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ABSTRACT
In 1989, Herbert Hufnagel introduced a mathematical model for a family of equal-area, pseudo-
cylindric projections, which includes the Mollweide, Wagner IV, and Eckert IV projections as
specializations. Hufnagel’s contribution has received very little attention, and his projections are
not available in any of the commonly used cartographic software packages. This article makes
three contributions: The Hufnagel family is introduced to the English-speaking community;
algorithms for computing the forward and reverse projections are presented; and the eight
new projections proposed by Hufnagel are analyzed.
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Introduction: the Hufnagel projection family

In 1989, in the German-language journal
Kartographische Nachrichten, Herbert Hufnagel intro-
duced a generalization of the Mollweide projection that
includes the Eckert IV and Wagner IV projections and
other useful equal-area pseudocylindric world map
projections (Hufnagel 1989). In the same article, he
also proposed eight new equal-area pseudocylindric
projections. The method by Hufnagel, who was a pro-
fessor at the Fachhochschule München (now Munich
University of Applied Sciences), allows for the creation
of a variety of equal-area pseudocylindric projections
that are useful for practical map making. Additionally,
smooth transitions between projections can be com-
puted, which can be useful for animated or user-con-
trolled transformations between projections.
Hufnagel’s projections are not currently available in
any cartographic software package.

The only reference to the Hufnagel projection family
that we could identify in the literature is by Čapek
(2001), who compared various world map projections.
While Čapek found that the distortion of Hufnagel’s
projections compares favorably to other commonly
used world map projections, he did not, however,
develop code for the projection equations. Instead, he
based his evaluation of the projections on a graphical
analysis of the graticules included in Hufnagel’s (1989)

publication (personal communication with R. Čapek,
April and May 2014).

Cartographers are not unanimous as to what projec-
tions are best used for world maps. Besides distortion
characteristics, the appearance and aesthetic preference
are important factors when selecting a world map
projection (Jenny, Patterson, and Hurni 2008). For
example, Šavrič et al. (2015) found that map readers
prefer pseudocylindric map projections (with straight
parallels) to world map projections with curved paral-
lels. Hufnagel’s equal-area projections are pseudocy-
lindric, and cartographers can tune their appearance
to their aesthetical preference by adjusting a set of
projection parameters.

Hufnagel’s projection family includes the Mollweide,
Eckert IV, Wagner IV, and any cylindrical equal-area
projection. By adjusting projection parameters, a vari-
ety of intermediate projections can be created, and
when projection parameters continuously change over
time, smooth transitions between these projections can
be created. There is potential for Hufnagel’s equal-area
transformation method to be applied in modified form
to other projections. It could possibly be added to the
adaptive composite map projection technique by Jenny
(2012), which adjusts the map projection to the geo-
graphical area displayed by the map. We therefore
believe that the details of Hufnagel’s method and pro-
jections merit to be documented and presented to the
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English-speaking community. It is our hope that with
this contribution, Hufnagel’s projections will be
included in cartographic software packages, and the
methods involved will help further the field and pro-
vide more to build upon.

The following section introduces Hufnagel’s
method; the description is loosely based on Hufnagel
(1989). The next section provides equations and an
algorithm using a look-up table for the conversion of
spherical coordinates to Cartesian planar coordinates.
This algorithmic method is also useful for fast imple-
mentations of the Mollweide, Eckert IV, and other
projections. The last section documents the eight pseu-
docylindric equal-area projections introduced by
Hufnagel. Appendix 1 proves that the cylindrical pro-
jection is a limiting case of the Hufnagel projection.

Hufnagel’s development

Hufnagel (1989) started with the Mollweide projection
using a polar coordinate system. An ellipse for the anti-
meridian (which forms the map boundary) is con-
structed by applying an affine stretching to a circle,
which results in varying the distance of the antimeridian
from the central meridian (see Figure 1). The affine
transformation, however, is not achieved by applying
different scale factors to x- and y-coordinates, but the
distance r from the projection’s origin is modulated with
cosine curves with double and quadruple periods, using
amplitude factors A and B. Equation (1) expresses this
general development (Hufnagel 1989). The graticule is
constructed by mirroring the first quadrant along the x-
and y-axes (Figure 1). The resulting map boundary is
symmetric relative to the x-axis (the equator) and the
y-axis (the central meridian) for any A and B, and they
intersect both axes at right angles. With A ¼ 0 and
B ¼ 0, a circle is obtained with radius r ¼ 1 (Figure 1).

xπ ¼ K " r " cosΨ
y ¼ K " r " sinΨ
r2 ¼ 1þ A " cos 2Ψ þ B " cos 4Ψ

(1)

In Equation (1), xπ and y are the projected coordi-
nates of the map boundary, Ψ is a parametric angle
(the angle from the positive direction of the x-axis to a
point on the map boundary), r is the distance from the
origin to a point on the map boundary, A and B are
amplitudes defining r, and K is a scale factor.

By changing the parameters A and B, a variety of
projections can be created. With the selection of an
appropriate mathematical relationship between the
parametric angle Ψ and the geographic latitude φ,
equal-area projections can be developed. The equal-
area property is maintained when the sum of area
highlighted in gray in Figure 1 is equal to half of the
area between the equator and latitude φ (which is
π " sinφ). From this condition one can derive the rela-
tion shown in Equation (2). Equation (3) is identical to
Equation (2), but Hufnagel eliminates r2 using
Equation (1) (Hufnagel 1989). In Equations (2) and
(3), φ is the geographic latitude; Ψ , r, A, B, and K are
defined as above.

π " sinφ ¼ K2

2

ðΨ

0

r2dΨ þK2

2
r2 " sinΨ " cosΨ

¼ K2

4
2
ðΨ

0

r2dΨ þ r2sin2Ψ

0

@

1

A

¼ K2

4
2Ψ þA " sin2Ψ þ B

2
sin4Ψ þ r2 " sin2Ψ

" #
;

(2)

π " sinφ ¼ K2

4

"
2Ψ þ

"
1þ A$ B

2

#
sin2Ψ

þ Aþ B
2

sin4Ψ þ B
2
sin6Ψ

#
:

(3)

When φ ¼ 90%, the corresponding Ψ in Equation (3)
is the maximum parametric angle Ψmax. For
Ψmax ¼ 90%, poles are represented with points. When
Ψmax is smaller than 90%, projections have pole lines.
Appendix 1 proves that when Ψmax approaches 0, the
Hufnagel projection transforms into an equal-area
cylindrical projection.

The value of the constant K in Equations (1)–(3) can
be obtained from Equation (3) by setting φ ¼ 90%,
Ψ ¼ Ψmax, and using the selected amplitudes A and B
(see also Equation (7)). To project the longitude λ, the
x-coordinate of the antimeridian is multiplied by λ=π
(Equation (4)) (Hufnagel 1989).

y

x

Figure 1. The affine stretching by modulating the radius r with
cosine curves (after Hufnagel 1989).
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x ¼ λ
π
" xπ ¼ K " λ

π
" r " cosΨ (4)

The final step in Hufnagel’s derivation is an equal-
area stretching applied to the projected x- and y-coordi-
nates. The stretching factor C adjusts the map to the
equator-to-central meridian ratio desired by the carto-
grapher (Equation (5)). The factor C is computed with
Equation (6), where α is the equator-to-central meridian
ratio, and Ψmax is the maximum parametric angle. K is
computed from A, B, and Ψmax with Equation (7).

x ¼ K " C
π

" λ " r " cosΨ; y ¼ K
C
" r " sinΨ (5)

C2 ¼ α " sinΨmax"ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A " cos 2Ψmax þ B " cos 4Ψmax

1þ Aþ B

r
(6)

Using Hufnagel’s derivation approach, the
Mollweide projection is created by first setting the
amplitude factors A and B to 0, which results in a
circular map boundary. Then, the equal-area condition
is applied to the circle using Equation (3) to compute a
parametric angle Ψ for each latitude φ. The maximum
parametric angle Ψmax is set to 90%, because the
Mollweide projection represents poles as points. And
finally, equal-area stretching with the factor C ¼

ffiffiffi
2

p

(Equation (6)) is applied to set the equator-to-central
meridian ratio α to 2. Computational techniques are
detailed in the next section.

Tobler’s hyperelliptical projection family also
includes the Mollweide projection (Tobler 1973).
However, Tobler and Hufnagel’s projection families are
parameterized differently and have considerably differ-
ent characteristics. Tobler uses a family of curves called
the hyperellipse, while Hufnagel uses a family of curves
that has no particular name. Unlike Tobler’s hyperel-
lipses, Hufnagel’s curves have inflection points, which
results in a greater diversity in his projection family. As
a practical matter for computation, Hufnagel’s develop-
ment also does not require numerical integration.

Some aspects of Hufnagel’s derivation are similar to
Wagner’s area-preserving transformation method
called Umbeziffern, meaning renumbering (Wagner
1931, 1932, 1941, 1949, 1962). With the parametric
angle Ψ , new latitude values are computed, and the

map is adjusted to the preferred equator-to-central
meridian ratio with the stretching factor C.

Algorithms for Hufnagel’s projection family

Individual members of Hufnagel’s projection family are
created by configuring four parameters: A 2 $1; 1½ ',
B 2 $1; 1½ ', Ψmax 2 0; π2

% &
, and C, which is a stretching

factor that adjusts the map to the preferred equator-to-
central meridian ratio. This section details algorithmic
steps for applying the parameters.

Direct equations for transforming spherical coordi-
nates to planar Cartesian coordinates do not exist for
Hufnagel’s projection family. To compute a parametric
angle Ψ for a corresponding latitude φ with Equation
(3), an iteration procedure has to be used. This is a
well-known characteristic of the Mollweide projection
(Mollweide 1805; Snyder 1987, 1993) and the Eckert IV
projection (Eckert 1906; Snyder 1987, 1993). Using the
Newton–Raphson method, the iteration process to find
Ψ for a given latitude φ is as follows:

(1) Selection of a seed value Ψ0 for the unknown
parametric angle Ψ .

(2) Correction !Ψ with Equation (8).
(3) Improved value of the parametric

angle: Ψnþ1 ¼ Ψn $!Ψ

The calculation is repeated until !Ψj j < ε (a small
threshold value). The selection of a seed value for the
parametric angle in step 1 is critical for the iterative
procedure to converge. We found no heuristic for a
seed value that works across all parameterizations of
the projection. Therefore, we built three lookup tables,
each with the same size (we used 101 elements each).
The first table contains linearly increasing values of the
parametric angle Ψ 2 0;Ψmax½ '. It serves as an “index”
into the other two tables, one of which goes forward to
the y value computed from Ψ , and the other of which
goes backward to the φ value computed from the same
Ψ . The tables represent the relationship between Ψ , y,
and φ given fixed A, B, C, and Ψmax. For a given Ψ
appearing in the first table, the corresponding y value
and φ value appear at the same index in their own
respective tables. We index off of Ψ rather than off of φ

!Ψ ¼
K2

4 2 " Ψn þ 1þ A$ B
2

' (
" sin 2Ψn þ AþB

2 " sin 4Ψn þ B
2 " sin 6Ψn

' (
$ π sinφ

K2

2 1þ 1þ A$ B
2

' (
" cos 2Ψn þ Aþ Bð Þ " cos 4Ψn þ 3B

2 " cos 6Ψn
' ( (8)

K2 ¼ 4π
2 " Ψmax þ 1þ A$ B

2

' (
" sin 2Ψmax þ AþB

2 " sin 4Ψmax þ B
2 " sin 6Ψmax

(7)
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or y in order to avoid having to iterate when calculat-
ing the tables, since y and φ both can be calculated in
closed form from Ψ . Algorithm 1 presents pseudocode
for the initialization of the lookup tables (with the
number of elements equal to TableSize).

Algorithm 1. Initialization of the lookup tables
1: for i 2 0; TableSize$ 1½ ' do
2: Ψ ¼ i"Ψmax

TableSize$1

3: if i ¼ 0 then
4: φ ¼ 0
5: else if i ¼ TableSize$ 1ð Þ then
6: φ ¼ 90%

7: else
8: φ from Equation (3)
9: end if
10: r from Equation (1)
11: y from Equation (5)
12: if i > 0 then
13: if y < yTable i $ 1½ ' or φ < latitudeTable

i$ 1½ ' then
14: raise folding graticule exception
15: end if
16: end if
17: paramAngleTable i½ ' ¼ Ψ

18: latitudeTable i½ ' ¼ φ

19: yTable i½ ' ¼ y
20: end for

Algorithm 1 uses the lookup table for the y-coordi-
nate to identify combinations of the parameters A, B,
and Ψmax that result in y values failing to increase
monotonically with φ, in which case an exception is
raised (lines 13–15). In other words, δy/δφ goes negative,
causing some higher latitudes to end up closer to the
equator on the map than lower latitudes do. This could
be detected more analytically but was not deemed worth
the effort; given the size of the look-up tables, only a tiny
uncertainty remains in detecting failure of monotonicity
while also yielding robust seed values.

To select a robust seed value for the parametric
angle Ψ for a latitude φ, we first find the two closest
latitudes in the latitude lookup table using a binary
search. The seed value for the parametric angle Ψ is
found with linear interpolation between the corre-
sponding parametric angles extracted from the lookup
table. With this approach, the seed value of Ψ is very
close to the exact value. Algorithm 2 presents pseudo-
code for the selection of a seed value Ψ0 of the para-
metric angle Ψ from the lookup tables.

Algorithm 2. Finding seed value Ψ0 of the para-
metric angle Ψ

Input: φ
1: imin ¼ 0
2: imax = TableSize
3: repeat
4: imid ¼ imaxþimin

2

) *

5: if imid equals imin then
6: break loop
7: else if φj j > latitudeTable imid½ ' then
8: imin ¼ imid

9: else
10: imax ¼ imid

11: end if
12: end loop
13: φ1 ¼ latitudeTable imin½ '
14: φ2 ¼ latitudeTable imin þ 1½ '
15: weight ¼ φj j$φ1

φ2$φ1

16: Ψ1 ¼ paramAngleTable imin½ '
17: Ψ2 ¼ paramAngleTable imin þ 1½ '
18: Ψ0 ¼ weight " Ψ2 $ Ψ1ð Þ þ Ψ1

19: return φ < 0 ? $Ψ0: Ψ0

After calculating the parametric angle Ψ , the
Cartesian coordinates are obtained with Equation
(5). Algorithm 3 presents pseudocode for the com-
putation of Cartesian coordinates from spherical
coordinates.

Algorithm 3. Projecting spherical coordinates to
Cartesian coordinates

Inputs: λ and φ

1: Find seed value Ψ0: (Algorithm 2)
2: repeat
3: !Ψnumerator of Equation (8)
4: if !Ψnumeratorj j < ε

5: break loop
6: end if
7: !Ψdenominator of Equation (8)
8: !Ψ ¼ Ψnumerator

!Ψdenominator

9: Ψnþ1 ¼ Ψn $!Ψ

10: end loop
11: r with Equation (1)
12: x with Equation (5)
13: y with Equation (5)
14: return x; y½ '
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The Mollweide, Eckert IV, and Wagner IV projec-
tions have direct reverse equations. However, general
members of the Hufnagel projection family require an
iteration procedure. The Newton–Raphson method can
be used with Equation (9) to find the correction !Ψ of
the parametric angle for a given y-coordinate (r is
defined in Equation (1)).

For the selection of a seed value Ψ0, the parametric
angle and y-coordinate look-up tables are used. The
algorithm used to find the seed value is similar to
Algorithm 2, except the y-coordinate is used instead
of the latitude value. After the parametric angle Ψ is
computed, the latitude can be obtained from Equation
(3) and the longitude is computed from Equation (5).
Algorithm 4 shows pseudocode for determining sphe-
rical coordinates from Cartesian coordinates.

Algorithm 4. Projecting Cartesian coordinates to
spherical coordinates

Inputs: x and y
1: Find seed value Ψ0: (Algorithm 2, using y-coordi-

nate lookup table)
2: repeat
3: !Ψnumerator of Equation (9)
4: if !Ψnumeratorj j < ε

5: break loop
6: end if
7: !Ψdenominator of Equation (9)
8: !Ψ ¼ Ψnumerator

!Ψdenominator

9: Ψnþ1 ¼ Ψn $!Ψ

10: end loop
11: r with Equation (1)
12: φ with Equation (3)
13: λ with Equation (5)
14: return λ;φ½ '

Hufnagel’s eight projections

Hufnagel introduced eight new projections for world
maps, which are all members of his map projection
family (Hufnagel 1989). The eight projections are
named Hufnagel II, III, IV, VII, IX, X, XI, and XII.
The numbering is not continuous, as Hufnagel did not

use the numerals I, V, VI, and VIII. Those respective
positions are occupied by the Mollweide, Wagner IV
(Snyder 1993; Wagner 1949, 1962), Eckert IV projec-
tions, and an approximation of the Eckert VI projec-
tion (Hufnagel 1989). Figure 2 illustrates the
projections proposed by Hufnagel, and Table 1 details
the parameters A, B, and Ψmax, and the equator-to-
central meridian ratio α (which is defined as a function
of the stretching factor C; see Equation (5)).

All projections in Figure 2 have an equator-to-cen-
tral meridian ratio of 2:1, except for the Hufnagel XII
projection, which has a ratio of 2.44. The Mollweide
and the Hufnagel II, III and IV projections show the
poles as points. Hufnagel (1989) noted that his II, III,
and IV projections have less overall distortion than the
Mollweide projection. This can be confirmed by the
weighted mean error in the overall scale distortion
indices and the mean angular deformation indices
(Canters and Decleir 1989), as well as by Čapek’s
acceptance index (Čapek 2001). Results are shown in
Table 2. Figure 3 shows local distortion patterns for the
12 projections by means of lines of constant maximum
angular deformation.

The eight projections in the second and third col-
umns in Figure 2 show the pole points as lines. The
length of the pole lines of the Eckert IV, Wagner IV,
and Hufnagel VII, VIII, and X projections is half the
equator length. The length of the pole line of the
Hufnagel IX projection is slightly shorter. Meridians
of the Wagner IV, the approximated Eckert VI, and the
Hufnagel VII projections meet the pole lines with an
obtuse angle. The ends of the meridians of the Eckert
IV and the Hufnagel IX and X projections are tangent
with the pole lines, that is, they smoothly transition
into the pole lines. The distortion indices of these
projections are very similar (Table 2). Hufnagel com-
ments that in his opinion, number IX is the most
aesthetically balanced projection (Hufnagel 1989).

The Hufnagel XI projects the poles as points, but
meridional convergence is so rapid toward the poles
that the poles can look like lines. Due to the unusual
boundary of this projection, Hufnagel states that its
visual appearance is debatable (Hufnagel 1989).

The Hufnagel XII projection has pole lines that have
almost the same length as the equator. Meridians
slightly bend where they approach the pole line, result-
ing in a projection that loosely resembles cylindrical
equal-area projections. The Hufnagel XII projection

!Ψ ¼
r2 " sin2Ψn $ y"C

K

+ ,2

sin 2Ψn " 1$ Aþ 2Bþ 2A$ 4Bð Þ " cos 2Ψn þ 3B " cos 4Ψnð Þ
(9)
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has the smallest mean angular deformation index of the
12 projections (Table 2).

Conclusion

Hufnagel proposes an interesting family of map projec-
tions that includes the Mollweide, Eckert IV, and Wagner
IV projections as special cases. Additional projections can
be created by varying the parameters A, B, and Ψmax, and
the equator-to-central meridian ratio of the map.
Hufnagel’s method is very flexible and allows for creating
a variety of equal-area pseudocylindric projections. Many

parameter combinations result in absurd distortion char-
acteristics or folding graticules that are of little value for
practical map making (Figure 4). We explored valid
ranges of the A, B, and Ψmax parameters that result in
non-folded graticules, but the distribution pattern of valid
combinations is very irregular and difficult to visualize.
Many projections in this pseudocylindric projection
family have nevertheless reasonable distortion properties,
and seem to be useful for a variety of equal-area world

Figure 2. The 12 projections presented by Hufnagel (1989) ordered by columns (Hufnagel did not use the numerals I, V, VI, VIII; the
Mollweide, Wagner IV, Eckert IV and an approximation of the Eckert VI projection occupy the corresponding positions).

Table 1. The 12 projections presented by Hufnagel (1989) with
their parameters.
Projection A B Ψmax α

Mollweide 0 0 90 2
Hufnagel II 1/18 −1/18 90 2
Hufnagel III 0.5 1/18 90 2
Hufnagel IV 1/12 −1/12 90 2
Eckert VI (approx.) −2/21 2/21 60 2
Wagner IV 0 0 60 2
Hufnagel VII 1/12 −1/12 60 2
Eckert IV 1 0 45 2
Hufnagel IX 2/3 1/3 45 2
Hufnagel X −2/3 2/3 30 2
Hufnagel XI 0 −1/9 90 2
Hufnagel XII 0 −1/9 40 2.44

Table 2. Distortion indices for the projections presented by
Hufnagel (1989): the weighted mean error in the overall scale
distortion index Dab (Canters and Decleir 1989), the mean
angular deformation index Dan (Canters and Decleir 1989),
and the area percentage with acceptable areal and angular
distortion Q (Čapek 2001).
Projection Dab Dan Q

Mollweide 0.39 32.28 70.6
Hufnagel II 0.37 30.33 75.8
Hufnagel III 0.37 30.27 76.7
Hufnagel IV 0.36 29.52 77.8
Eckert VI (approx.) 0.40 32.43 69.5
Wagner IV 0.38 30.39 76.3
Hufnagel VII 0.36 28.97 79.7
Eckert IV 0.36 28.73 81.9
Hufnagel IX 0.36 28.80 81.6
Hufnagel X 0.36 28.22 83.2
Hufnagel XI 0.36 28.81 78.3
Hufnagel XII 0.42 25.79 79.7

6 B. JENNY ET AL.

D
ow

nl
oa

de
d 

by
 [B

er
nh

ar
d 

Je
nn

y]
 a

t 1
3:

32
 2

5 
Fe

br
ua

ry
 2

01
6 



maps. We recommend using a specialized graphical user
interface coupled with a WYSIWYG map visualization
for selecting projection parameters when creating a cus-
tomized Hufnagel projection (an example for the
Hufnagel projection family is available at https://www.
mapthematics.com/interactive/hufnagel.html).

The Hufnagel projections will be available in the
next version of the Geocart software (https://www.
mapthematics.com). The computational method and
algorithms presented in this article were implemented
in the open-source Java Map Projection Library
(https://github.com/OSUCartography/JMapProjLib).
We hope that this contribution will help Hufnagel’s
projection family find its place in other cartographic

projection libraries and software applications, and
eventually on world maps.
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Figure 3. Lines of constant maximum angular deformation for the 12 projections, 6° increments.

Figure 4. Outlandish projections illustrating the flexibility of Hufnagel’s method.
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Appendix 1. Equal-area cylindrical projection as limiting case of the Hufnagel projection

This appendix proves that Hufnagel’s projection family transforms into the equal-area cylindrical projection, when Ψmax
approaches 0. An expression of φ for Hufnagel’s projection is:

sinφ ¼ 4ψ þ 2þ 2Aþ 2A cosð2ψÞ þ 2B cosð4ψÞ½ ' sinð2ψÞ þ B sinð4ψÞ
4ψmax þ 2þ 2A$ B½ ' sinð2ψmaxÞ þ Aþ B½ ' sin ð4ψmaxÞ þ B sinð6ψmaxÞ

:

Any particular value of ψ is some fraction k of ψmax, where [0 ≤ k ≤ 1]. In finding the limit as both ψ and ψmax approach 0,
then, we first change the function to one variable by substituting k ψmax everywhere for ψ:

sinφ ¼
4kψmax þ 2þ 2Aþ 2A cosð2kψmaxÞ þ 2B cosð4kψmaxÞ

% &
sinð2kψmaxÞ þ B sinð4kψmaxÞ

4ψmax þ 2þ 2A$ B½ ' sinð2ψmaxÞ þ Aþ B½ ' sin ð4ψmaxÞ þ B sinð6ψmaxÞ
:

We cannot directly evaluate sin φ when ψmax = 0 because the fraction is indeterminate. L’Hôpital’s Rule states:
lim
x!c

f ðxÞ
gðxÞ ¼ lim

x!c

f 0ðxÞ
g0ðxÞ

Therefore to find the value of sin φ as ψmax → 0,

sinφ¼ lim
ψmax!0

d
dψmax

4kψmax þ 2þ 2Aþ 2Acosð2kψmaxÞþ 2Bcosð4kψmaxÞ
% &

sinð2kψmaxÞþB sinð4kψmaxÞ
' (

d
dψmax

4ψmax þ 2þ 2A$B½ ' sinð2ψmaxÞþ AþB½ ' sin ð4ψmaxÞþB sinð6ψmaxÞ
' (

¼ lim
ψmax!0

k
4$ 4Aþ 8Acos2ð2kψmaxÞ$ 8B sinð2kψmaxÞ sinð4kψmaxÞþ 4cosð2kψmaxÞþ 4Acosð2kψmaxÞþ 4Bcosð2kψmaxÞcosð4kψmaxÞþ 4Bcosð4kψmaxÞ'

4$ 2B cosð2ψmaxÞþ 4cosð2ψmaxÞþ 4Acosð2kψmaxÞ4Acosð4ψmaxÞþ 4Bcosð4ψmaxÞþ 6Bcosð6ψmaxÞ

-

¼ k:

Now, to find the limit of x and y as ψmax → 0, we express x and y as series with the same ψ = k ψmax substitution, and
truncating all terms that are not constant, since they evaluate to 0:

x ¼ λ
ffiffia
π

p

y ¼ k
ffiffi
π
a

p :

But as we just saw, k = sin φ, so

x ¼ λ

ffiffiffi
a
π

r

y ¼ sinφ

ffiffiffi
π
a

r

in the cylindrical case, as expected.
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