
Conditional Cuckoo Filters

Daniel Ting
Tableau Software
1162 N 34th St
Seattle, WA

dting@tableau.com

Rick Cole
Tableau Software

260 California Ave Ste 300
Palo Alto, CA

ricole@tableau.com

May 7, 2020

Abstract

Bloom filters, cuckoo filters, and other approximate set membership
sketches have a wide range of applications. Oftentimes, expensive opera-
tions can be skipped if an item is not in a data set. These filters provide
an inexpensive, memory efficient way to test if an item is in a set and avoid
unnecessary operations. Existing sketches only allow membership testing
for single set. However, in some applications such as join processing, the
relevant set is not fixed and is determined by a set of predicates.

We propose the Conditional Cuckoo Filter, a simple modification of
the cuckoo filter that allows for set membership testing given predicates
on a pre-computed sketch. This filter also introduces a novel chaining
technique that enables cuckoo filters to handle insertion of duplicate keys.
We evaluate our methods on a join processing application and show that
they significantly reduce the number of tuples that a join must process.

1 Introduction

Approximate set membership data sketches such as Bloom and cuckoo filters
allow a user to query whether an item x belongs to a given set S, i.e. if x ∈ S.
An item x ∈ S in the set is always correctly classified. However, an item x 6∈ S
has some small probability of being incorrectly classified as being in the set. In
other words, the filters return no false negatives and have a small probability of
returning false positives. These sketches are useful in database systems as they
provide an inexpensive way to check whether an expensive operation, such as a
disk access, needs to be performed.

We consider the general problem of testing set membership given predicates.
That is, consider a dataset D with each row consisting of a key ki and vector
of attributes ai. Given a predicate P, we wish to test if an item x is in the set
SP of keys with attributes satisfying that predicate

SP = {k : (k, a) ∈ D and P(a) = true}. (1)

1

ar
X

iv
:2

00
5.

02
53

7v
1

 [
cs

.D
S]

 5
 M

ay
 2

02
0

For the purposes of this paper, we restrict ourselves to equality predicates.
We propose the Conditional Cuckoo Filter (CCF) to address this problem.

The CCF can be seen as a simple modification of a cuckoo hash table [36] where
rather than storing a key, value pair, it stores fingerprints or sketches of both.
It is thus also similar to cuckoo filters [16] which store only key fingerprints. In
the case of a CCF, the value is a sketch of attribute columns. Using an attribute
sketch greatly improves the functionality of the filter at a modest cost in space.
A CCF differs from both cuckoo hashes and filters in that keys may not be unique
in the CCF and require techniques to handle duplicates. Tuples can share the
same key but have differing attributes. While existing cuckoo hash tables and
filters only support inserting a small number of duplicated keys, we introduce a
chaining technique that allows the filter to store additional duplicates.

The CCF supports two useful operations. Given an item x and predicate P,
it tests if x ∈ SP ,in other words, if there is a matching row in the input data.
Given just a predicate P, some variations of the CCF return a cuckoo filter for
the set SP . Like other approximate set membership sketches it maintains the
property that it cannot return false negatives.

We show that this can have significant benefits in join processing by reducing
the number of tuples returned by intermediate scans. Most interestingly, it
enables predicates from one table to be pushed down to scans on other tables.
We evaluate the reduction on the real world IMDB data set.

2 Related work

A number of data sketches address the approximate set membership (ASM)
problem including Bloom filters [5], d-left counting Bloom filters [6], quotient
filters [3], and cuckoo filters [16]. A number of variants [37, 17, 9, 31, 43, 20],
improve them through techniques such as cache awareness, compression, or
add functionality supporting counting. These sketches significantly reduce the
amount of space required in practical regimes. Theoretical work [35] further
reduces the asymptotic space usage to the information theoretic minimum. In
all these cases, the structures only address simple set membership queries with
no notion of predicates.

These structures are used in databases to speed up a number of operations.
Most related to our work are the join filters used in Oracle [13, 27], Microsoft
SQL Server [18], Informix XPS [44], and SAP ASE [39]. Given a set of di-
mension tables and a large fact table, join filters construct Bloom filters when
scanning the dimension tables and applying any predicates on them. These fil-
ters effectively push down predicates on dimension tables to the fact table scan
and significantly reduce its output. Our work allows such filters to be precom-
puted and stored. This allows the filters to be applied to dimension tables on
the build side of the join. This can result in, for example, smaller hash tables
which do not spill data to disk.

In databases, ASM sketches have been particularly useful for distributed join
processing [8, 30, 28, 32] by reducing the number of tuples that must be loaded

2

or sent across a network. They have also been used in join size estimation [33]
or to compute approximate join results [38].

ASM sketches are extensively used in log structured merge (LSM) tree based
key-value stores [40, 1, 2, 15, 19] and in testing if query results are in a cache
[34]. Outside of databases, approximate set membership sketches have a wide
range of applications, particularly in networking [10, 41].

Also related are methods that sketch attribute columns. Column sketches
[22] create small and hardware optimized data sketches that speed up scans
involving a predicate. Bloom indexes in Postgres [21] similarly use Bloom filters
on rows. A scan on the small sketch locates a subset of the full data that must
be read.

3 Filters in join processing

Approximate set membership sketches, and in particular Bloom filters, play an
important role in reducing the costs of processing joins and semi-joins. By re-
ducing the number of tuples that are processed after an initial scan, downstream
processing costs can be reduced significantly.

Consider the following query

SELECT ci.*, t.title, mc.note

FROM cast_info ci, title t, movie_companies mc

WHERE t.id = ci.movie_id

AND t.id = mc.movie_id

AND ci.role_id = 4

AND t.kind_id = 1

AND mc.company_type_id = 2

A typical query plan may build two hash tables consisting of the results of
mc filtered by the predicate on mc, followed by t joined with mc with predicates
on t and mc applied.

Prebuilt Bloom or other approximate set membership filters can further
restrict the set of ids to approximately those in the intersection of ci, t, and mc
but without predicates applied. This can substantially reduce the number of
tuples that need to be added to each hash table. This is particularly useful in
distributed settings where the tuples must be sent over the network.

They are also useful in the non-distributed case. For example, reducing the
number of tuples can change a query plan from a Grace hash join that spills
tuples to disk to a simple hash join that can process all tuples in memory [26].
Even if the query plan does not change, the reduction can still significantly
reduce costs in building the hash table, for example, in columnar stores when
each tuple incurs a row stitching cost [27].

Since approximate set membership filters do not contain any information
about the predicates, they may contain far more ids than desired. The above
query, on the IMDB dataset1, joins the title table with the movie company and

1We use a pre-2017 snapshot of the IMDB dataset compatible with the Join Order Bench-
mark

3

Symbol Meaning
h Hash function

(k,a) Query for key k and attributes a
`, `′ Bucket and alternate bucket for k
κ Key fingerprint
α Attribute fingerprint vector
β Load factor of hash table
⊕ XOR operation
b Number of entries per bucket
d max # of a duplicate keys in a bucket pair
H Cuckoo hash table

Lmax Maximum chain length
H`, H`,i Set of entries, or entry i, in bucket `

m Number of buckets in table
(k,a) ∈ H, k ∈ H CCF returns true for query

Table of symbols

cast information tables on movie id. This is a star join among three large tables,
and hence, it is beneficial to apply as much filtering as possible when scanning
all three tables. However, the title table contains the universe of all movie ids.
Applying a prebuilt Bloom filter for the title table to the other tables is useless.
However, a Bloom filter for Bollywood movies would both greatly restrict the
relevant production companies and cast members.

In an ideal case, there exists a pre-built approximate set membership filter
selecting only ids that match each given predicate. In that case, each hash table
built consists only of ids that appear in the final result plus a limited number of
false positives. In effect, the predicates for ci and t can be pushed down to mc.
Our goal is exactly this, to construct a sketch which returns an approximate set
membership filter for any given set of predicates.

4 Preliminaries

Our methods are modifications of cuckoo filters and hash tables which provide
more robust capabilities for storing duplicate keys and add information about
attribute values to each key. Before describing our methods, we first review
cuckoo hashing techniques for those unfamiliar with them.

Cuckoo hash tables are a form of open addressing hash table. Such a hash
table is arranged as a fixed size array of entries. They avoid the overhead of
storing pointers used by separate chaining techniques to handle hash collisions,
and they can often make more efficient use of cache. The space overhead for an
open addressing hash table instead depends on the proportion of empty entries.
It has low overhead when the proportion of filled entries, or load factor β, is
close to 1. Typical collision resolution techniques such as linear probing have

4

expected query times that grow as the load factor β increases. This puts query
speed and space efficiency in direct opposition to each other. Linear probing
has a query and insertion cost of O(1 + 1/(1− β)2)

Unlike collision resolution techniques where the locations of items in the hash
table are immutable after insertion, cuckoo hashes can relocate items when there
are collisions at insertion time. By resolving collisions at insertion time, the
number of buckets that need to be probed at query time can be reduced to two
while still being able to achieve a high load factor on the table. Furthermore,
cuckoo hash tables have O(1) amortized expected insertion time. Cuckoo hash
tables are typically arranged in a tiered fashion so that an item is first hashed
to one of m candidate buckets. Each bucket contains b entries in which data
can be stored.

4.1 Cuckoo insertion

The cuckoo hashing insertion algorithm follows. When inserting an item, value
pair (k, v), the item is hashed to two possible buckets `, `′. If k is already in one
of the buckets, then the value is simply updated. Otherwise, if either bucket is
not full, the pair is simply added to a non-full bucket with ` being preferred over
`′. If both are full then it picks a random pair (k′, v′) from the two buckets.
It ”kicks out” that pair and replaces it with (k, v). The pair (k′, v′) is then
reinserted into the sketch at its alternate bucket. The process of kicking out
and reinserting is performed up to some maximum MaxKicks number of times.
The process reaches this maximum then the table is resized and all pairs are
reinserted. To query a cuckoo hash table, only the two possible buckets need to
be examined for the key.

4.2 Cuckoo filters

Cuckoo filters can be seen as a particular form of cuckoo hash table. They are
used for ASM queries rather than for key-value queries. There are two primary
differences from typical cuckoo hash tables. First, only a small fingerprint κ of
the key k is stored in the table. It does not store the full key nor any value
associated with the key. Second, it uses partial-key cuckoo hashing where the
alternate bucket `′ = ` ⊕ h(κ) is determined only by the bucket ` and the
fingerprint. This allows the alternate bucket to be computed using the limited
information stored in the sketch rather than requiring the discarded full key.
Here ⊕ is the XOR operation and h is a hash function.

To check if a key k exists, the ≤ 2b items in its 2 buckets `, `′ are checked for
a matching fingerprint. Trivially, if k was previously inserted into the filter then
the filter will find a match, so that there are no false negatives. If k was not
previously inserted, then there is probability D× 2−|κ| that there is a matching
fingerprint due to random chance where D ≤ 2b is the number of filled entries
in the two buckets and |κ| is the size of the key fingerprint in bits. The False
Positive Rate (FPR) of the filter is thus ρ = 2−|κ|ED.

5

For a typical setting where the number of entries per bucket b = 4, an
optimally sized cuckoo filter requires approximately (log2 1/ρ + 3)/β bits per
item to achieve a desired FPR of ρ where β is the load factor of the table.
According to [16], an optimally sized filter empirically achieves β ≈ 95% when
b = 4. Compared to Bloom filters which require ≈ 1.44 log2 1/ρ bits per item to
achieve the same FPR, an optimally sized cuckoo filter requires fewer bits per
item when the desired FPR ρ < 0.35%.

In order to further reduce the number of bits per item needed to achieve a
target FPR, the entries in the bucket can be sorted. This reduces the entropy of
the bucket and allows for a more efficient encoding. This can be done efficiently
if only 4-bit prefixes of the fingerprints are sorted. In this case, the bits per
item needed is reduced to (log2 1/ρ+ 2)/α. This reduction allows cuckoo filters
to use fewer bits than a Bloom filter when the target FPR ρ < 2.5%.

4.3 Multisets

Cuckoo filters have limited support for multisets and duplicate keys. They
can be extended either by adding a counter to each entry or by inserting an
additional copy of a key fingerprint. We focus on the latter as we additionally
store unique attributes with each duplicated key. This makes cuckoo filters more
flexible than Bloom filters as they support deletions by removing a copy of a key
fingerprint. However, there is a cap of 2b copies that can be inserted since a key
can only probe 2b entries in its 2 buckets. Furthermore, there are no theoretical
guarantees that a high load factor can be obtained. Empirically, we see they
cannot. Figure 4 shows that the load factor decreases dramatically when there
are duplicate keys, and insertions into the filter can fail almost immediately
when the distribution of duplicated keys is highly skewed.

5 Conditional cuckoo filters

We now introduce the Conditional Cuckoo Filter (CCF). These support set
membership queries with equality predicates. Like a cuckoo filter, a CCF is
based on cuckoo hashing and saves space by using fingerprint or sketches. By
storing sketches for both key and attribute values rather than just the key,
they provide a space efficient structure that supports predicates. This can be
much more efficient than the alternative which stores a separate filter for each
combination of predicate values. Such a strategy would grow exponentially in
size.

There are two main problems in adding back this attribute information.
First, how can a set of attributes be summarized and stored in a small amount
of space? Second, how can the cuckoo hash table deal with non-unique keys,
especially when the key distribution is highly skewed?

We propose and evaluate several solutions to these problems. To solve the
former, we introduce the extremely simple, but novel, idea of sketching at-
tributes and provide three ways of sketching attributes: using a vector of fin-

6

gerprints, a Bloom filter, or a mixture of the two. For all of these, the primary
novel extensions to cuckoo filters and hashing are in how duplicate keys with
unique fingerprints are handled as cuckoo filters quickly fail in the presence of
duplicates. The methods we propose employ either a chaining mechanism which
allows the CCF to use more buckets as more duplicates are encountered or a
method to switch from fingerprint vectors to Bloom filters.

5.1 Attribute fingerprint vectors

The simplest method for sketching a vector of attributes hashes each attribute
value into a small number of bits s, say 4 or 8, to construct a vector of attribute
fingerprints. Despite their extremely small size, these attribute sketches can be
effective in applications. For example, in join processing the probability of a
false match does not need to be extremely low to be effective. The expected
output size after applying an equality predicate to an intermediate scan is

EMoutput = Mtrue + EFPR ∗ (Moriginal −Mtrue)

< Mtrue + EFPR ∗Moriginal.

Thus, when the number of true matching tuples is a small percentage of the
output tuples, Mtrue/Moutput ≈ 0, a relatively poor FPR of just 10% reduces
the number of tuples produced by a factor of nearly 10. Furthermore, if more
than one predicate is applied, the reduction can be multiplicatively amplified.
Similarly, there is little reason to target a FPR much smaller than the ratio
Mtrue/Moriginal, as this unavoidable cost becomes the dominant cost in pro-
cessing.

The resulting CCF will thus have a very low FPR when a key is absent from
the set but allows for a higher FPR if the key exists but there is no matching
attribute. Similar to key where we represent a key k with its Greek counterpart
κ, we use a to denote attribute vectors and α to denote their attribute finger-
print vector. When using attribute fingerprint vectors, the underlying cuckoo
hash table must be modified to handle duplicated keys with unique attribute
fingerprints.

5.2 Bloom filter attribute sketches

A second choice represents attributes with a Bloom filter. Each (attribute name,
value) pair is inserted into a small Bloom filter. The resulting sketch is simply a
cuckoo filter with an added Bloom filter for each entry. Algorithm 1 summarizes
the procedure for querying the filter. The only difference from a regular cuckoo
filter query is the additional check to verify if the attribute matches. A CCF
using Bloom attribute sketches can also support queries that only specify a
predicate and not a key. It returns a cuckoo filter which a downstream process
can use to check the existence of a key. To do this, simply erase all entries where
the predicate does not match and return the resulting array of key fingerprints.
This is summarized in algorithm 2.

7

Algorithm 1 Query(k,a)

(κ, `)← h(k)
α← hA(a)
`′ ← `⊕ h(κ)
for (κ′, α′) ∈ H` ∪H`′ do

if κ = κ′ and a matches α′ then
return True

end if
end for
return False

Algorithm 2 PredicateQuery(a)

m, b← Dimension(H)
H ′ ← new CuckooFilter(m, b)
for `← 1, . . .m do

for i← 1, . . . , b do
(κ, α)← H`,i

if a matches α then
H ′`,i = κ

end if
end for

end for
return H’

Using a Bloom filter attribute sketch has mixed effects on the required size
of the sketch and the FPR. First, note that the occupied entries in the sketch
are exactly the same as those of a cuckoo filter. Thus, appropriately sized
filters are theoretically guaranteed [14] to obtain high load factors with high
probabilty. For our other methods, we only have empirical results showing high
load factors are obtained. However, a Bloom filter is less bit efficient than a
fingerprint vector. An optimized Bloom filter requires ≈ 1.44 log2(1/ρ) bits per
attribute to achieve an FPR of ρ versus log2(1/ρ) for a fingerprint vector. This
inefficiency is exacerbated since it is not possible to choose optimal parameters
for the Bloom filter. The optimal choice for the number of hash functions to use
depends on the number of distinct (attribute, value) pairs that will be added
to the filter. These are not known in advance and can vary greatly for different
keys. Second, when multiple rows of data share the same key but have different
attribute vectors, a Bloom filter attribute sketch does not encode which attribute
values occur together in the same row. If row 1 has attributes (a1, a2) and row
2 has (a′1, a

′
2), then given a predicate A1 = a1 ∧A2 = a′2, there are no matching

rows for the predicate, but a Bloom filter attribute sketch is guaranteed to
return a false positive. This would remain true if the Bloom filter were replaced
with any other ASM sketch. On the other hand, if all queries contain only a
single equality predicate, then the fingerprint vector can unnecessarily store a

8

single attribute value A1 = a1 multiple times when the second attribute A2 is
varying. A Bloom filter only encodes it once.

6 Multiset representations

Although one advantage of attribute fingerprint vectors is the ability to store co-
occurence information, each unique fingerprint vectors must still occupy distinct
entries in the CCF. The ability to handle a potentially large number of duplicates
is an important ability that normal cuckoo hash tables lack. A key’s 2 buckets
contain at most 2b entries, and inserting any more copies of a key is guaranteed
to fail. This is problematic as many data sets have highly skewed distributions
for the key.

We present two strategies to address this and maintain a no false negative
guarantee. One converts attribute fingerprint vectors to Bloom filters when too
many duplicates are encountered. The second is a form of chaining that allows
a key to utilize more than 2 buckets.

In both cases, we allow a maximum of d duplicated key fingerprints per
bucket pair. If an attempted insertion for key k is on a bucket pair already
containing d copies of the fingerprint κ, then either the d copies are converted
to a Bloom filter attribute sketch or additional bucket pairs are considered via
the chaining procedure.

6.1 Bloom filter conversion

Consider a key k and attribute vector a that must be inserted in the pair of
buckets `, `′. Let |κ|, |α| denote the size of the key fingerprint and attribute
fingerprint vectors and #α denote the number of attributes. Suppose there
are already d copies of the fingerprint κ in the 2b entries of `, `′. Bloom filter
conversion takes the d|α| bits that are currently used to store d fingerprint
vectors and constructs a single Bloom filter in their stead. Each entry in the
sketch also requires an additional bit to track whether it contains a Bloom filter
attribute sketch or a fingerprint vector.

This conversion operation has the advantage that it can never fail. However,
it adds complexity in storing a Bloom filter among d entries and maintaining
it whenever a bucket’s entry is kicked into the alternate bucket. It has the
same advantages and disadvantages outlined in section 5.2 when directly using
a Bloom filter attribute sketch but with two main differences. It has a further
disadvantage in that hash collisions can be introduced both from hashing at-
tribute values into fingerprints and from inserting fingerprints into the Bloom
filter. Directly using a Bloom filter only introduces collisions from the latter. It
has an advantage in that the Bloom filter parameters can be chosen more easily
since the minimum number of duplicates is d. The Bloom filter parameters do
not need to be optimized to also handle rows with a unique key.

The storage of the entries can be further optimized to avoid storing the
same key fingerprint multiple times. Instead, each bucket can store a single

9

copy of the key fingerprint along with the number of entries the Bloom filter
attribute sketch occupies in that bucket. If the other entries sharing the same
key fingerprint are stored contiguously, then the Bloom filter can be successfully
reconstructed. In this case, the required number of bits to store the fingerprint
and counts is 2(|κ|+dlog2 de) and the number of bits in d entries is d(|κ|+|α|+1).

We choose the number of hash functions to be approximately the optimal
number assuming there are (d+1)·#α unique attribute name, value pairs added
to the filter. Let |B| be the number of bits available to the Bloom filter.

hashes ≈ |B|
(d+ 1) ·#α

log 2 (2)

≈ |α|
#α

d

d+ 1
log 2 if |α| � |κ| (3)

Algorithm 3 summarizes the method to convert attribute fingerprint vectors
to a Bloom filter.

Algorithm 3 BloomConversion(H, `, `′, κ, α)

Sort entries in H` and H`′ by fingerprint
ri ← # entries with fingerprint κ in Hi for i = `, `′.
s← Size of single entry

numHash← |α|
#α

d
d+1 log 2

totalBits← ds− 2(|κ|+ dlog2 de)
B ← Bloom(numHash, totalBits)
for (κ′, α′) ∈ H` ∪H`′ ∪ {(κ, α)} do

if κ′ = κ then
for j ← 1, . . . ,#α′ do

Insert (j, αj) into B
end for

end if
end for
`, `← min{`, `′},max{`, `′}
bits` ← r`s− |κ|+ dlog2 de
Pack (κ, r`, B1,...,bits`) into the r` entries in H`

Pack (κ, r`, Bbits`+1,...,numBits) into the r` entries in H`

6.2 Chaining

Chaining introduces additional bucket pairs whenever an insertion would violate
the constraint that at most d copies of a key fingerprint κ are in a bucket pair
`, `′. A second bucket pair is determined by hashing both the bucket pair and
fingerprint, ˜̀ := h(min{`, `′}, κ). Unlike the XOR operation for bucket pairs,
determining the second bucket pair is a one way operation. The second bucket
pair is computable from the first, but not vice-versa. The min can also be

10

replaced by some other symmetric function. This may be repeated to generate
a chain of bucket pairs. We cap the number of bucket pairs that are generated
by a constant Lmax. The procedure is illustrated in figure 1. The algorithm is
summarized in algorithm 4.

Figure 1: Illustration of chaining procedure

Algorithm 4 ChainInsert(`, κ, α, Lmax)

`′ ← `⊕ h(κ)
if (κ, α) ∈ H` ∪H`′ then

return Success
else if |{(κ′, α′) ∈ H` ∪H`′ : κ′ = κ}| = maxDupes then

˜̀← h(min{`, `′}, κ)
ChainInsert(˜̀, κ, α, Lmax − 1)

else if H` is not full then
Insert (κ, α) into H`

return Success
end if
for i← 1 to MaxKicks do

if H`′ is not full then
Insert (κ, α) into H`′

return Success
end if
Pick random entry i ≤ b
Swap(κ, α) with H`′ [i]
`′ ← `′ ⊕ h(κ)

end for
return Terminated

When querying for a key k and predicate P, the next bucket pair is checked
only if there are exactly d entries with the given key fingerprint. In the case
where Lmax bucket pairs are checked and the last bucket pair contains d copies of

11

the given key fingerprint, the query will return true regardless of the predicate.
Otherwise, it returns true only if the predicate finds a match in one of the
attribute sketches for that key. The algorithm is summarized in algorithm 5.
The correctness of this is proven by the following lemmas.

Algorithm 5 ChainQuery(`, κ, α, Lmax)

for i← 1, . . . , Lmax do
`′ ← `⊕ h(κ)
if (κ, α) ∈ H` ∪H`′ then

return True
else if |{κ′ ∈ H` ∪H`′ : κ′ = κ}| = d then

`← h(min{`, `′}, κ)
else

return False
end if

end for

Lemma 1. Given any key fingerprint κ and bucket `, let `′ = ` ⊕ h(κ) be the
alternative bucket. The total number of copies of κ in buckets `, `′ only increases
as items are inserted into a conditional cuckoo filter with chaining, and the total
number is capped by the parameter d.

Proof. We can prove this by induction. This trivially holds in the base case
where the conditional cuckoo filter is empty. Upon insertion of a new item, the
only way the number of copies of κ can decrease is if an entry containing κ is
kicked out by a cuckoo kick operation. Assume WLOG that κ was in bucket
`. If it is kicked out by a row with key fingerprint not equal to κ then the
number of copies of κ in `, `′ must be strictly less than d. Therefore, it must be
reinserted into bucket `′ and the invariance holds. If it is kicked out by another
row with key κ, then if there were < d copies of κ in `, `′ before, there are still
< d copies and it must similarly be reinserted into `′. This increases the count
of copies of κ but it cannot exceed d. If there were d copies before, then there
are still d copies after the kick operation. The chaining operation ensures that κ
is not reinserted into the pair `, `′, so the cap is preserved. Consider a possible
insertion for fingerprint κ into either ` or `′. WLOG assume it is a possible
insertion to `′. The alternative bucket is `′ ⊕ h(κ) = `. An insertion will check
if the cap would be preserved and move to the next bucket pair if it is not.

Lemma 2. Let k,a be a key, attribute vector pair and C a conditional cuckoo
filter with chaining. There is a fixed sequence of buckets `1, `2, ...`n with n ≤
Lmax that the sketched entry κ, α corresponding to this pair can be inserted into.
Furthermore, if it is into `i, then all pairs `2j , `2j−1 with 2j − 1 < i contain d
copies of κ.

Proof. The sequence is given by `1 = h`(k), `2j = `2j−1 ⊕ h(κ) and `2j+1 =
hb(min{`2j−1, `2j}, κ). This recursion is defined by only k for the first bucket

12

and only by κ and the previous bucket for all other buckets. It ends if there is a
cycle or the maximum chain length Lmax is reached. The other invariant holds
by induction. It trivially holds for the empty filter. Consider i′ even. Based on
the lemma above, an entry containing κ in `i′ can only move to `i′+∆ if there
were already d copies of κ in `i′−1, `i′ . This hold regardless of whether the move
is due to a simple insertion or from being first kicked out. Thus, the invariant
is preserved. Similarly, it is preserved when i′ is odd.

Theorem 3. The conditional cuckoo filter with chaining returns no false neg-
atives.

Proof. If a key k and predicate P have some matching row k,a, then that row
must either be inserted into some bucket in the sketch or discarded because
the maximum chain length is exceeded. The lemma above ensures that a query
either finds the corresponding entry or reaches the maximum chain length. Both
conditions return true.

Note that generating alternative bucket pairs may result creating a cycle
of bucket pairs. In this case, the insertion procedure will not fail but will not
generate Lmax unique bucket pairs. To further improve the chaining procedure,
such cycles can be detected and the chain can be extended. We can do this
using Floyd’s cycle detection algorithm.

Like Bloom filter attribute sketches, the chaining method can also sup-
port predicate only queries. However it cannot simply erase entries with non-
matching attribute values. This could introduce gaps in a chain where some
bucket pair does not contain d copies of a fingerprint. A query could improp-
erly stop probing bucket pairs early and yield false negatives. Instead, the sketch
must keep the key fingerprint and use an additional bit to mark the entry as
non-matching.

7 False Positive Rates

The accuracy of CCF’s and other approximate set membership sketches can
be measured by the false positive rate (FPR). Unlike regular cuckoo filters,
the FPR for CCFs is not a constant. Queries can result in false positives due
to spurious matches on the key fingerprint, on the attribute sketch, or both.
Because of this, the FPR depends on the distribution of the underlying data
and the query itself. We provide some simple bounds on the FPR expressed in
these relevant quantities.

7.1 Key only queries

For a standard set membership query only a key with no predicates, the CCF
has a FPR similar to a regular cuckoo filter. When using Bloom filter attribute
sketches, the CCF is, in fact, identical to a cuckoo filter when the attribute
sketches are ignored. Thus, they have exactly the same FPR as cuckoo filters

13

on key only queries. We show that all the variations of the CCF are governed
by a bound of the same form for key only queries.

The typical bound on the FPR on a cuckoo filter is given by a union bound.
A key k that was not inserted into the sketch generates a random key fingerprint
κ with |κ| bits. The probability that κ randomly matches any given entry in the
sketch is 2−|κ|. Summing over the entries that can be probed by a query gives
a union bound on the FPR. A slight refinement of the typical bound for the
FPR sums this probability for a spurious match over the number of non-empty
entries D in the key’s bucket pair rather than all 2b entries. This gives a bound
on the FPR for key only queries using Bloom attribute sketches as

FPRkey ≤ ED2−|κ| (4)

For a CCF using Bloom conversion, only entries with distinct key fingerprints
in the bucket pair need to be counted. Letting D represent this distinct count
gives the same bound as above. We note that although the form of the bound
is the same, this does not imply that a similarly sized CCF using Bloom con-
version yields a smaller FPR. To avoid insertion failures, a sketch using Bloom
conversion must contain more entries as it stores duplicates.

For a CCF using chaining, lemma 2 shows that the chain is irrelevant for
key only queries. Only the first bucket pair must be checked. Thus, the formula
for the FPR is also the same as above. This result is of interest since although
insertions can probe up to 2Lmax buckets, there is no penalty for probing more
buckets at query time.

7.2 Key and predicate queries

CCF’s are distinguished by their ability to answer queries for a key and predi-
cates. Consider a query for a key k and equality predicates Ai = ai for attributes
i = I. Further suppose there are no matches on the full data so that a positive
return value is a false positive. The probability that a CCF returns true can be
decomposed as

p((k,P) ∈ H) = p(k ∈ H)p(P ∈ H[k]|k ∈ H) (5)

where k ∈ H or (k,P) ∈ H denotes the event that the filter returns true for
the given query, H[k] denotes the entries that a query involving k would probe
and which contain the key fingerprint κ, and P ∈ H[k] denotes that there is a
match for the predicate among those entries.

Consider the following cases

• The key k is not in the data

• The key k is in the data, but there is no match for the predicate

In the former case, the FPR is trivially bounded by p(k ∈ H) which is upper
bounded in the previous subsection. An upper bound on the FPR of ≤ 5% can

14

be achieved with a key fingerprint size of 8 and 6 buckets per entry. This bound
holds for all variations of the CCF.

In the latter case, p(k ∈ H) = 1 since the key is in the data and there are
no false negatives. A false positive occurs if there is a spurious match for the
predicate P among the entries in H[k]. The FPR is thus the probability the
predicate matches on an attribute sketch, p(P ∈ H[k]|k ∈ H) = p(P ∈ H[k]).

The FPR differs depending on the attribute sketch used. For Bloom filter
attribute sketches, the FPR is

pBloom(P ∈ H[k]) = ρvk (6)

where ρk is the FPR of the Bloom filter for key k and v is the number of attribute
values which were never inserted into the Bloom filter.

Note that when the predicate tests for the co-occurrence of multiple at-
tributes, the FPR can be 1 as described in section 5.2. The standard formula
for the FPR for a Bloom filter is ρ ≈ (1 − (1 − h/s)n)h ≈ (1 − exp(−hn/s))h
where h is the number of hash functions used by the Bloom filter, s is the num-
ber of bits, and n is the number of unique attribute name, value pairs that are
added to the Bloom filter. In this case where the Bloom filters are small, this
approximation is an underestimate of the FPR [7].

When using attribute fingerprints, the probability of a spurious match on
one entry has a similar form, p(P ∈ H[k]i) = ρ̃ṽk where H[k]i is the ith entry
that is checked with fingerprint κ. This entry corresponds to some input row
that was added to the filter. Here, Ṽ is the number of attributes in the predicate
which do not match the underlying data row’s attributes and ρ̃ = 2−|α| where
|α| is the size of the attribute fingerprint used. In this case there are a maximum
number of dLmax entries checked, so the overall FPR is bounded by

pchained(P ∈ H[k]) ≤ dLmaxE2−|α|Ṽ . (7)

Similar to the key-only query case, the FPR does not depend on the total
number of entries that are probed at insertion time but only on a smaller subset
containing the key fingerprint κ.

For Bloom conversion, the FPR depends on whether the entry for the key k
has been converted to a Bloom filter.

Although the formulae are upper bounds on the expected FPR, figure 2
shows they are reasonably good predictors of the actual FPR.

15

Attr Size: 4 Attr Size: 8

O
verall

N
A

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

Actual FPR

E
st

im
at

ed
 F

P
R

FPR due to Attribute FPR due to key Overall FPR

Figure 2: The bounds on the expected FPR are good predictors of the actual
FPR when using attribute fingerprints.

8 Size and parameter choice

Conditional cuckoo filters have more parameters than regular cuckoo filters.
Cuckoo filters only require setting the number of buckets m and the number
of entries per bucket b. CCF’s can additionally require setting the maximum
number d of duplicates per bucket pair, Lmax the maximum chain length, and
any additional parameters required by the attribute sketch.

We derive an upper bound on the number of non-empty entries and show
through experiments that the attainable load factor is a constant that is insen-
sitive to the underlying data. Together these can be used to size the sketch.
These bounds and constants depend on the parameters d and Lmax which affect
the number of duplicates stored in the sketch.

Denote the total number of distinct keys by nk and the number of non-
zero entries in a CCF by Z ′. Since a CCF with Bloom attribute sketches has
the same non-empty entries as a regular cuckoo filter, the number of non-zero
entries can be upper bounded by nk. For other cases, let rk be the number of
duplicates for key k that have distinct attribute values. Bloom filter conversion
will allocate a maximum of max{d, rk} entries for that key. Let A = rX for a
randomly chosen key X. Then the expected number of used entries is bounded
by EZ ′ ≤ nkEmin{A, d}. Similarly, a CCF with chaining uses at most dLmax
entries for a single key, so the expected number of entries used is bounded by
EZ ′ ≤ nkEmin{A, dLmax}. These sizes are summarized in table 1. Figure
3 shows that the bound on the number of entries needed closely matches the
actual number needed.

16

Queries # non-empty entries
Filter k (k,P) P (upper bound)
Cuckoo filter 3 nk
CCF w/ Bloom 3 3 3 nk
CCF w/ conversion 3 3 3 nk Emax{A, d}
CCF w/ chaining 3 3 nk Emax{A, dLmax}

Table 1: Supported queries and sizing for different conditional cuckoo filters.
nk is the total number of distinct keys and A is the number of distinct attribute
vectors associated with a randomly chosen k.

●

●

●●

●●●

●

1e+06

3e+06

1e+07

1e+06 3e+06 1e+07

filled entries

pr
ed

ic
te

d
#

of
 e

nt
rie

s

● Bloom Chained Mixed

Figure 3: The predicted number of entries needed for each filter closely match
the actual number for the workload.

From experiments on chaining, we find a reasonable rule of thumb for setting
the number of entries per bucket b is to take b ≈ 2d. This way, at least 4 keys
can be stored in a bucket pair `, `′. Typically more keys can be stored since only
1 key fingerprint will use that particular pair of bucket locations. This provides
relatively high load factors while ensuring buckets are not costly to scan. Figure
4 shows that a setting of b = 4 that is typical for cuckoo filters achieves a load
factor of around β ≈ 75% regardless of the number of duplicate keys. A slightly
larger value of b = 6 achieves a load factor close to β ≈ 87% even when there
are many duplicates. An appropriate estimate for the required size for a CCF
is m · b ≈ EZ ′/β.

When the sketch is optimally sized, figure 5 shows that lower settings for d
tend to achieve better use of bits. This is primarily due to smaller values of d
yielding higher load factors. Given a fixed setting for the number of bins m and
entries per bin b, we found the best d is the largest under which all insertions
pass. We chose d = 3 which provides small bucket sizes and a good load factor.

17

8.1 Attribute sketch parameters

Figure 8 shows the performance of different CCF’s under various parameter
choices. Generally, we also found increasing the attribute sketch size more
beneficial than increasing the key fingerprint size. Figure 2 shows that at small
attribute sketch sizes, the false positives are primarily due to bad matches on
the attribute sketches. In this case, a false positive k,a is attributed to a key
if the key is not in the sketch, in other words, k 6∈ H. Otherwise, it is easily
attributed to the attribute. We also found small values for the number of hash
functions used by Bloom filters to be preferable as it does not become filled with
ones too quickly.

9 Additional optimizations

The chaining method lends itself to several optimizations.
Storage: When using attribute fingerprint vectors, the CCF is an open ad-

dressing hash table, and can be directly stored as such. Furthermore, attribute
fingerprints can be stored on disk in a columnar format so that at query time,
only the relevant predicates need to be read.

Small values: The attribute values themselves are often stored as small
integers. One optimization is to hash only values ≥ 2|κ|. This way, all small
values can be represented exactly.

Attribute compression: More accurate CCF’s can be constructed using
a two-stage process. First, construct a CCF with chaining using large attribute
fingerprints. A compressed CCF can be constructed by mapping large attribute
fingerprints to smaller ones while minimizing the number of collisions.

9.1 Range queries

Conditional Cuckoo filters can be extended to support range predicates using
standard techniques. Given a column with a range predicate, one simple method
is to bin the column into a small number of bins. A range predicate can then
be converted into a small in-list. The disadvantages of this approach are that
the binning process introduces error and that long ranges must check more
bins. Since each bin that does not contain a true match can return a false
positive, both can increase the FPR. Another method uses a standard approach
of using a dyadic expansion over the range [a0, b0] of the column. An item x can
be represented as a sequence of intervals [a1, b1], . . . [aη, bη] with exponentially
decreasing lengths bi+1 − ai+1 = (bi − ai)/2 down to some final granularity
bη − aη. This requires η insertions into a CCF for each item, and a range query
likewise requires querying for the existence of up to η intervals that cover the
range. We use the simpler binning approach in our experiments.

18

10 Experiments

We consider two experiments. One on synthetic data examines the ability of the
chaining procedure to store duplicate keys while obtaining a high load factor.
The second examines the ability of the CCF to reduce output sizes on a join
benchmark on real world data [24].

10.1 Multiset experiments

Our experimental results show chaining dramatically improves the ability of a
cuckoo filter to handle duplicate keys. We simulated key frequencies using either
a truncated Zipf-Mandelbrot distribution or a stream where every key has the
same number of duplicates.

As the mean frequency of each key increases, figure 4 shows that inserting
into a regular cuckoo filter fails at lower load factors. Chaining allows the filter to
maintain high load factors. When the input has a Zipf-Mandelbrot distribution,
the regular cuckoo filter fails extremely quickly.

The setup for the multiset experiments are as follows. The chaining cuckoo
hash parameter for the maximum number of duplicates per bucket pair is d = 3,
and the maximum number of bucket pairs for a key Lmax =∞ is uncapped. For
each filter type and each setting for the average number of duplicates per key
in the input data, we generate a dataset that is approximately 20% larger than
the capacity of the sketch and measure the number of items processed before
the first failed insertion and the load factor at that point. A failed insertion
here is the first time a unique key, attribute pair is not found in the sketch but
fails to generate a new entry in the sketch. The order of items is randomly
permuted. For the Zipf-Mandelbrot distribution with a mass function of the
form p(x) ∝ (c + x)−α, we fix the offset c to be 2.7 and truncate the range to
be in [1, 500]. We vary α to obtain the desired average number of duplicates
per key. We use the additional cycle detection and resolution method in these
experiments. The results are averaged over 20 runs using random salts for the
hash functions.

10.2 Multiset results

Figure 4 shows the behavior of a regular multiset cuckoo filter and cuckoo filter
with chaining as the number of duplicates per key is varied. The chained cuckoo
filter is able to achieve roughly the same load factor regardless of the number
of duplicates. In contrast, the plain cuckoo filter’s ability to achieve a high
load factor quickly decreases. For Zipf-Mandelbrot data, the plain cuckoo hash
encounters very few items before it fails.

The cuckoo filter quickly encounters more copies of these keys than it can
store. When the number of real duplicates per key matches d, the chained and
plain cuckoo filters achieve similar load factors. However, the chained cuckoo
filter has a slightly worse FPR as it inspects an extra bucket pair.

19

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●● ● ● ● ● ● ●

●●
● ● ● ● ● ●

●● ● ● ● ● ● ●

constant zipf

b: 4
b: 6

b: 8

4 8 12 4 8 12

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Avg # of duplicates

Lo
ad

 fa
ct

or
 a

t f
ai

lu
re

type ● chained plain

Figure 4: Chaining delays the first failed insertion and enables high load factors.
A regular cuckoo filter achieves reasonable load factors only when the maximum
number of replicates for a key is small.

Figure 5 shows the efficiency of the chained cuckoo filter. We define the bit
efficiency of the filter to be

Efficiency :=
sketch size in bits

n log2 1/ρ
(8)

where n is the total number of keys inserted and ρ is the FPR. When all keys
are distinct, a sketch with an efficiency of 1 cannot be improved since it matches
the information theoretic lower bound given by the denominator. An optimized
chained cuckoo filter obtained a bit efficiency of ≈ 1.93 when all keys have the
same number of duplicates > d. In comparison, a Bloom filter has a bit efficiency
of ≈ 1/ log 2 ≈ 1.44. As shown in figure 4, a cuckoo filter can have arbitrarily
bad bit efficiency when encoding multisets. For sets, a cuckoo filter with the
semi-sorting optimization has a bit efficiency of ≈ β−1 +2β−1/ log2(1/ρ) ≈ 1.37
with a load factor of 95% and FPR of ρ = 1%. Without the semi-sorting
optimization, it has a bit efficiency of ≈ 1.53 for the same FPR. Thus, in the
presence of many keys with duplicates, the efficiency decreases by a modest
amount.

20

●

●

●
●

● ● ● ● ●

●

●
●

●
●

● ● ● ●

constant zipf

0 25 50 75 100 0 25 50 75 100
1.44
2.00

4.00

8.00

16.00

fill (%)

bi
t e

ffi
ci

en
cy

maxDupe ● ● ● ● ●2 4 6 8 10

Bit efficiency w/ optimal params

Figure 5: Higher load factors with small values for d = maxDupe generally make
better use of space. While a very low value of 2 duplicates can achieve higher
load factors, it can result in higher FPRs which make the sketch less efficient.

10.3 JOB-light experiments

Our second set of experiments evaluate the efficacy of using CCF’s for join
processing on a real world dataset. We evaluated the CCF’s ability to reduce
the output of scan operators using the JOB-light workload [25] for varying sizes
of CCF’s. This workload is derived from the Join Order Benchmark (JOB) [29]
that is used to evaluate the quality of query optimizers. For a distributed
system, the reduction factor measures how proportion of tuples are sent over
the network, or in non-distributed hash joins, how much smaller the hash table
sizes are. The CCF size is the space cost needed to achieve this reduction. This
allows us to perform a comparison against the naive approach of simply building
a hash table for each table without applying CCF pre-filtering.

The JOB-light workload consists of 70 queries, each joining up to 5 large
tables from the IMDB dataset. Among these 70 queries are 237 instances of
tables that qualify for matching join keys and predicates in at least one CCF,
effectively a semijoin reducer [4]. This reduction in the number of rows by
semijoin(s) forms the basis for the following analysis based on a row reduction
factor.

Given a query and a table in that query, we wish to determine the minimum
sized output that a scan operator on that table can provide and compare it to
an operator that only applies the predicates on that table. The minimum size
output for the scan operator is produced by converting joins of this base table to
other tables to semijoins, which only check if the key exists in the other tables

21

after applying predicates. To apply a CCF with predicates, for a row with key
k, each relevant CCF is queried for (k,P) where P is the predicate from the
query. We define the Reduction Factor (RF) to be

Reduction Factor :=
Msemijoin

Mpredicate
(9)

where Msemijoin is the number of base table rows that both match the given
predicates on that table and all other CCF’s. The value Mpredicate is the total
number of rows in the base table that match the given predicates with no addi-
tional information from other tables. The concept of reduction factor is related
to that of predicate selectivity. When reduction factor (selectivity) is 0.0 then
no rows are selected and when reduction factor (selectivity) is 1.0 then all rows
are selected.

In this workload, each query involves 2 to 5 of the 6 tables listed in table 2,
and all joins are on the movie identifier. Thus, between 1 to 4 CCF’s may be
applied to each query, given one CCF per table. Two tables, movie companies

and title, each contain two predicate columns, thus providing an opportunity
to evaluate the workload using a combination of single-attribute and multi-
attribute CCF’s.

Number Predicate Column
Table of Rows Column Cardinality
cast info 36,244,344 role id 11
movie companies 2,609,129 company id 234,997
movie companies 2,609,129 company type id 2
movie info 14,835,720 info type id 71
movie info idx 1,380,035 info type id 5
movie keyword 4,523,930 keyword id 134,170
title 2,528,312 kind id 6
title 2,528,312 production year 132

Table 2: Summary of tables and predicates used in JOB-light workload. ”High”
cardinalities emphasized.

While most predicates are equality predicates, 55 JOB-light queries have
inequality predicates on title.production year. Because production year

is an integer ranging from 1880 to 2019, we applied the simple binning technique
in section 9.1 and mapped the 132 values to 16 roughly equal-sized intervals.
The inequality predicates were then converted to an in-list. In the cases where
the scan operation was on the title table, we omitted this binning since the
predicate could be evaluated directly.

The relevant IMDB data for the JOB-light workload is summarized in ta-
bles 2 and 3. These include the predicate columns and their cardinalities. When
using 4 bit attribute fingerprints, 4 of the predicates can be considered ”high”
cardinality as the number of possible attribute values exceeds the 16 possible
values for attribute fingerprints. Even when using 8 bit attribute fingerprints,

22

2 of the predicates significantly exceed 256 possible values for attribute finger-
prints. Table 3 shows the number of duplicate predicate attribute values per
join key. This affects both the sizing of the sketches as well as the FPR. The
worst case is movie keyword.keyword id, which may have up to 539 distinct
attribute values for a single movie id join key. While the Avg Dupes reasonably
vary from 1.00 to 9.48 distinct duplicates per join key, CCF’s must handle the
worst case behavior of Max Dupes which varies from 1 to 539.

Predicate Avg Max
Table Join Key Column Dupes Dupes
cast info movie id role id 4.70 11
movie companies movie id company id 2.14 87
movie companies movie id company type id 1.54 2
movie info movie id info type id 4.17 68
movie info idx movie id info type id 3.00 4
movie keyword movie id keyword id 9.48 539
title id kind id 1.00 1
title id production year 1.00 1

Table 3: Summary of average and maximum number of distinct, duplicate pred-
icate attribute values per key. ”High” Max Dupes emphasized.

10.4 JOB-light experiment setup

We evaluated all four CCF methods: Plain (regular cuckoo filter allowing dupli-
cate keys); Chained (CCF w/ chaining); Bloom (CCF w/ Bloom); and Mixed
(CCF w/ Bloom conversion); for a range of attribute sizes, fingerprint sizes, and
Bloom attribute sketch sizes. Additionally, we evaluated these CCF’s with and
without predicates on the attribute values of the tables being joined.

The following filter parameters were evaluated: attribute fingerprint sizes of
|α| = 4 or 8 bits, fingerprint sizes of |κ| = 7, 8, or 12 bits, and Bloom filter sizes
ranging from 4 to 24. The number of hash functions used in the Bloom filter
was either fixed at 2, or was optimized to achieve the lowest FPR under the
assumption that 2 attribute vectors are inserted per key. We found the latter
setting resulted in uniformly worse FPR’s and omit their results from the rest
of this analysis. In the case of Bloom conversion, this was d + 1 instead. The
maximum number of duplicate key fingerprints per bucket pair was always set
to d = 3.

The number of buckets and bucket size were independently chosen for each
filter based on the analysis in section 8. Given the predicted number of entries,
we find the smallest bucket size which would both result in an acceptable load
factor and have high likelihood of successfully inserting all input rows based
on the multiset experiment. That is all runs for a given bucket size failed at
a higher load factor than the predicted load factor in the multiset experiment.
Note that the predicted number of entries needed can be estimated from the
data using a bottom-k [12] or two-level [11] sampling scheme.

23

10.5 JOB-light results

We compare how the CCF methods perform versus the theoretically best pos-
sible RF which makes full use of all predicate information and against the best
existing baseline of a Cuckoo Filter, which throws away information about pred-
icates. The best possible RF is the Exact Semijoin reduction factor where no
false positives are emitted, and best existing baseline is the Cuckoo Filter re-
duction factor. We also examined the effect of changing the size of fingerprints
and attribute sketches on the accuracy of CCF’s.

Large filters: Figure 6a plots the reduction factor on the y-axis for each
of the 237 instances of table join key and predicate matches in the 70 workload
queries. The parameters of all filters are the same, having 8-bit attributes, 12-bit
fingerprints, 4 hash functions for Bloom filters. These filters as ”large” due to
the choice of 8 and 12 bits for attribute and fingerprint size respectively, as well
as specifying a large Bloom filter sketch. The ordering of these tables on the x-
axis is in increasing order of the Exact Semijoin reduction factor; therefore, the
reduction factor of all filters should be to the left and above the Exact Semijoin
RF line.

For large filters, the reduction factors of all filter methods are fairly close to
Exact Semijoin with a few outliers.

Figure 6b also uses large filters, but has a different baseline than in 6a. Here
the baseline is based on using large Bloom filters, but only looking up the filters’
join keys, ignoring any other predicates. This behavior is analogous to a regular
Cuckoo filters rather than a CCF and represents the current state-of-the-art of
pre-built filters. The reduction factor of all filters should be to the right and
below the Cuckoo Filter baseline. CCF reduction factors are substantially better
than current state-of-the-art pre-built filters. In many cases, where the Cuckoo
Filter reduction factor is 1.0, meaning no reduction at all, the CCF RF’s are in
the range of 0.05− 0.20.

Small filters: Now we consider ”small” filters, using 4-bit attributes, 7-
bit fingerprints, and 2 hash functions for Bloom, reducing filter size by more
than half. Figures 6c and 6d show the reduction factors by increasing Exact
Semijoin and Cuckoo Filter RF baselines respectively, for filters of smaller size.
Compared to large filters, the number of non-optimal reduction factors in 6c
are more visible. The separation of Bloom CCF reduction factors from Mixed
and Chained is particularly noticeable, while small Mixed and Chained RF’s are
similar to large filters. Even small CCF’s are substantially better than current
state-of-the-art filters.

24

0 50 100 150 200 250
Base Table

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io

n
Fa

ct
or

Increasing Exact Semijoin RF

Exact Semijoin
Bloom CCF
Mixed CCF
Chained CCF

(a) Large vs Exact Semijoin

0 50 100 150 200 250
Base Table

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io

n
Fa

ct
or

Increasing Cuckoo Filter RF

Cuckoo Filter
Bloom CCF
Mixed CCF
Chained CCF

(b) Large vs Cuckoo Filter

0 50 100 150 200 250
Base Table

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io

n
Fa

ct
or

Increasing Exact Semijoin RF

Exact Semijoin
Bloom CCF
Mixed CCF
Chained CCF

(c) Small vs Exact Semijoin

0 50 100 150 200 250
Base Table

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io

n
Fa

ct
or

Increasing Cuckoo Filter RF

Cuckoo Filter
Bloom CCF
Mixed CCF
Chained CCF

(d) Small vs Cuckoo Filter

Figure 6: Reduction factors for CCF’s versus the Exact Semijoin reduction
factor baseline or Cuckoo Filter baseline. Using large filters for 6a and 6b and
small filters for 6c and 6d. Small CCF’s exhibit an increased FPR. The reduction
factors of CCF’s are much improved over Cuckoo Filters.

Plain filters: Note that none of these figures have results for Plain CCF
filters as they did not result in reasonably sized filters. The smallest Plain filter
was larger than every CCF and had an inefficient load factor of 35%. Larger
attribute fingerprints result in insertion failures for any reasonable filter param-
eters because the number of distinct attribute values is too large. For example,
as shown in table 3, movie keyword.keyword id has 539 distinct duplicates
which would require a minimum bucket size of 270.

25

10.6 JOB-light aggregate results

On aggregate, the reduction factor over all table scans was ≈ 0.28 using a CCF
with chaining and ”small” sketches. In contrast, using regular cuckoo filters
with no predicate information resulted in a reduction factor of ≈ 0.68. The
best possible reduction factor obtained from performing an exact semi-join was
0.20. Furthermore, half of the difference in reduction factors between the CCF
and exact semi-join is explained by the binning on the range predictate on
production year as seen in figures 7 and 8. If an exact semi-join is performed
on data with binned production year, the optimal reduction factor is 0.24.

0 50 100 150 200 250
Base Table

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io

n
Fa

ct
or

Increasing Exact Semijoin After Binning RF

Exact Semijoin
After Binning
Bloom CCF
Mixed CCF
Chained CCF

0 50 100 150 200 250
Base Table

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io

n
Fa

ct
or

Increasing Exact Semijoin After Binning RF

Exact Semijoin
After Binning
Bloom CCF
Mixed CCF
Chained CCF

Figure 7: Reduction factors for large (on the left) and small (on the right) CCF’s
versus the exact semijoin baseline after binning title.production year. The
FPR’s of both large and small CCF’s are noticeably less than those in 6a and
6c respectively.

Furthermore, using the largest sized CCF, which was a CCF with chaining,
12 bit key fingerprints, and 8 bit attribute fingerprints, the FPR was just 0.8%
relative to a semi-join with binned with production year, and the reduction
factor was 0.245. The FPR including errors due to binning was 6.1%.

Figure 9 shows that the benefits of CCF’s are compounded as more joins are
added. Figure 10 shows the size of a CCF relative to the raw data. Each CCF
represents a movie id and the given predicate column. The gains from each
CCF can varying significantly based on the underlying data and the number of
duplicate keys.

26

Reduction Factor by Filter Size

● ● ●

● ● ● ● ●

optimal

optimal after

binning

plain cuckoo filter

0.0

0.2

0.4

0.6

20 40 60

total size (MB)

To
ta

l R
ed

uc
tio

n
Fa

ct
or

−25

 0

 25

 50

429

F
P

R
 (%

)

attribute.size ● 4 8

filter.type Bloom Mixed Chained Exact

Figure 8: Overall RF and FPR by filter type and size. CCF’s obtain significantly
better reduction factors while using an order of magnitude less space than a hash
table performing exact membership testing. Bloom attribute sketches resulted
in the smallest sizes. Mixed attribute sketches using Bloom conversion achieved
the smallest FPR for a given amount of space. A modestly sized CCF that
is 1/7th the size of a raw hash table contributes a negligible number of false
positives other than those introduced from binning production year.

●

●

●

0.0

0.2

0.4

0.6

1 2 3

Number of joins

R
ed

uc
tio

n
fa

ct
or

● Optimal RF
RF w/ CCF
RF, no predicate

Reduction factor by number of joins

Figure 9: Using CCF’s with predicates results in multiplicative benefits in re-
ducing output sizes.

27

●

●

●

●

●

●

●

●

0.
15

0.
40

0.
65

0.
90

Overall cast_info
role_id

movie
companies
company

id

movie
companies
company
type_id

movie
keyword

keyword_id

movie_info
idx

info_type
id

movie_info
info_type

id

title
kind_id

R
el

at
iv

e
si

ze

● Bloom Chained Mixed

CCF size reduction

Figure 10: Given CCF’s of equal size, each CCF’s size relative to its underlying
data varies significantly. Bloom filters yield larger size reductions for tables
with many duplicated keys while chaining yields larger reductions on tables
with unique keys.

10.7 CCF Size

We did not find that one method clearly outperformed others at any given
size. However, Bloom filter attribute sketches were the ones that could produce
very small sketches. The smallest set of sketches required 18.5 megabytes. By
comparison, if keys and high cardinality attributes are stored using 32 bits and
low cardinality attributes are stored with 8 bits, then the raw data used in the
sketches requires 322 megabytes of space. A open addressing hash table would
require 429 megabytes to store these if it could achieve a 75% load factor. The
much smaller sizes of the CCF are due both to sketching keys and attributes as
well as due to elimination of duplicate keys.

Figure 8 shows the reduction factor as a function of the total size of all
sketches for various parameter settings. The maximum sketch size was restricted
to 60 megabytes. Bloom filter attribute sketches yield the smallest possible
sketches since they store no duplicates, but they also yield the highest FPR
of up to 20.4%. The mixed attribute sketches which use attribute fingerprint
vectors and switch to Bloom filters when there are too many duplicates were able
to retain most of the benefits of attribute fingerprint vectors with significantly
less space.

For the range of parameters we considered, given two sketches with the same
size, allocating more space to the attribute sketch yielded a smaller FPR than
allocating more space to the key fingerprint size. This can be seen in figure 8 in
cases where there are adjacent, identically colored half-width bars but different
marks on the bar.

Figure 8 shows the space versus reduction factor tradeoff for different CCF
types. At 35 megabytes, the reduction factor of a CCF with mixed attributed
sketches is within 10% of the optimal and within 5% of the best a CCF can do

28

with binned production year. While larger CCFs further improve the FPR,
the practical benefit in the reduction factor is minimal. A 35 megabyte set
of CCFs represents an over 10× reduction in size in memory. If string based
columns are included, which are very common in real world databases [42], we
expect the space savings to be much greater.

10.8 Run-time performance

While we did not optimize our single threaded C++ implementation of CCF’s,
all filter methods could process 1 million matches per second. (Measurements
were taken using a single Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz core
running CentOS Linux 7.) We used the Jenkins lookup3 hash function [23] that
is also used by the original cuckoo filter paper [16]. For attribute fingerprints,
we used the small value optimization given in section 9.

11 Discussion and future work

While we focus on the application of CCF’s to join processing, the sketch itself
can be seen as a sketch of the entire input table with a hash based index on
the key. Furthermore, the chaining technique can also be used to allow regular
cuckoo hash tables, which store the full key, to store duplicates. Thus, we
believe the sketch and its methods have more general applications beyond join
processing.

We have made the sketch much more robust to duplicated keys so that
the chance of successfully inserting all rows is much more predictable if the
predicted number of filled entries can be estimated. However, to predict the
number of filled entries requires another sketch to be computed first. Future
work to improve this method, as well as many other approximate set membership
sketches, includes enabling dynamic adjustment of the size of the sketch.

Furthermore, while we present empirical evidence that, on data containing
duplicate keys, the CCF with chaining can achieve a load factor comparable to
that of a regular cuckoo filter acting on data with no duplicates, we do not have
a theoretical proof that this is always the case.

12 Conclusions

We introduce conditional cuckoo filters, a new sketch for approximate set mem-
bership queries which enables equality predicates to be added to queries. This
yields at least two significant advantages in join processing. First, it enables
filters that are specific to the predicate to be applied to both build and probe
sides of a join, not just the probe side. This increases the number of cases where
the data structures created on the build side fits into main memory. Second, it
enables predicate pushdown from one table to all other tables in the transitive
closure of the join graph.

29

We propose, analyze, and evaluate multiple variations of CCF sketches. In
particular, we extend cuckoo hash tables using a chaining technique that makes
it robust to duplicated keys and allows high load factors to be achieved. All
variations reduced the number of rows emitted by a scan operator to close to
the optimal number on the workload and did so with substantial space sav-
ings. This represents a significant improvement over existing filters that do not
support predicates. The properties of the sketches are analyzed which allows
practitioners to predict the performance of the sketches and to choose appro-
priate parameters for them.

References

[1] Apache. Cassandra. http://cassandra.apache.org/.

[2] Apache. Hbase. http://hbase.apache.org/.

[3] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t
thrash: how to cache your hash on flash. Proceedings of the VLDB Endow-
ment, 5(11):1627–1637, 2012.

[4] P. A. Bernstein, P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and
J. B. Rothnie Jr. Query processing in a system for distributed databases
(sdd-1). ACM Transactions on Database Systems (TODS), 6(4):602–625,
1981.

[5] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[6] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An
improved construction for counting bloom filters. In European Symposium
on Algorithms, pages 684–695. Springer, 2006.

[7] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and Y. Tang. On the false-positive rate of bloom filters. Infor-
mation Processing Letters, 108(4):210–213, 2008.

[8] K. Bratbergsengen. Hashing hethods and relational algebra operations. In
Proceedings of the 1984 Very Large Database Conference. Citeseer, 1984.

[9] A. D. Breslow and N. S. Jayasena. Morton filters: Faster, space-efficient
cuckoo filters via biasing, compression, and decoupled logical sparsity. Proc.
VLDB Endow., 11(9):1041–1055, May 2018.

[10] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher. Network
applications of bloom filters: A survey. In Internet Mathematics, pages
636–646, 2002.

30

http://cassandra.apache.org/
http://hbase.apache.org/

[11] Y. Chen and K. Yi. Two-level sampling for join size estimation. In SIG-
MOD. ACM, 2017.

[12] E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches. In
PODC, 2007.

[13] D. Das, J. Yan, M. Zait, S. R. Valluri, N. Vyas, R. Krishnamachari, P. Ga-
harwar, J. Kamp, and N. Mukherjee. Query optimization in oracle 12c
database in-memory. Proc. VLDB Endow., 8(12):1770–1781, Aug. 2015.

[14] D. Eppstein. Cuckoo filter: Simplification and analysis. In 15th Scan-
dinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[15] Facebook. Rocksdb. https://github.com/facebook/rocksdb.

[16] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher. Cuckoo
filter: Practically better than bloom. In Proceedings of the 10th ACM In-
ternational on Conference on emerging Networking Experiments and Tech-
nologies, pages 75–88. ACM, 2014.

[17] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scal-
able wide-area web cache sharing protocol. In ACM SIGCOMM Computer
Communication Review, volume 28, pages 254–265. ACM, 1998.

[18] C. A. Galindo-Legaria, T. Grabs, S. Gukal, S. Herbert, A. Surna, S. Wang,
W. Yu, P. Zabback, and S. Zhang. Optimizing star join queries for data
warehousing in microsoft sql server. In 2008 IEEE 24th International Con-
ference on Data Engineering, pages 1190–1199. IEEE, 2008.

[19] Google. Leveldb. https://github.com/google/leveldb/.

[20] T. M. Graf and D. Lemire. Xor filters: Faster and smaller than bloom and
cuckoo filters. arXiv preprint arXiv:1912.08258, 2019.

[21] P. G. D. Group. Postgresql. https://www.postgresql.org/.

[22] B. Hentschel, M. S. Kester, and S. Idreos. Column sketches: A scan accel-
erator for rapid and robust predicate evaluation. SIGMOD, 2018.

[23] B. Jenkins. Jenkins lookup3 hash function. http://www.burtleburtle.

net/bob/c/lookup3.c.

[24] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. CIDR, 2019.

[25] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. ArXiv,
abs/1809.00677, 2018.

31

https://github.com/facebook/rocksdb
https://github.com/google/leveldb/
https://www.postgresql.org/
http://www.burtleburtle.net/bob/c/lookup3.c
http://www.burtleburtle.net/bob/c/lookup3.c

[26] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of hash to data
base machine and its architecture. New Generation Computing, 1(1):63–74,
1983.

[27] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson, S. Hase,
A. Holloway, J. Kamp, T.-H. Lee, et al. Oracle database in-memory: A dual
format in-memory database. In 2015 IEEE 31st International Conference
on Data Engineering, pages 1253–1258. IEEE, 2015.

[28] T. Lee, K. Kim, and H.-J. Kim. Join processing using bloom filter in mapre-
duce. In Proceedings of the 2012 ACM Research in Applied Computation
Symposium, RACS ’12, pages 100–105, New York, NY, USA, 2012. ACM.

[29] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neu-
mann. How good are query optimizers, really? Proceedings of the VLDB
Endowment, 9(3):204–215, 2015.

[30] L. F. Mackert and G. M. Lohman. R* optimizer validation and performance
evaluation for distributed queries. In Proceedings of the 12th International
Conference on Very Large Data Bases, VLDB ’86, pages 149–159, San
Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[31] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on
Networking (TON), 10(5):604–612, 2002.

[32] J. K. Mullin. Optimal semijoins for distributed database systems. IEEE
Trans. Softw. Eng., 16(5):558–560, May 1990.

[33] J. K. Mullin. Estimating the size of a relational join. Information Systems,
18(3):189 – 196, 1993.

[34] Oracle. Using oracle database 11g release 2 result cache in an oracle rac
environment.

[35] A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filter replacement.
In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 823–829. Society for Industrial and Applied Mathematics,
2005.

[36] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[37] F. Putze, P. Sanders, and J. Singler. Cache-, hash-and space-efficient bloom
filters. In International Workshop on Experimental and Efficient Algo-
rithms, pages 108–121. Springer, 2007.

[38] D. L. Quoc, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, and
T. Strufe. Approxjoin: Approximate distributed joins. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’18, pages 426–438, New
York, NY, USA, 2018. ACM.

32

[39] SAP. Adaptive server enterprise 15.7 sp100 - new features guide.

[40] R. Sears and R. Ramakrishnan. blsm: a general purpose log structured
merge tree. In Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, pages 217–228. ACM, 2012.

[41] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and practice
of bloom filters for distributed systems. IEEE Communications Surveys &
Tutorials, 14(1):131–155, 2011.

[42] A. Vogelsgesang, M. Haubenschild, J. Finis, A. Kemper, V. Leis,
T. Muehlbauer, T. Neumann, and M. Then. Get real: How benchmarks
fail to represent the real world. In Workshop on Testing Database Systems,
2018.

[43] M. Wang, M. Zhou, S. Shi, and C. Qian. Vacuum filters: more space-
efficient and faster replacement for bloom and cuckoo filters. Proceedings
of the VLDB Endowment, 13(2):197–210, 2019.

[44] A. Weininger. Efficient execution of joins in a star schema. In Proceedings
of the 2002 ACM SIGMOD international conference on Management of
data, pages 542–545. ACM, 2002.

33

	1 Introduction
	2 Related work
	3 Filters in join processing
	4 Preliminaries
	4.1 Cuckoo insertion
	4.2 Cuckoo filters
	4.3 Multisets

	5 Conditional cuckoo filters
	5.1 Attribute fingerprint vectors
	5.2 Bloom filter attribute sketches

	6 Multiset representations
	6.1 Bloom filter conversion
	6.2 Chaining

	7 False Positive Rates
	7.1 Key only queries
	7.2 Key and predicate queries

	8 Size and parameter choice
	8.1 Attribute sketch parameters

	9 Additional optimizations
	9.1 Range queries

	10 Experiments
	10.1 Multiset experiments
	10.2 Multiset results
	10.3 JOB-light experiments
	10.4 JOB-light experiment setup
	10.5 JOB-light results
	10.6 JOB-light aggregate results
	10.7 CCF Size
	10.8 Run-time performance

	11 Discussion and future work
	12 Conclusions

