. As more analytical capabilities are enabled in these
tools, there is a disconnect from the underlying abstraction, leading
to calculation editors and dialog menus that add both complexity
and friction to the analytical workflow.

Mixed-initiative VisRec systems combine manual specifica-
tion with recommendations [HOH18, KHPA12, YEB18, vdEvW13,
LBW19, Goo15, VWS∗18, LMH20]. These systems however, of-
fer little or no suggestions for how to create visualizations that
are more complex in terms of nesting or encoding properties.
Prior work has also explored combinations of interaction modal-
ities for creating visualizations. For example, responsive matrix
cells combine focus and context with semantic zooming to al-
low analysts to go from the overview of the matrix to details in
cells [HBS∗21]. Liger [SJPE19] combines shelf-based chart speci-
fication and visualization by demonstration. Hanpuku [BDFM17],
Data-Driven Guides [KSL∗17], and Data Illustrator [LTW∗18]
combine visual editor-style manipulation with chart specification.
Domino [GGL∗14] is a system where users can arrange and manipu-
late subsets, visualize data, and explicitly represent the relationships
between these subsets. However, Domino has limited nesting and
inheritance capabilities as it does not define parent-child relation-
ships between Blocks. Our work specifically addresses this gap and
focuses on enabling more expressive charts with nesting by using
drag-and-drop as an interaction paradigm.

3 Design Goals

To better understand the limitations for creating more expressive
visualizations, we interviewed 19 customers, analyzed 7 internal
dashboards, and reviewed 10 discussions on the Tableau Community
Forums [tab21a] that used various workarounds to accomplish their
analytical needs. From this analysis, we identify three design goals:

• DG1. Support drag-and-drop interaction: Our goal is to
maintain the ease of use provided by the drag-and-drop interface
and data-driven flow when creating visualizations.

• DG2. Better control over visualization components and
layout: When users have specific ideas of what they want to
create, their workflows often conflict with the system defaults.
Our goal is to support users with increased layout flexibility as

they generate charts for their analytical needs.

• DG3. Aggregate and encode at any Level of Detail (LOD) in a
visualization: Our goal is to provide the ability to evaluate data
attributes aggregated at any LOD in the visualization.

4 The Blocks Formalism

The Blocks formalism employs a set of connected local expressions
(i.e., Blocks). Each Block represents a single query and builds a
component of the visualization from it. Parent-child relationships
between the Blocks form a directed acyclic graph (DAG).

Any field-instance without an aggregation is called a Di-
mension; the set of all Dimensions in a given query is called the
LOD of that query. Fields with an aggregation are called Measures;
they are aggregated within groups defined by the LOD. The local
LOD of the Block is the set of all dimensions used by any encoding
within the Block. The full LOD of the Block is the union of its local
LOD and that of all of its ancestors. All of the measures used by
the Block are evaluated at the full LOD of the Block. In addition to
defining the LOD, the encodings map the query results to visual
and spatial encodings. By providing a means to encode (x-axis)
and (y-axis) for each visualization component, Blocks addresses
DG3 with respect to sparklines and other micro charts.

block := (block-name, layout-type,
mark-type, encoding, children)

children := {(child-group)}
child-group := {block-name}
layout-type := "rows" | "columns" | "inline"
mark-type := "text" | "shape" | "circle"

| "line" | "bar"
encoding := ({encoding-type},

field-instance)
encoding-type := "color" | "size"

| "shape"
| "text" | "x-axis"
| "y-axis" | "sort-asc"
| "sort-desc" | "detail"

field-instance := ([aggregation], field-name)

Each Block renders one mark of its mark-type per tuple in its
query result. The layout-type determines how each of the Block’s
rendered marks is laid out in space. A Block with the layout type
of rows (columns) creates a row (column) for each value in its
domain, each containing a single mark. A Block with the layout
type of inline renders all of its marks in a single shared space.
Child Blocks are laid out in relation to their parents’ positioning.
A child-group is a set of children that share the same row (for a
rows parent) or column (for a columns parent).

5 The Blocks System

The Blocks system provides an interface for creating Blocks and
viewing the resulting visualizations, as shown in Figure 1.

5.1 Blocks interface

The Blocks interface provides a drag-and-drop technique to encode
fields, consistent with DG1. Pills represent fields and a schema

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Allison Whilden et al. / Blocks: Creating Rich Tables with Drag-and-Drop Interaction
FR

O
N

T
EN

D
BA

CK
 E

N
D

Blocks Interface

Block specifications

1

Rows Columns
R

S
U

C

Block query
results

Block visual
data

Output Visualization4

Query Execution2 Row and Column Assignment3

Block R Block S

Block CBlock U

Figure 1: Blocks system overview. Users create Block GUI Cards shown in the interface (1), that define multiple field encodings at a single
LOD. The Block GUI card is translated into a Block specification. The specification consists of dimensions, measures aggregated to the LOD
of the cross product of the dimensions, layout, visual encodings, mark type, filters, and sort order. From this Block specification, a Block query
is issued to the data source (2). The output of a Block query is a Block result set with row and column assignments (3) that returns the tuples
and corresponding encoding results, rendered as an output visualization (4).

pane contains the list of fields from the data source. The Blocks
interface provides a canvas that supports an arbitrary number of
Blocks. Dragging out a pill to the canvas will create a new Block,
defaulting the Block’s encoding, mark type, and layout type based on
metadata of the field that the pill represents. For example, dragging
out a pill that represents a discrete string field will create a Block
with the layout type of rows, mark type of text, and that field encoded
on . The layout type and mark type are displayed at the top of the
Block. Encodings are displayed as a list inside the Block. Additional
pills can be dragged to the canvas to create a new, unrelated Block,
added as an additional encoding to an existing Block, or dropped
adjacent a Block to create a new related Block.

When a pill is dragged over an existing Block, drop targets appear
that represent any unused encodings in that Block that the system
provides. When a pill is dragged over an area adjacent to an exist-
ing Block, drop targets appear to assist in creating a new related
Block. Blocks placed to the right of or below related Blocks are
automatically determined to be child Blocks, shown by a chevron
icon (). Every Block must have both a Rows and a Columns parent
to determine its position in the visualization; more than two parents
are not permitted. If a Rows or Columns parent is not explicit in the
interface, that parent is added implicitly by the system. The leftmost
and topmost Blocks are considered children of implicit Rows root
and Columns root Blocks. A Block that has a Rows parent but not
a Columns parent uses the Column parent of its Rows parent, and
the converse for one with only a Columns parent. Inline Blocks do
not have children. If a Block appears in the interface as a child of an
Inline Block, it instead uses the Rows and Columns parents of the
Inline Block. Figure 1 (Section 1) shows the Blocks interface with
a Rows Block, R and a Columns Block child, S. Block S has two

inline Block children, one of which, Block U , shows a sparkline,
while Block C, shows a single value with a color encoding (DG2).

5.2 Row and Column Assignment

Each Block executes a single query resulting in multiple tables with
different schemas. The system assigns Row and Column indexes
from a single grid to tuples from all of these tables. This section
describes the process for Rows; it is repeated for Columns.

1. Produce a Block tree from the Blocks DAG by only considering
links from Rows Blocks to their children, excluding any other
links. The Blocks Interface ensures that this tree exists, is con-
nected, and has a single root at the implicit Rows root Block.
Figure 1 (Section 3) shows the trees for this visualization. Note
the implicitly-added parents, e.g., Block U is assigned R as its
Rows parent by way of Block S.

2. Produce a tuples tree by treating each tuple as a node. Its parent is
the tuple from its parent Block with matching dimension values.

3. Sort the children of each tuple, first in the order their Blocks
appear as children in the Blocks tree, and then in the order of the
Rows dimensions and user-specified sorts, if any, for each Block.

4. Assign row indexes to each tuple by walking the tuple tree in
depth-first order. Leaf tuples get a single, sequentially assigned
row index; interior nodes record the minimum and maximum row
indexes of their leaves.

5.3 Output visualization

Each tuple from a Rows or Columns Block forms a single cell
containing a single mark. Tuples from an Inline Block with the
same Row and Column parent tuples form a single cell. The values

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Allison Whilden et al. / Blocks: Creating Rich Tables with Drag-and-Drop Interaction

of visual encoding fields that are dimensions differentiate between
marks within that cell. Each cell is rendered on the grid at the
row and column indexes assigned by the previous step. Marks may
comprise a visualization (e.g., bar chart, scatter plot) depending on
visual encodings of the Block.

6 User Study

We conducted a user study to understand how Blocks could be useful
and how the paradigm could integrate into a more comprehensive vi-
sual analysis system. 24 volunteer participants (6 females, 18 males)
took part, recruited from a visual analytics organization. Participants
had a variety of backgrounds - user researcher, sales consultant, data
analyst, product manager, and technical program manager. Eight
users were experienced, eight had moderate experience, while eight
had limited proficiency with visual analytics tools.

6.1 Procedure and Apparatus

Two of the authors supported each session, one being the facilitator
and the other as the notetaker. The study trials were done remotely
over shared screen video conferences. All sessions took approxi-
mately 50 minutes and were recorded. We began the study with
the facilitator reading from an instructions script, followed by a
two-minute tutorial video of Blocks. Experimenter script, task in-
structions, and tutorial video are included in supplementary material.

Part 1: Open-ended exploration This task enabled us to observe
how people would explore the Blocks interface using the Superstore
dataset [sup21]. Instructions were: “Based on what you saw in the
tutorial video, we would like you to explore this data in the Blocks
prototype. Please let us know what questions or hypotheses you’re
trying to answer while using the interface.”

Part 2: Closed-ended tasks The closed-ended tasks were intended
to provide some consistent objectives for task comparison across
both Tableau and Blocks systems. Participants completed one of
three randomly assigned closed-ended tasks with corresponding
datasets - Creating a cross tab with barcharts [tit20], creating and
sorting a rich table [Gap20], or a table with sparklines [cov20]. Par-
ticipants performed the assigned task with a Tableau Online [tab21b]
workbook and the Blocks prototype.

We conducted a thematic analysis through open-coding of session
videos, focusing on strategies participants took. We use the notation
P# to refer to the study participants. We also conducted two-week
long diary studies with eight participants and include their task flows
in the supplementary material of the paper.

7 Study Findings

All participants were able to complete the three tasks in Blocks,
while three participants needed guidance to sort a table and add
sparklines in Tableau. To understand how intuitive the Blocks
paradigm is for users, we first examine the strategies participants
adopted for sense-making within the interface. Participants imme-
diately dragged attribute pills from the data pane onto the canvas.
P4 remarked, “I’m going to drag Category on the canvas, and I see
that it created a Block showing the various category values.” Partic-
ipants often dragged around Blocks to change the structure of the

visualization. The drop targets around a Block piqued participants’
curiosity in exploring what would happen when they dragged out
pills to these targets. P8 remarked, “I’d like to get an intuitive sense
as to what happens when I drop it here [pointing below the Block]
or there [pointing to the right].” Participants also found it useful to
modify the existing chart by dragging pills into new Blocks in the
middle of or adjacent to other Blocks, breaking down attributes into
targeted levels of detail. They found the visual layout of the Blocks
to directly inform the structure of the generated chart – “The LOD
of what is to the right is defined by what is to the left [P2]” and “You
build out the viz literally the way you think about it [P6].”

8 Discussion

General feedback from the participants was positive and suggested
that Blocks is a promising paradigm to have more control over the
layout and manipulating the LOD in the visualization. P12 remarked,
“This is ridiculously awesome. I’m not going to lie, but I have this
horrific cross tab bookmarked to do in Tableau. I can see doing
it in Blocks in a minute and a half.” Participants appreciated the
flexibility of being able to apply conditional formatting to different
parts of a visualization. P19 commented, “That’s cool. I’ve never
been able to do conditional color dimensions before.” Having more
control over LOD was a consistent feature that participants found
useful. P6 said, “Aha! I can get sparklines so easily.”

There were limitations with the Blocks prototype. The flexibility
that the Blocks interface affords comes with an inherent downside
of a vast set of drop-target options. P10 was overwhelmed with the
choices when he initially started exploring and remarked, “There are
so many arrows to choose from. It would be helpful if I can get a hint
as to where I should drop by pill based on what attribute I selected.”
Showing previews in the interface could better orient the user to the
workings of the interface. P12 suggested, “It would be really cool
if there are actions associated with the visual indicators of the drop
targets so the interface does not feel too free form.” Participants
wanted customization in the interface. P3 said, “It would be nice
if I could center the sparklines to the text in the table. I would
also like to add a dot on the maximum values in the sparklines.”
Participants also wanted advanced analytical capabilities such as
adding calculated fields to the visual panes in the charts.

9 Conclusion

We present Blocks, a new formalism that builds upon VizQL by
supporting the handling of nesting relationships between attributes
through direct manipulation. By treating each component of the
visualization as an analytical entity, users can set different LOD
and encoding properties through drag-and-drop interactions in the
Blocks interface. An evaluation of the Blocks interface and compar-
ing users’ analytical workflows with Tableau indicates that Blocks is
a useful paradigm for supporting the creation of rich tables. Future
research directions will explore additional analytical and interaction
capabilities in the system along with useful scaffolds for supporting
users during visual analysis. We hope that the insights from our
work can help strike a balance between expressivity, ease of use,
and analytical richness in visual analysis tools.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Allison Whilden et al. / Blocks: Creating Rich Tables with Drag-and-Drop Interaction

References
[Ahl96] AHLBERG C.: Spotfire: An information exploration environment.

SIGMOD Rec. 25, 4 (Dec. 1996), 25–29. URL: https://doi.org/10.
1145/245882.245893, doi:10.1145/245882.245893. 2

[BDFM17] BIGELOW A., DRUCKER S., FISHER D., MEYER M.: It-
erating between tools to create and edit visualizations. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (2017), 481–490.
doi:10.1109/TVCG.2016.2598609. 2

[Bos12] BOSTOCK M.: D3.js - data-driven documents. http://d3js.
org/. 1

[cov20] Covid-19 Dataset, 2020. CC-BY Dataset: https://covid19.
ca.gov. 4

[Gap20] GAPMINDER: World development indicators, 2020. CC-BY
Dataset: https://gapminder.org/data. 4

[GGL∗14] GRATZL S., GEHLENBORG N., LEX A., PFISTER H., STREIT
M.: Domino: Extracting, comparing, and manipulating subsets across
multiple tabular datasets. IEEE Transactions on Visualization and Com-
puter Graphics (InfoVis) 20, 12 (2014), 2023–2032. doi:10.1109/TVCG.
2014.2346260. 2

[Goo15] GOOGLE: Explore in Google Sheets. https://www.youtube.
com/watch?v=9TiXR5wwqPs. 2

[HA16] HARPER J., AGRAWALA M.: Converting basic d3 charts into
reusable style templates. IEEE Transactions on Visualization and Com-
puter Graphics PP (09 2016). doi:10.1109/TVCG.2017.2659744. 2

[HBS∗21] HORAK T., BERGER P., SCHUMANN H., DACHSELT R.,
TOMINSKI C.: Responsive matrix cells: A focus+context approach for
exploring and editing multivariate graphs. IEEE Transactions on Visual-
ization and Computer Graphics 27 (2021), 1644–1654. 2

[HOH18] HU K., ORGHIAN D., HIDALGO C.: Dive: A mixed-initiative
system supporting integrated data exploration workflows. In Proceedings
of the Workshop on Human-In-the-Loop Data Analytics (2018), ACM,
p. 5. 2

[KHPA12] KEY A., HOWE B., PERRY D., ARAGON C.: VizDeck. Pro-
ceedings of the 2012 international conference on Management of Data
- SIGMOD ’12 (2012), 681. URL: http://dl.acm.org/citation.
cfm?doid=2213836.2213931, doi:10.1145/2213836.2213931. 2

[KSL∗17] KIM N. W., SCHWEICKART E., LIU Z., DONTCHEVA M., LI
W., POPOVIC J., PFISTER H.: Data-driven guides: Supporting expressive
design for information graphics. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (2017), 491–500. doi:10.1109/TVCG.2016.
2598620. 2

[LBW19] LAW P.-M., BASOLE R. C., WU Y.: Duet: Helping data anal-
ysis novices conduct pairwise comparisons by minimal specification.
IEEE transactions on visualization and computer graphics 25, 1 (2019),
427–437. 2

[LMH20] LIN H., MORITZ D., HEER J.: Dziban : Balancing Agency
& Automation in Visualization Design via Anchored Recommendations.
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems - CHI ’20 (2020). 2

[LTW∗18] LIU Z., THOMPSON J., WILSON A., DONTCHEVA M., DE-
LOREY J., GRIGG S., KERR B., STASKO J.: Data illustrator: Augmenting
vector design tools with lazy data binding for expressive visualization au-
thoring. 1–13. URL: https://doi.org/10.1145/3173574.3173697.
2

[MC21] MCNUTT A. M., CHUGH R.: Integrated visualization editing
via parameterized declarative templates. ArXiv abs/2101.07902 (2021). 2

[RLB19] REN D., LEE B., BREHMER M.: Charticulator: Interac-
tive construction of bespoke chart layouts. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (Jan. 2019), 789–799.
URL: https://doi.org/10.1109/TVCG.2018.2865158, doi:10.
1109/TVCG.2018.2865158. 2

[SJPE19] SAKET B., JIANG L., PERIN C., ENDERT A.: Liger: Combin-
ing interaction paradigms for visual analysis, 2019. arXiv:1907.08345.
2

[SMWH17] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-Lite: A Grammar of Interactive Graphics. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350.
doi:10.1109/TVCG.2016.2599030. 1

[SRHH16] SATYANARAYAN A., RUSSELL R., HOFFSWELL J., HEER
J.: Reactive vega: A streaming dataflow architecture for declarative
interactive visualization. IEEE Trans. Visualization & Comp. Graph-
ics (Proc. InfoVis) (2016). URL: http://idl.cs.washington.edu/
papers/reactive-vega-architecture. 1

[STH02] STOLTE C., TANG D., HANRAHAN P.: Polaris: A system for
query, analysis, and visualization of multidimensional relational databases.
IEEE Transactions on Visualization and Computer Graphics 8, 1 (Jan.
2002), 52–65. URL: https://doi.org/10.1109/2945.981851, doi:
10.1109/2945.981851. 1

[sup21] Tableau Superstore, 2021. CC-BY Dataset: https:
//help.tableau.com/current/guides/get-started-tutorial/
en-us/get-started-tutorial-connect.htm. 4

[tab21a] Tableau Community Forum. https://community.tableau.
com, 2021. 2

[tab21b] Tableau Online, 2021. https://online.tableau.com. 4

[tit20] Encyclopedia Titanica, 2020. CC-BY Dataset: https://www.
encyclopedia-titanica.org. 4

[vdEvW13] VAN DEN ELZEN S., VAN WIJK J. J.: Small multiples, large
singles: A new approach for visual data exploration. In Computer Graph-
ics Forum (2013), vol. 32, Wiley Online Library, pp. 191–200. 2

[VWS∗18] VIEGAS F., WATTENBERG M., SMILKOV D., WEXLER J.,
GUNDRUM D.: Generating charts from data in a data table. US
20180088753 A1 (2018). 2

[WFB∗19] WANG C., FENG Y., BODIK R., CHEUNG A., DILLIG I.:
Visualization by example. Proc. ACM Program. Lang. 4, POPL (Dec.
2019). URL: https://doi.org/10.1145/3371117, doi:10.1145/
3371117. 1

[Wil05] WILKINSON L.: The Grammar of Graphics (Statistics and Com-
puting). Springer-Verlag, Berlin, Heidelberg, 2005. 1

[YEB18] YALÇIN M. A., ELMQVIST N., BEDERSON B. B.: Keshif:
Rapid and expressive tabular data exploration for novices. IEEE transac-
tions on visualization and computer graphics 24, 8 (2018), 2339–2352.
2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://doi.org/10.1145/245882.245893
https://doi.org/10.1145/245882.245893
https://doi.org/10.1145/245882.245893
https://doi.org/10.1109/TVCG.2016.2598609
http://d3js.org/
http://d3js.org/
https://covid19.ca.gov
https://covid19.ca.gov
https://gapminder.org/data
https://doi.org/10.1109/TVCG.2014.2346260
https://doi.org/10.1109/TVCG.2014.2346260
https://www.youtube.com/watch?v=9TiXR5wwqPs
https://www.youtube.com/watch?v=9TiXR5wwqPs
https://doi.org/10.1109/TVCG.2017.2659744
http://dl.acm.org/citation.cfm?doid=2213836.2213931
http://dl.acm.org/citation.cfm?doid=2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/TVCG.2018.2865158
http://arxiv.org/abs/1907.08345
https://doi.org/10.1109/TVCG.2016.2599030
http://idl.cs.washington.edu/papers/reactive-vega-architecture
http://idl.cs.washington.edu/papers/reactive-vega-architecture
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/2945.981851
https://help.tableau.com/current/guides/get-started-tutorial/en-us/get-started-tutorial-connect.htm
https://help.tableau.com/current/guides/get-started-tutorial/en-us/get-started-tutorial-connect.htm
https://help.tableau.com/current/guides/get-started-tutorial/en-us/get-started-tutorial-connect.htm
https://community.tableau.com
https://community.tableau.com
https://online.tableau.com
https://www.encyclopedia-titanica.org
https://www.encyclopedia-titanica.org
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3371117

