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A bevy of area-preserving transforms for map projection designers
Daniel “daan” Strebe

Mapthematics LLC, Seattle, WA, USA

ABSTRACT
Sometimes map projection designers need to create equal-area projections to best fill the
projections’ purposes. However, unlike for conformal projections, few transformations have
been described that can be applied to equal-area projections to develop new equal-area projec-
tions. Here, I survey area-preserving transformations, giving examples of their applications and
proposing an efficient way of deploying an equal-area system for raster-based Web mapping.
Together, these transformations provide a toolbox for the map projection designer working in
the area-preserving domain.
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1. Introduction

It is easy to construct a new conformal projection: Find
an existing conformal projection and apply any complex
analytic function to it. Voilà, new conformal projection!
In practice, finding the right function for the purpose
usually takes some work, but nevertheless, the toolbox is
rich and powerful. Not so for equal-area projections. A
few techniques have been exploited over the centuries,
even fewer explicitly described, and in general the domain
remains lightly explored. No area-preserving analog to
complex analysis is known to exist.

This work doesn’t solve such big problems. Instead,
it collects together in one place a body of techniques
map projection designers can use to efficiently generate
new equal area map projections. Some are obvious;
some are simple but clever; some are a little more
involved. Their inventions range from centuries ago
to being introduced in this paper. I give examples
with particular attention to a novel replacement
scheme for the Web Mercator.

Since the advent of digital computers, several itera-
tive methods for minimizing distortion across a cho-
sen region have appeared in the literature. Iterative
systems are specifically outside the purview of this
work. They are adequately described by their authors
in any case. I invite the interested reader to peruse, for
example, Dyer and Snyder (1989) or Canters (2002,
pp. 115–244).

For simplicity, I discuss the manifold to be projected
as a sphere, but the techniques I describe generally do
not depend on this specificity. The techniques fall into

two categories: plane-to-plane transformations and
“sphere-to-sphere” transformations – but in quotes
because the manifold need not be a sphere at all.
Some of the techniques combine both kinds of trans-
formations or use the plane as an intermediary.

In the case of plane-to-plane transformations, the pre-
sumption is that the manifold has been projected to the
plane already in a way that preserves areas. Hence, the
consideration is purely planar, and regardless of what
manifold was designated as the original surface before
projecting, the only question is whether the plane-to-
plane transformation itself preserves area measure.

1.1. Terminology

Terminology is not well standardized for equal-area pro-
jections. More in line with the field of differential geometry
than with mathematical cartography, the title of this paper
uses the term area-preserving transformation so as to be
readily understandable to the widest audience. However, I
do not use that term in the body of this text. To avoid the
awkwardness of noun forms of equal-area, I will some-
times use equivalence. The term authalic also appears in
the literature, but is redundant to my needs here and will
not be used.

1.2. Symbols

● λ refers to a geodetic longitude;
● φ refers to a geodetic latitude;
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● θ refers to a counterclockwise angle from positive
x axis on the cartesian plane;

● ρ refers to a distance from origin on the cartesian
plane;

● 0 added to a variable name denotes a variable
transformed from the variable of the same name
that lacks the prime symbol.

2. Transformations

2.1. Scaling

As noted by Strebe (2016), the equal-area property for
a mapping from sphere to plane can be defined either
strictly or loosely: strictly in that

@y
@φ

@x
@λ

� @y
@λ

@x
@φ

¼ R2 cosφ; (2:1)

(with R being the radius of the generating globe) or
loosely in that

@y
@φ

@x
@λ

� @y
@λ

@x
@φ

¼ s cosφ; (2:2)

with s being any non-zero, finite, real value. The ratio-
nale for the strict case is that the projection maps
regions on the globe to the regions on the plane such
that the area measure of any mapped region remains
the same as the area measure of the unmapped region.
The rationale for the looser case is that relative areas
are preserved throughout the map, regardless of how
their area measure might be scaled with respect to the
generating globe. Simple, isotropic scaling is an area-
preserving transformation by the looser condition.

On its own, scaling is not terribly interesting.
Combined with other techniques, however, it becomes
powerful, as we shall see in subsequent sections.

2.2. Affine transformation

Also noted by Strebe (2016), affine transformation
preserves areas. That is, given x and y as the planar
coordinates of an equal-area map projection,

a b
c d

� �
x
y

� �
¼ x 0

y 0

� �
(2:3)

x 0; y 0 is also equal-area, provided thematrix is not singular
and a; b; c; d are constant. When b ¼ 0; c ¼ 0; a ¼ d, the
affine transformation degenerates to the simple, isotropic
scaling described in Section 2.1. With b ¼ 0; c ¼ 0; a�d,
the affine transformation describes a scaling such that the x
and y directions scale differently. This can be useful, parti-
cularly when d ¼ 1=a. This last case preserves overall area

of the map, and can adjust the proportions and distortion
characteristics of the map to better suit the purpose. A
common example is based on the cylindric equal-area
presented by Lambert (Tobler, 1972), with primitive
formulae

Lcea ¼ x ¼ λ
y ¼ sin φð Þ

� �
: (2:4)

In its original form, the projection has no distortion
along the equator, and “correct” scale there. By scaling the
height by secφ0 and the width by cosφ0, a chosen latitude
φ0 can be made to have no distortion and to represent
nominal scale. No less than seven variants of Lambert’s
original that use this technique have been formally
described independently by nine others, including:

● Gall (1885) (φ0 ¼ 45�, “Gall orthographic,” now
usually “Gall–Peters,” presented in 1855)

● Smyth (1870) (φ0 ¼ arccos
ffiffiffiffiffiffiffiffi
2=π

p
, “Smyth’s equal-

surface”)
● Behrmann (1910) (φ0 ¼ 30�)
● Craster (1929) (identical to Smyth equal-surface)
● Balthasart (1935) (φ0 ¼ 50�)
● Edwards (1953) (φ0 ¼ 37�240, “Trystan Edwards”),
● Peters (1983) (identical to Gall orthographic, first

public mention in 1967)
● Tobler and Chen (1986) (φ0 ¼ arccos

ffiffiffiffiffiffiffiffi
1=π

p
,

“Tobler’s world in a square”)
● Abramms (2006) (φ0 ¼ 37�300, “Hobo–Dyer,” com-

missioned in 2002)

Each of these projections can be described as an affine
transformation on Lambert’s cylindric equal-area:

cosφ0 0
0 secφ0

� �
� Lcea: (2:5)

Other examples of this technique can be found in
pseudocylindric projections when the simplest form
of the generating formulae does not yield the desired
latitude to be free of distortion along the central mer-
idian. Boggs (1929), for example, stretches x to slightly
more than twice the primitive formulae’s results, and
compresses y by the reciprocal.

Affine transformation relates to the scaling constant
s reported in Equation (2.2). Letting

A ¼ a b
c d

� �
(2:6)

such that A is not singular and a; b; c; d are constant
when applying A to the projection, then

s ¼ detA; (2:7)

with det being the determinant.
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I found no instance of affine transformation with
shear components exploited in cartographic maps before
Strebe (2017). As will be seen in Section 2.9, general
affine transformations can serve useful purposes in con-
junction with other transformations. However, perhaps
the value of affine transformation on its own has been
underappreciated, as discussed next.

Consider an arbitrary, non-conformal projection P.
As described by Tissot (1881), the distortion undergone
by a geographical point p when projected by P can be
described as the projection of an infinitesimal circle
around p into an infinitesimal ellipse on the plane. The
area of this projected Tissot ellipse, as a ratio to the
original circle from the sphere, gives the amount of
flation (or, areal inflation or deflation, as per Battersby,
Strebe, and Finn (2017)) at the projected point.

Angles also undergo changes when projected.
Anchored at the center of the unprojected circle, we
can construct an unlimited number of orthogonal axes,
each rotated from the rest. When projecting, there will
always be some orthogonal axis from the sphere that
remains orthogonal on the plane and therefore remains
undeformed. Conversely, some axis originally orthogo-
nal must undergo greater deformation than any other
when projected. Likewise, axes will exist for every angle
in between undeformed and maximally deformed. It is
the greatest deformation that is used to characterize
angular deformation at the point. The ratio of the
major and minor axes of the Tissot ellipse can be
used to compute that maximal angular deformation.

Laskowski (1989) describes the relationship of a
projection’s Jacobian matrix J to the projection’s local
distortion:

T ¼ J � N cosφ 0
0 M

� ��1

(2:8)

where N is the meridional radius of curvature and M is
the radius of curvature for the parallel. For the sphere,
both N and M are 1, and the relationship reduces to

T ¼ J � secφ 0
0 1

� �
(2:9)

after inverting the right-side matrix. In this context, the
Jacobian matrix is given as

J ¼
@x
@λ

@x
@φ

@y
@λ

@y
@φ

" #
: (2:10)

The significance of this description is that T describes
the affine transformation applied to the infinitesimal
circle from the sphere that results in the Tissot ellipse
on the plane. I will make use of that fact after some
preparatory remarks.

Let us say we have a detailed base map prepared for
use in a service deployed on the World Wide Web. We
wish to accept arbitrary data sets to represent and
overlay onto the base map in order to augment the
map with information customized for a user’s needs.
The bulk of the rendering work and detail needed for
the complete map has already gone into the base map,
and we do not wish to render the base map anew for
every custom map because we want to conserve com-
putational resources and to reduce delivery time.

The scenario turns out to be common: Practically
every large-scale mapping service on the Web serves up
“tiles” rendered in advance and upon which user-speci-
fied data gets overlaid and displayed. The tiles may be
raster, as in Google Maps (Rasmussen, Rasmussen, &
Ma, 2011), or vector, as in Mapbox (2017), but either
way, they have been prepared in advance on a specific
map projection. That specific projection for the major
commercial services is the “Web Mercator,” which is the
spherical Mercator projection. At small scales, its math-
ematical usage is unremarkable, but its portrayal of the
world is controversial. At large scales, its portrayal of
local areas is unremarkable, but its mathematical usage is
controversial. As described by Battersby, Finn, Usery,
and Yamamoto (2014), small-scale controversy stems
from the usual criticisms of Mercator: It shows gross
area disproportion across the map. Large scale contro-
versy stems from using geodetic coordinates as surveyed
against an ellipsoidal model, but projected using the
spherical Mercator. Technically, this practice makes the
map slightly non-conformal, and also contrary to prac-
tice in any other context such that the US National
Geospatial-Intelligence Agency felt compelled to issue
an injunction against its use for Department of Defense
work (US NGA 2014).

On the other hand, Web Mercator brings consider-
able benefits to the online mapping scenario: At local
scales, any place in the world away from the poles gets
treated without perceptible distortion, and therefore
“fairly.” North is always up, so orientation is consistent
and familiar. Tiles can be rendered and stored in
advance, saving time and enormous computational
resources when serving up tiles. Because Mercator is
locally correct everywhere, adjusting the scale bar is the
only change needed for rendering when panning
north–south, and no change at all is needed east–west.

By contrast, using any other projection would elim-
inate at least one of those benefits. In particular, if the
mapping system wished to serve up an equal-area pro-
jection instead, most of the world would be horribly
distorted even at local scales. In order to correct that,
the mapping system would have to customize the pro-
jection’s standard parallels, at the very least, in order to
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serve up tiles fair to everyone – at huge expense for
rendering if panning north–south. But most map-
makers would not be pleased with simple, rectangular
equal-area projections; they would want a pseudocy-
lindric or something more elaborate, and in that case,
the central meridian would also need to be adjusted
and the map rendered accordingly. This means pan-
ning in any direction requires continuous rerendering
throughout the operation.

Now, consider any non-conformal projection.
Because the projection is not conformal, it distorts
angles across most of the map, which is why it nor-
mally cannot be used efficiently for Web map services
that provide usual pan-and-zoom functionality.
However, if we consider the local distortion T from
Equation (2.8) as an affine transformation, we can
undo that distortion for any particular point of interest
p simply by applying T�1 pð Þ to the entire map. This
would distort the rest of the map, of course, but there
are two reasons why this is still reasonable: (1) When
zoomed in, we do not even display those portions of
the map that would be heavily distorted; and (2) Why
were the undistorted parts of the original map special
anyway? We have changed how distortion is distribu-
ted, but have not necessarily worsened the overall dis-
tortion. Figure 1 shows this treatment for the Wagner
VII projection.

But, why would we do this? It turns out that affine
transformations are exceedingly efficient on modern
computing hardware due to the ubiquity of graphics
processing units (GPUs) in desktop and mobile com-
puters. As per Sørensen (2012) and endless other
sources, affine transformations, being matrix–vector
multiplications, are essentially what GPUs are made
for. By offloading affine transformation from the cen-
tral processing unit to the GPU, speed can be
increased by several orders of magnitude. Therefore,
even though a Web mapping service might construct
static tiles on a particular projection in a particular
aspect, it need not be bound to the original distortion
characteristics. Instead, it could vary the locus of low
distortion according to the progression of pan and
zoom by applying, to the entire displayed portion of
the map, the affine transformation that would undo
distortion at the point of most interest.

Affine transformation used this way would intro-
duce problems of its own. Marks whose shapes are
not intended to be projected, such as labels or dots
for cities, could not be reasonably rendered on the base
maps because of the abuse they would suffer when
distorted by the affine transformation. Instead, they
would have to be rendered and applied after the trans-
formation. Furthermore, in order to avoid serious

aliasing when transforming, the original rendering
would need to happen at several times the target reso-
lution, and then be scaled down (decimated) after
transforming, implying more calculation. Aside from
increased computational costs, subtleties, such as label
placement then get pushed to run-time, where they
cannot be corrected by human intervention. Still, free-
ing the Web mapping service from the confines of
Mercator while retaining most of the benefits of using
it suggests value in this novel technique.

The need for emancipation is particularly urgent for
visualizations of statistical information at small scales,
where Mercator shows up frequently but wholly
inaptly. According to Gartner Inc. (2017), the business
intelligence and analytics market is led by Tableau,
Microsoft’s Power BI, and Qlik with their visualiza-
tion-based approaches to displaying business data.
Displaying data on maps is important to all three

Figure 1. Wagner VII, 15� and 4� graticules, affine transforma-
tion to benefit North American Pacific Northwest (one-column).
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platforms, as per Gartner’s description of capabilities
they deem critical for their rankings. Meanwhile, as of
this writing, Tableau’s only “natively” supported pro-
jection is the Web Mercator (Dominguez, 2016); Power
BI’s is also Web Mercator; and Qlik’s was until 2014,
when plate carrée (“Unit” projection, in Qlik parlance)
was added (Muñoz, 2015). Unfortunately, plate carrée
is not much better than Mercator over most of the
world that is relevant to business. All of these systems
have ways to show maps in other projections, but
doing so requires abandoning the system’s background
map tiles. (In Power BI’s case, I found no reliable
source describing the native base map projection, and
so relied on my own investigations.)

2.3. The Bonne transform

The Bonne projection appeared in rudimentary form in
the early 1500s, and was likely defined precisely by the
late 1600s. It is an equal-area projection consisting of
arcs of concentric circles to represent latitude, with each
arc subtending the angle needed to give it proportionally
correct length for the parallel it represents. One parallel
φ1 must be chosen to have no distortion. Meridians
intersect a given parallel at constant intervals. The pro-
jection is symmetric east–west. As φ1 approaches the
equator, the Bonne approaches the sinusoidal projec-
tion. As φ1 approaches 90�, the Bonne approaches the
Werner projection.

Another way to think about the projection is as an
area-preserving transformation of the sinusoidal pro-
jection. To review, the sinusoidal is a pseudocylindric
projection, and, therefore, in equatorial aspect its par-
allels are straight lines. Each parallel has correct scale in
the direction of the parallel for its entire length. To
transform the projection into the Bonne, each parallel
is bent into the arc of a circle without stretching it,
such that each arc’s circle is concentric to the others
and therefore all have a common center. The radius of
the circle for any parallel’s arc ultimately is determined
by the latitude chosen for φ1. If φ1 is a low latitude, the
common center will be far from the map, parallels will
curve gently, and the arc subtended by each parallel
will be a small fraction of its circle. If φ1 is the equator,
the common center will be off at infinity and the arcs
will be straight segments. If φ1 is at a high latitude, the
common center will be close to the map, parallels will
curve rapidly, and the arc subtended by each parallel
will be a large fraction of its circle.

Thought about this way, the Bonne projection is a
planar transform. What makes it unusual is that its
range need not be confined to the projection itself

because we only need use longer arcs in order to extend
the range, up until the point where the arc wraps back
upon itself. With this extended range, the transform
can be applied to arbitrary other projections even with-
out scaling first. Therefore, the Bonne transform is a
parameterized, equivalent planar transform, while the
Bonne projection is an instance of that transform
applied to the sinusoidal projection.

I used the Bonne transform to create a series of
equal-area projections based on manipulations of exist-
ing projections. The projections are bilaterally sym-
metric, equal-area, and have curved parallels in
equatorial aspect. Each can be parameterized by a “lati-
tude of curvature,” which is the φ1 of the Bonne trans-
form but without the meaning of a standard parallel in
the resulting projection. First, I apply an affine trans-
formation to the original projection to give it correct
scale at the center. Then I interrupt the base projection
along the equator by applying the Bonne transform
independently to both northern and southern hemi-
spheres, greatly reducing distortion in each hemisphere
(Figure 2). As an interruption scheme, this is similar to
some cordiform projections from the 16th century,
such as those of Oronce Fine, 1531, “Nova, Et Integra
Universi Orbis Descriptio,” or Gerard Mercator, 1538,
untitled double cordiform map as copied by Antonio
Salamanca, c. 1550. However, whether the motivation
was the same or not is unclear. Those earlier forms
were not equal-area and arose out of geometric con-
struction rather than planar transformation.

As found in Geocart 1.2 (1992), a commercial map
projection software package I authored, originally I did
not split the equator all the way to the central meri-
dian. Instead, after centering the map at 11�E to pre-
vent separating the Chukchi peninsula, I interrupted
along the equator from the left edge eastward 90�

through the Pacific, and split the same distance inward
from the east edge. The central portion of the map
remained unchanged, while the eastern and western
outer wings of the northern hemisphere curled upward
from the cusps of the interruptions, and likewise down-
ward for the southern. By means of the partial inter-
ruption, the map avoided slicing major land masses.

I achieved the partial interruption by applying the
left half of the Bonne transform to the leftmost 90=360
of the map, and the right half of the Bonne transform
to the rightmost 90=360 of the map. A vertical line
struck at the inner limit of each equatorial interruption
became the “central meridian” for each of the half-
Bonne transforms.

This procedure yielded a smooth, equal-area map.
However, as a piecewise function, the projection could
not have continuous derivatives and therefore its
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distortion characteristics must change abruptly. I aban-
doned partial interruption for this projection series
starting with Geocart 2.0 (1994). Nevertheless, this
application of the Bonne transform to only parts of a
map emphasizes its nature as a “transform,” more than
a “projection,” and also illustrates that planar trans-
forms can be applied piecewise to portions of the full
equal-area map if convenient. This flexibility is una-
vailable to conformal maps because a transformation of
a conformal map that yields a continuous mapping
necessarily affects the entire map.

2.4. Directional path offset

Affine transformation in the most general sense can be
thought of as a combination of scaling independently
in both directions, rotating around the origin, and
shearing. Shearing is the operation that turns a rectan-
gle into a rhombus. As an affine operation, shearing
too, preserves area. A conceptual model for shearing’s
area preservation will be helpful. Considering a rectan-
gle we wish to shear such that it leans rightward, we
can break the rectangle up into an infinite number of

slivers as rectangles of the same width and infinitesimal
height. We leave in place the sliver at the base of the
original rectangle. We slide all the slivers above it an
infinitesimal distance to the right. Then we hold the
sliver next to the base sliver fixed, and slide everything
above it again by the same amount. Then we hold the
next sliver up fixed, and repeat, all the way up to the
top sliver. It should be clear that area has not changed,
since we kept each sliver the same length and (infini-
tesimal) height, and opened no extra space between
them.

Notice that the concept for area preservation holds
regardless of whether the shift amount is constant or
otherwise. In other words, we can deform that rectan-
gle into other shapes besides rhombi while preserving
area. We must be careful not to open up space between
the slivers, or skew them with respect to each other; we
may only slide them against each other, all in parallel.
If we honor those conditions, we can define an arbi-
trary path for that left edge. The same argument holds
for pressuring the original rectangle from any constant
direction, not just against one of its edges. Applying
this principle to the projection of Figure 2, we arrive at
Figure 3.

I used this technique in a National Geographic
animation (Strebe, Gamache, Vessels, & Tóth, 2012),
in order to progressively close up the interruptions in
the closing sequence featuring a Mollweide projection.
The projection remains equal-area throughout. I also
exploited this technique in the 1992 series mentioned
in Section 2.3. In their original form wherein the
equatorial interruption was only partial, the option
to close up the interruptions or leave the map inter-
rupted was available. When I abandoned partial inter-
ruption in favor of the full interruption, I eliminated
the option to show the projections as interrupted from
Geocart, which now always uses the directional path
offset to close them up. The projections still appear in
the extant Geocart 3.2 (2018) in the closed-up form,
but were never formally described. They are shown
here as Figure 4. The meridians of those projections
are kinked at the equator as a consequence of the
manipulation, a typical, undesirable side effect of
directional path offsets when used to close
interruptions.

2.5. Meridian duplication

Aitoff (1892) introduced a brilliant little device that
may have been the first prominent sphere-to-sphere
transformation for cartographic maps. His invention
was to halve the longitudinal value of every location
on the sphere, squeezing the sphere into one

Figure 2. 15� graticules and centered at 11�E.
Top: Minimum-error pointed-pole equal-area projection (Snyder, 1985,
p. 128).Bottom: Affine scaling to correct center scale, and Bonne trans-
form applied with φ1 ¼ 22� (one-column).
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hemisphere. Then, after projecting the hemisphere
onto the plane as an equatorial azimuthal equidistant,
the method stretches the map horizontally 2:1 in order
to compensate for the squeezing on the sphere. By
these means he created the Aitoff projection, a simple,

elliptical, pseudoazimuthal projection that reduces
shearing compared to the similar pseudocylindric
Apian II projection by gently curving the parallels.
Aitoff published the first map on the projection in
Atlas de géographie moderne in 1889.

Aitoff’s invention soon inspired Hammer (1892) to
pull the same trick on the Lambert azimuthal equal-
area projection. Hammer’s insight was that Aitoff’s
sphere-to-sphere transform preserves areas because
the squeezing on the sphere maintains a constant rela-
tionship between the differential properties defining
the area metric on the sphere. Therefore, projecting
the squeezed sphere onto the plane via an equal-area
projection must result in an equal-area projection.
Scaling, as noted in Section 2.1, also preserves area,
and so the resulting projection must be equivalent. The
Hammer projection has seen much use as a curved-
parallel alternative to the pseudocylindric Mollweide in
much the same way that the Aitoff is a curved-parallel
alternative to the Apian II. Startlingly, despite the
Hammer projection’s favorable properties, it is compu-
tationally much cheaper than the Mollweide because it
requires no iteration.

Hammer chose n ¼ 1=2 to multiply longitudes by in
his formulation, but over the years a few other values
for n were proposed, such as Rosén’s 7=8 or Eckert-
Greifendorff’s 1/4. Briesemeister proposed an oblique
case of the Hammer with change in aspect ratio
(Snyder, 1993, pp. 236–240).

The Bonne projection, especially its specialization in
the form of Werner (φ1 ¼ 90�), frequently appears as a
novelty to show the world in a heart, with equivalence
as a bonus. Dissatisfied with the shape’s aesthetics, I

Figure 3. 15� graticules and centered at 11�E. Application of
directional path offset to close interruption (one-column).

Figure 4. 30� graticules and centered at 11�E; Bonne φ1 in parentheses.
Top: Strebe-sinusoidal (“cartouche”) (25�4401600), Strebe-Hammer (15�), Strebe-Kavraiskiy V (16�270).Bottom: Strebe-Mollweide (16�), Strebe-Snyder
flat-pole (20�), Strebe-Snyder pointed-pole (22�) (two-columns).

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 7



devised a variant by 1992 and incorporated it into
Geocart 1.2 as simply the “heart” projection. It has
not been otherwise described. I observed that “meri-
dian duplication,” as I call Aitoff’s innovation, would
suffice to modify the Bonne into a more or less idea-
lized heart shape. The projection permits configuration
via φ1 of the Bonne and the meridian duplication
factor, set by default to 85� and 6=5, respectively
(Figure 5). My convention for the meridian duplication
factor is the reciprocal of n given above in Hammer’s
formulation and below in Wagner’s, and happens to
coincide with that of Snyder (1993, p. 236).

Kronenfeld (2010) also uses meridian duplication in
developing a simple sphere-to-sphere transformation.
In Kronenfeld’s case, longitudes are expanded with the
intent of projecting a fraction of the globe onto a larger
section of the globe while preserving areas. Kronenfeld
refers to this as “longitudinal expansion factor.” This
procedure must discard regions of the globe; otherwise
parts would wrap and overlap. With n as above, α as
the desired magnification, λ0 as the “reference meri-
dian,” and φ1 as the “reference parallel” (together con-
stituting the “origin,” in a sense), the transformed
spherical coordinates φ0; λ0ð Þ are given as

sinφ0 ¼ α

n
sinφ� sinφ1

� �þ sinφ1;

λ0 ¼ λ0 þ n λ0 � λð Þ:
(2:11)

How (or whether) the transformed spherical coordinates
then get projected to the plane is up to the projection
designer. I note that Kronenfeld’s transform is the
equivalent of excerpting a rectangle from a cylindrical
equal-area projection, scaling it, translating it on the
plane to center it at projected φ1; λ0

� �
, and deprojecting

back to the sphere via the inverse of another cylindrical
equal-area projection. Each of these steps is noted indi-
vidually in this paper.

2.6. Das Umbeziffern

Wagner (1932) generalized Aitoff’s notion to reassign not
only longitudinal values, but latitudinal values as well. He
called the procedure Umbeziffern, or “renumbering,”
referring to the reassignment or relabeling of the longitude
and latitude values. The theory was developed in depth by
Karl Siemon over a series of papers in 1936–8 and then
deployed by Wagner over the course of his life in the
development of many texts and projections, starting in
1941 (Canters, 2002, pp. 119–124). Wagner and Siemon’s
explications went beyond just equal-area projections to
accommodate several constraints, but what concerns us
here is the equivalence transformation, which Canters
refers to as Wagner’s second transformation method.
Presuming that

● 0�N, 0�E projects to x ¼ 0; y ¼ 0;
● f1 denotes the base projection’s generating func-

tion for x;
● f2 denotes the base projection’s generating func-

tion for y;
● x 0; y 0 are the coordinates produced by Wagner’s

second transformation;
● n is the fraction to multiply longitudes by;
● k is a desired scaling (such as to eliminate distor-

tion at selected parallel at central meridian);
● m is a free parameter

then,

x 0 ¼ kffiffiffiffiffiffiffi
mn

p f1 u; vð Þ; y 0 ¼ 1
k

ffiffiffiffiffiffiffi
mn

p f1 u; vð Þ; (2:12)

where v ¼ nλ, sin u ¼ m sinφ.
Besides those of Wagner himself, projections using

Wagner’s method were devised by Böhm (2006). Šavrič
and Jenny (2014) present an adaptable pseudocylindric
projection from Wagner’s method, and Jenny and
Šavrič (2017) use it to transition between Lambert
azimuthal equal-area and a transverse cylindric equal-
area in order to improve the adaptive projection system
Jenny (2012) describes.

2.7. Slice-and-dice

The differential forms that identify a projection as
equivalent are not conducive to generating new projec-
tions. Given suitable constraints and boundary condi-
tions, it can be done, but in the general case requires

Figure 5. Strebe’s heart projection, φ1 ¼ 85�, “meridian dupli-
cation factor” ¼ 6=5, or n ¼ 5=6 (one-column).
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nested integrals with the implication of enormous
computational cost. Most of the techniques described
in this work are, in essence, ways to avoid dealing
directly with the infinitesimals.

Van Leeuwen and Strebe (2006) describe a mechan-
ism for approaching the two-dimensional problem of
area preservation one dimension at a time. While we
only applied the method in the context of polyhedral
faces, it is generally applicable. Our work proves that
you can reach the differential qualifications of an
equal-area projection by slicing up the space in one
direction (or dimension) such that each slice has the
correct area, and then dicing up the slices in a different
direction (or dimension) such that the second dimen-
sion’s dices also preserve areas. The two directions
need not be orthogonal – and cannot be everywhere
– but the results will still retain equivalence. The paper
generalizes an earlier projection by Snyder (1992) and
provides a theory for it.

Any equal-area projection can be thought of in these
terms. For example, finding the position of a latitude in
the well-known Mollweide projection can be thought
of as slicing the ellipse with a straight, horizontal par-
allel placed so that the proportion of the global area
higher in latitude is correct with respect to the global
area lower in latitude, and then dicing up the same
space with meridians whose spacing is constant along
the parallel. The dice condition of constant spacing is
forced by how we chose to slice.

More as a way of thinking about equal-area projec-
tions than a “technique,” slice-and-dice has no general
formulae to resort to, and in many cases provides no
shortcut to a solution. Van Leeuwen and I used it in the
context of our work because the great- and small-circle
partitions we explored sliced and diced the space in
computationally efficient ways. I do not explore the tech-
nique further here but instead refer the reader to the 2006
paper for proof of the concept and applications.

2.8. Substitute deprojection

As noted in Šavrič, Jenny, White, and Strebe (2015) in
describing the “Strebe transformation,” an equivalent
mapping from the sphere back onto the sphere can be
created by projecting from sphere to plane while pre-
serving areas and then deprojecting back onto the
sphere by means of some other equal-area projection’s
inverse. This is a sphere-to-sphere mapping mediated
by projection onto the plane. The result may then be
projected again to the plane by means of yet another
equal-area projection. A reason to do this is to draw
upon the vast corpus of extant equal-area projections.

After the Bonne transform experiments that resulted in
the projections of Figure 4, I considered ways to eliminate
the unsatisfactory discontinuity at the equator without
changing the other characteristics. Noting that Mollweide
andHammer share the same projection space and are both
equal-area, I conceived of a vector space that transforms
Mollweide to Hammer, with the intent of applying that
vector space to other equal-area projections. This readily
generalizes to the observation that any portion of an equal-
area projection A could be treated as if it were a portion of
any other equal-area projection B, thence deprojected back
onto the sphere via B’s inverse B0, and finally projected
back to the plane by yet another projection C in order to
arrive at a final projection D. Affine transform X is per-
missable between A and B0 if needed for A’s domain to fit
within B’s confines or even just to change how much of B
impacts A. Affine transformation at that stage normally
would be counteracted by its inverse after projecting via C,
and so the full sequence would look like this:

D ¼ X�1C B 0 X � A½ �ð Þ: (2:13)

Ultimately, I chose Eckert IV as A, Mollweide as B, and
Hammer as C. For X I chose

X ¼
1
2
s 0

0
1
s

2
64

3
75 (2:14)

with s ¼ 1:35 recommended.
Collected, this is the formulation of the Strebe 1995

projection (Figure 6):

x ¼ 2D
s
cosφp sin λp; y ¼ sD sinφp

s ¼ 1:35

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1þ cosφp cos λp

s

Figure 6. Strebe 1995 projection, 15� graticule and centered at
11�E, s ¼ 1:35 (one-column).
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sinφp ¼
2 arcsin

ffiffi
2

p
ye
2 þ rye

π

λp ¼ πxe
4r

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� y2e

q
xe ¼ s

λð1þ cos θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π þ π2

p ; ye ¼ 2

ffiffiffi
π

p
sin θ

s
ffiffiffiffiffiffiffiffiffiffiffi
4þ π

p ;

where θ is solved iteratively:

θþ sin θ cos θþ 2 sin θ ¼ 1
2

4þ πð Þ sinφ:

As quoted by Raposo (2013), my goals for the pro-
jection design were to preserve area; maintain bilateral
symmetry; and push as much distortion as feasible into
the oceans and away from the land masses without
resorting to interruptions. Geographer Marina Islas,
who used the projection for a map tattooed on her
upper back, appreciated it for its organic shape and
Afro-centric presentation (Zimmer, 2011, pp. 90–91;
New York Times, 2011, image in online review).

Šavrič et al. (2015) used substitute deprojection in con-
structing novel map projections for a study of map reader
preferences with regard to map projection aesthetics. One
of their hypotheses was that map readers would prefer
projections whose outer corners are softer, or rounder.
To test the hypothesis, they developed a Wagner VII
with rounded corners and a Miller with rounded corners.
(Though the substitute deprojection they used does pre-
serve areas, that particular benefit was lost on the Miller
projection, which is not equivalent.)

2.9. Strebe’s homotopy

Strebe (2017) describes an efficient method for synthe-
sizing a continuum of equal-area projections between
any two chosen equal-area projections. A parameterized
continuum between two projections is known as a homo-
topy in algebraic topology and related fields. The need
for such a continuum arose in the context of Jenny’s
efforts to improve his adaptive composite projection
system of 2012,where no good transition from Lambert
azimuthal equal-area to a transverse cylindric equal-area
projection had been found. While the system I devised
then solved the immediate need, its applicability is far
more general: It can produce a continuum between two
arbitrary projections with few restrictions, whether
equal-area, conformal, mixed, compromise, or other-
wise. If both the initial and terminal projections are
equal-area, the result will be equal-area. If both are
conformal, the result will be conformal. The general
description is the same regardless:

C ¼ BðA0 k � A½ �Þ=k; (2:15)

where C is the “weighted average” projection; A is the
initial projection; A0 is its inverse; B is the terminal
projection; and 0 � k � 1 is the weighting. (As k ! 0,
this formulation should be taken as a limit.) This
process includes a substitute deprojection in the form
of A0ðk � AÞ.

In the context of equal-area projections, Equation
(2.15) may not suffice because the point on the plane
P ¼ k � A as k ! 0 might not be undistorted for the
given A. If AðPÞ is distorted, then Formula 2.15 will not
result in A as k ! 0 because A0ðPÞ back onto the
sphere would undo the original distortion. A simple,
failsafe way to attain A in that situation is to apply an
affine transformation MA to the result to reassert the
original distortion. The strength of MA must wane as k
progresses away from 0. One formulation of MA, not
unique, is

Na ¼ k � I þ 1� kð Þ � TA Pð Þ

MA ¼ NAffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detNA

p ; (2:16)

where TA means the Tissot transformation at AðPÞ
from Equation (2.8), and I is the identity matrix.

Likewise, if BðPÞ is distorted, then Equation (2.15)
will not suffice because BðA0½k � AðPÞ�Þ asserts B’s dis-
tortion even when k ¼ 0, where we expect C ¼ A. We
could correct that by reversing the distortion of BðPÞ
by applying an affine transformation MB. One formu-
lation, not unique, is

NB ¼ k � I þ 1� kð Þ � T�1
B Pð Þ

MB ¼ NBffiffiffiffiffiffiffiffiffiffiffiffiffi
detNB

p : (2:17)

The general expression for equal-area homotopies then
becomes

C ¼ MA �MB � BðA0 k � A½ �Þ=k: (2:18)

Homotopies generated by this method are asym-
metric; that is, reversing A and B and replacing k
with 1� k in the formulation will not result in the
same C. In my 2017 work, I demonstrate both direc-
tions of homotopy between Albers and Lambert azi-
muthal equal-area for the full sphere. The method
worked well despite the very different topologies of a
conic and an azimuthal projection. Figure 7 gives
another example, comparing my homotopy method to
my adaptable equal-area pseudoconic projection (itself
a homotopy) that hybridizes Albers and Bonne (Strebe,
2016). Despite the markedly different methodologies,
practically identical results can be obtained because of
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the number of degrees of freedom available in
parameterization.

Strebe’s homotopy uses substitute deprojection at the
level of infinitesimals. In that sense it is both a general-
ization of, and a specialization of, substitute deprojection.
Generalization, because it extends the concept into an
area-preserving calculus; specialization, in that only two
of the three projections are independent of each other, as
well as because it imposes a sharply defined goal onto the
procedure: homotopy. Substitute deprojection on its own,
meanwhile, imposes no goal other than the synthesis of
new equal-area projections out of existing ones.

2.10. Axial yanking

I developed this technique as a generalization of scaling.
If we pick an axis for the projection (often the central
meridian or the equator on an equatorial aspect with
bilateral symmetry), we can choose a function f to apply
to the partial derivatives of the projection in the direc-
tion of that axis. Considering a given point P along the
axis, insofar as we apply the reciprocal of that evaluated
function f to every point perpendicular to the axis from
P, we will have arrived at a new equal-area projection. In
a sense, we scale each parallel line (geometrically paral-
lel, not parallels of latitude) by a different amount.

Let me illustrate with the Hammer projection.
Reviewing its generating functions (after Snyder, 1989,
p. 232):

D ¼
ffiffiffi
2

p
1þ cosφ cos nλð Þ�1

2

x ¼ D
n
cosφ sin nλ; y ¼ D sinφ; (2:19)

where n ¼ 1
2
is the meridian duplication factor Hammer

chose. Partial derivatives relevant later are:

@x
@λ

¼
ffiffiffi
2

p

2
z cosφ cosφcos2nλþ cosφþ 2 cos nλ

� �
(2:20)

@y
@φ

¼
ffiffiffi
2

p

2
z cos2φ cos nλþ 2 cosφþ cos nλ
� �

(2:21)

z ¼ 1þ cosφ cos nλð Þ�3
2:

The Hammer projection has no distortion at the cen-
ter, but is distorted everywhere else, including along the
central meridian and along the equator. Let us suppose
we want a similar projection but with an undistorted
central meridian. To achieve this, we can “yank” the
vertical axis to be undistorted by letting f discussed
above be the reciprocal of Equation (2.21). However, we
do not need to evaluate that explicitly because we chose f
such that y would be φ along the central meridian. That
is, @y=@φ will be 1 along the central meridian.

Here is how to express that. Given H as the Hammer
projection definition, for every ½xc; yc� ¼ Hðφc; λcÞ pro-
jected coordinate, find φCM such that ½0; yc� ¼ HðφCM; 0Þ,
and then force y ¼ φCM. Next, in order to preserve

equivalence, multiply xc by
@

@φ
HðφCM; 0Þ because we

implicitly divided the infinitesimal height of the entire
line yc by that value when we set y ¼ φCM.

Finding yc ¼ H φCM; 0
� �

means needing the inverse
for the y value of H, but only along the central mer-
idian such that λ ¼ 0:

yc ¼
ffiffiffi
2

p
sinφCM 1þ cosφCM

� ��1
2: (2:22)

Solving for φCM,

φCM ¼ sgn ycð Þ arccos 1� 1
2
y2c

� �
: (2:23)

Figure 7. 15� graticules on Bonne-Albers homotopies. Left: Strebe homotopy, k ¼ 1=2; φ1 ¼ 29�300;φ2 ¼ 45�300; φ3 ¼ 37�402400;
Right: adaptable equal-area pseudoconic, k ¼ 0:47;φ1 ¼ 10�; φ2 ¼ φ3 ¼ 40� (two-columns).
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At λ ¼ 0, simplifying Equation (2.21),

@

@φ
Hðφ; 0Þ ¼

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosφþ 1

p
(2:24)

which, when φ ¼ φCM as per Equation (2.23), is

@

@φ
HðφCM; 0Þ ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� y2c

q
: (2:25)

Consolidated, Hammer with vertical axis yanked to
eliminate the axis distortion is,

x ¼ xc � 12
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� y2c

q
;

y ¼ sgn ycð Þ arccos 1� 1
2
y2c

� � (2:26)

with ½xc; yc� as ½x; y� from 2.19.
Using the same concepts, we could, instead, yank

the horizontal axis to have no distortion. This makes
use of Equation (2.20) instead of 2.21, but follows a
substantially similar derivation. Abbreviating,

x ¼ sgnðxcÞ
n

arccos 1� 1
2
n2x2c

� �
;

y ¼ yc � 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� n2x2c

q
:

(2:27)

But, why stop there? Because the vertical operation
does not affect the horizontal axis, and vice versa, we
can apply both in succession to render both the vertical
and horizontal axes without distortion. Not surpris-
ingly, this last projection is much like the sinusoidal
but with curved parallels. Which gets applied first does
matter, but the difference is small across the full allow-
able range of n. Whether one axis or both get straigh-
tened, I call this family of projections “hamusoidal.” It
appears as Figure 8.

Noting that we can parameterize Hammer with a
choice of n and still yank the horizontal axis to con-
stant scale, we can pair a northern hemisphere having
one parameterization with a southern hemisphere

having a different parameterization while retaining
continuity across the equator. Doing so, I arrived at
the whimsical equal-area “kiss” projection of Figure 9.

We eliminated distortion along an axis in these
examples, yielding a side effect of computational sim-
plicity. However, as noted at the top of this subsection,
what we are really doing is applying some function to
the partial derivatives along the axis. The resulting axis
is the integral of those partials. If we want something
other than constant scale along an axis, we would chose
f to be something other than the reciprocal of the
partial derivative. I do not explore that further here
other than to note the obvious flexibility and easy
integrability of polynomials as a distortion function.

2.11. Radial oozing

An azimuthal projection in north polar aspect has the
basic form

θ ¼ λ� π

2
; ρ ¼ g φð Þ;whence

x ¼ ρ cos θ; y ¼ ρ sin θ: (2:28)

If we generalize the system such that ρ becomes a
function of both φ and λ, and such that θ becomes a
function of λ, we have

θ ¼ f λð Þ; ρ ¼ g φ; λð Þ: (2:29)

The consequence of this relaxation is that meridians
remain straight, but angles between them vary, and
parallels are no longer described by circles.

We wish to constrain this system to be equal-area.
As given by Strebe (2016), the general condition for
equivalence in polar coordinates from a spherical
model is

ρ
@θ

@φ

@ρ

@λ
� @θ

@λ

@ρ

@φ

� �
¼ cosφ: (2:30)

Figure 8. Hamusoidal, n ¼ 12, 30� graticules, 10� increments in angular deformation. Left to right: Hammer; vertical axis
undistorted; horizontal axis undistorted; both axes undistorted (two-columns).
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In this case, @θ@φ ¼ 0 because θ is a function solely of
λ, and therefore

� ρ
@θ

@λ

@ρ

@φ
¼ cosφ: (2:31)

This is not fully constrained; conic and pseudoconic
equal-area projections also satisfy this differential equa-
tion because @ρ=@λ ¼ 0 in those cases. What we wish to
do here is to squish a Lambert azimuthal equal-area
projection so that it oozes into some shape other than
circular. A way to do this that meets the criteria set out
above is to require that all parallels retain the proportion
of their spacing along the meridians, while meridians
themselves vary in length. This implies that ρ is the
same as Lambert’s, but shrunk or expanded by some
function h that depends only on λ or θ, with @ρ=@φ
inheriting the same dependency. Lambert’s ρ is given by

2 sin
π

4
� φ

2

	 

. Substituting into Equation (2.31),

� h 2 sin
π

4
� φ

2

	 
 @θ

@λ

@

@φ
h 2 sin

π

4
� φ

2

	 
h i
¼ cosφ; (2:32)

whence

@θ

@λ
¼ h�2ðλÞ or

@λ

@θ
¼ h2ðθÞ (2:33)

(depending on whichever is convenient for the projection
designer’s specification for the projection), and therefore

θ ¼
ð
h�2ðλÞdλ or λ ¼

ð
h2ðθÞdθ: (2:34)

If we specify our projection via the shape we want for
the outer boundary, presumably we express the shape
in terms of ρ around the full sweep of θ, or in cartesian
coordinates to cast into those polar coordinates. We
know how to proportion the parallels along any mer-
idian implied by ρðθÞ; all that is left is to determine the
meridional spread thus implied. This is available from
Equation (2.34). You might have noticed that this turns
ρ into a mixed-up function of φ and θ from φ and λ,
but because θ has no dependence on φ and is invertible
with λ, nature will ignore the transgression.

As an example, let us deform the Lambert azimuthal
equal-area projection into an equal-area square. We
will define the perimeter in terms of ρ and θ, where

ρ ¼ hðθÞ2 sin π

4
� φ

2

	 

. The perimeter is not a contin-

uous function because of the corners, so instead we will

treat only the 0th octant θ ¼ ½0; π
4



here, with the

remaining even octants being a rotation of the 0th
octant and the odd octants being a reflection plus
rotation of the 0th octant. The area of a sphere of
unit radius is 4π, so each side of a square of that area
has length 2

ffiffiffi
π

p
. Simple trigonometry yields

h θð Þ ¼
ffiffiffi
π

p
2

sec θ (2:35)

and therefore, by Equation (2.34),

λ ¼
ð
π

4
sec2 θdθ

¼ π

4
tan θ;whereby

θ ¼ arctan
4
π
λ

� �
and; asnotedbefore;

ρ ¼ 2hðθÞ sin π

4
� φ

2

	 


¼ ffiffiffi
π

p
sec θ sin

π

4
� φ

2

	 


x ¼ ρ cos θ; y ¼ ρ sin θ: (2:36)

I show the result in Figure 10. Many years ago, in a
personal communication fromWaldo Tobler, I received a
plotted projection that is apparently identical. However,
nothing about the context remains. Tobler (2008) notes,
“It is relatively easy to fit equal area maps into regular
n-sided polygons,” and illustrates the pentagonal case, but
does not give formulae.

Figure 9. “Kiss” projection, hamusoidal north n ¼ 0:85, south
n ¼ 0:65. 15� graticule, 10� increments in angular deformation
(one-column).
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Using these same principles, I developed the whimsical
“quasiazimuthal equal-area apple,” shown in Figure 11,
appearing in Geocart 1.2 (1992). The outer boundary is
described piecewise as conic sections, the piecewise nat-
ure of which accounts for the discontinuities in the dis-
tortion diagram. The boundary description is too
involved to present here.

I use “quasiazimuthal” to mean a projection which,
in polar aspect, has straight meridians without constant
angular separation between them. Recognizing that a
region boundary on an equal-area projection says
nothing about the region’s interior, it follows that an

equal-area projection in some particular shape, such as
an ellipse or a square or an apple, is not unique.
Qualifying the description with “quasiazimuthal” spe-
cifies which among an unlimited number of projec-
tions it is.

Lastly, we observe that a plane-to-plane form of the
equal-area condition in polar coordinates satisfies

ρ 0 @θ 0

@θ

@ρ 0

@ρ
� @θ 0

@ρ

@ρ 0

@θ

� �
¼ ρ (2:37)

where the primes mean the transformed coordinates,
and without primes mean the original polar coordinates
on the plane. We are no longer concerned with the
original manifold; insofar as it got projected by some

Figure 10. “Quasiazimuthal equal-area square” projection, 15�

graticule, 10� increments in angular deformation (one-column).

Figure 11. “Quasiazimuthal equal-area apple” projection, 15�

graticule, 10� increments in angular deformation (one-column).
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equivalent means onto the plane, we can set our origin
wherever we like and use Equation (2.37) to establish
that the result truly preserves areas. As applied to planar
radial oozing, we prohibit a dependency of θ 0 on ρ,
simplifying the condition to

ρ 0 @θ
0

@θ

@ρ 0

@ρ
¼ ρ: (2:38)

As in the spherical case, we posit some function hðθÞ or
hðθ 0Þ to warp ρ into ρ 0. We are no longer concerned
about the spacing of parallels; this is merely linearly
stretching ρ into ρ 0, and so ρ 0 ¼ hρ and @ρ 0@ρ ¼ h,
and Equation (2.38) simplifies to

h2ðθÞ @θ
0

@θ
¼ 1 or h2ðθ 0Þ @θ

0

@θ
¼ 1

and therefore

@θ 0

@θ
¼ h�2ðθÞ or

@θ 0

@θ
¼ h�2ðθ 0Þ

θ 0 ¼
ð

dθ
h2ðθÞ or θ ¼

ð
h2ðθ 0Þdθ 0:

Applying this to the example of equivalently and
radially oozing a unit circle into a square with sides
of length

ffiffiffi
π

p
, we have

h θ 0ð Þ ¼
ffiffiffi
π

4

r
sec θ 0; so

θ ¼ π

4

ð
sec2 θ 0dθ 0

¼ π

4
tan θ 0; and

θ 0 ¼ arctan
4θ
π

ρ 0 ¼
ffiffiffi
π

p
2

ρ sec θ: (2:39)

And finally, I note that radial oozing is analogous to
axial yanking. In radial oozing, the angle subtending
meridians is specified by formula, just as is the linear
spacing along the axis caused by yanking. The radial
scaling is thereby determined by the derivative of the
radial formulation, just as the perpendicular scaling is
determined by the derivative of the axial yank.

3. Conclusion

I have gathered and described here 11 distinct methods
for generating equal-area map projections. Three meth-
ods are new to the literature: axial yanking, directional

path offset, and radial oozing. I have identified the
Bonne projection methodology as a transform in its
own right. I have described novel uses for affine trans-
formation, a method which seems not to have literature
devoted to it in its most general forms. I have reported
several novel projections as examples of using these
techniques, and described the methods behind some
projections found in the Geocart software but never
described formally. Further, I proposed a way that affine
transformation could be used to render locally correct
maps for any region without having to rerender the
underlying raster tiles based on a single projection.
This technique would open up Web mapping to the
use of any projection without discarding the benefits of
the ubiquitous Web Mercator.

By consolidating these methods into one monograph,
I hope to help map projection designers develop and
explore the domain of equal-area projections. I find the
theory of equivalent projections lacking when compared
to conformal projection theory. As a description of
techniques, the present work does not directly advance
theory, but I nevertheless hope it will inspire ideas and
research directed toward a comprehensive understand-
ing of area-preserving transforms.
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