
On-Demand Training: 
Extract API Connecting 
Transcript



© 2003-2014 Tableau Software. All Rights Reserved

Hello everybody, welcome to the second video on the Extract API. In the first video we downloaded and installed 

Python, and the Python module for the Extract API. So if you haven’t done those things please go back and watch the 

first video. The purpose of this specific video is to create more of a real world example than the script we built in the 

first video. We’ll be connecting to real data, in this case in the form of a CSV file, and spitting out a TDE using Python. 

Besides having Python and the Extract API module installed you’ll also need to have these files, which if you 

didn’t download from the first video you can download from this webpage. They should have these three files, the 

TrivialExample_Finished is the one we created in the first video. csv2TDE is the finished example of what we’ll create 

today, so you can use that if you get lost along the way in today’s video. And the SuperStoreCSV is what we’ll actually 

be reading from to convert to a Tableau data extract. Ok let’s go ahead and get started.

Just as we did in our first video we’ll be using the application idle to create our script. So if you have Python installed 

you should be able to open the Start menu, type idle and open that application. To create a new script you’ll need to 

go to File New, Control+N, and then file save as. We’ll call this our csv2TDE.py. 

Now be sure to save this in the same directory where SuperstoreCSV lives. Now we’ve created our new file we’re 

ready to get started. The first thing we do in almost every Python script is to import the modules that you’ll need to 

use. In this case of course we need the Extract API module Data Extract, and I like to give it an alias as tde. We’ll be 

doing manipulation of files again so we’ll need to import the os module. In one of our data types is the datetime so this 

module helps you manipulate those. Finally because we are connecting to a CSV we need to import the module called 

csv which will aid us in reading from the CSV file. This csv module is included in Python’s library but very often is the 

case that you’ll be connecting to a data source that does not have a built-in module. For example if I was connecting 

to Microsoft SQL Server, there’s no built-in module for that. So it would just be a matter of opening up my browser and 

searching for something like python module SQL server. Here is a Python module called pymssql which will allow you 

to read from a SQL server. Or if you were reading from something like MongoDB. There is a module called pymongo. 

Pretty much any data source out there is going to have some module probably created by the Python community that 

will aid you in reading from it. In this case, once again, we don’t need to do that because the CSV module is already 

included. Ok we’ve imported all of the required modules. Now we’ll get started in actually connecting the data and 

creating our extract. 

I’ll follow pretty similar steps to the first video. Step one is to actually create the extract. Also as part of the first step 

we’ll go ahead and get this CSV ready and open it up. On the first video what we did is we wanted to simulate a full 

refresh. The way we did that is if the extract already existed we’d simply delete it and start from scratch. However 

you can also treat your Extract API scripts as an incremental refresh so I already have an extract. I want to add rows 

to it. The way you do that is you simply open the existing extract and then insert rows just as we did normally, those 

will be appended to the bottom of the extract. So because we don’t need to delete the file if it already exists, we’ll just 

go ahead and open it whether it exists or not. If it doesn’t exist it’ll be created for us and if it does exist it will just be 

opened. 

So tde.Extract dataextract.Extract will create a new extract file for us, or open the existing one. We also need an 

object for us to read from the CSV, so we’ll called that csv.reader. Specifically we want to open the CSV and we need 

to pass in the name of the CSV which in this case is SuperStoreCSV.csv. These are all case sensitive so make sure 

you get all of the capitalizationcorrect. What we’re going to be doing to this is reading from the CSV, we need to tell 



© 2003-2014 Tableau Software. All Rights Reserved

it what kind of mode we’re opening it in, that’s rb mode which is just to read from. There’s optional arguments here, 

there’s delimiter, and just to be safe we’ll be sure to specify explicitly the delimiters. In case that’s hard to see, that’s 

single quote, then inside a double quote and then closed with a single quote. 

Now earlier what we did is we went ahead and created the table inside the extract. However what we need to do in 

this case is check if the extract already exists. That is if it already has a table and in that case we can skip the part of 

the script where we define the table definition and add the table. So essentially what we’ll do is we’ll check does the 

TDE file that we just opened or created have a table. If this extract already exists then this will return true, in which 

case we don’t need to define the table definition. We can simply grab the table with tdefile.openTable(‘Extract’). We’ll 

also be able to grab the table definition which we’ll need to define new rows with table.getTableDefinition. As always 

these are always case sensitive. 

If this returns false, if tde.hasTable returns false then essentially this is a new extract and we need to both define the 

table definition, all of the metadata inside and create the new table. That is step 2 from the previous video, create 

the table definition. Now to start with we’ll create a blank table definition with tde.TableDefinition(). One thing to note 

before I get too far past this is that Python has significant widespace that means this needs to be a tab and this needs 

to be un-indented. So if, and then you have a colon, everything indented under the if, falls under the if, and then we 

create an else and everything indented under the else will be evaluated with the tde file that has the table returns 

false. 

So now we just need to go through one-by-one each of our columns and define what type, what’s the name of that 

column and what data type it is? The first column we’ll create is called Row ID. And the type of it is tde.Type.CHAR_

STRING. This line is actually repeated in the previous video. The next column is Order Date. The type of it is DATE. 

Next is sales. Which is a DOUBLE. So is profit. Next we have our Customer Name. Then we have our Zip Code which 

is an INTEGER. Lastly we’ll include the Product Category which also of course is a CHAR_STRING. 

Now in this specific script we know exactly what columns are in there and we’re manually inserting them so we 

know what they are and we know what data types they are. Often it would be the case that you’d want to do this part 

dynamically, that is you don’t know when you’re writing the script which columns are going to be in there or data types. 

There’s a variety of ways to do that dynamically. One way would be to do some detection of the data type, and the 

other would be to read a schema.ini for CSVs and XLSs which will define essentially as a schema for the file and you 

can read from that and loop through it and define the columns based on that. If you look in the documentation for the 

Extract API which is in the zip file when you download the Extract API there is an example of a CSV TDE where we 

don’t define the columns manually as you see here but instead we define them by reading through the schema.ini and 

looping through and adding the columns.

The first step after we define the tableDef is to create a table in the image of the tableDef and stored in a variable 

called table. As always with Extract API the first argument to add a table is just the word Extract and then the second 

argument is the table definition variable that we just filled out up above. Now note that if TDE file.hasTable has 

returned true, that is if the extract already existed we would have skipped all of that stuff and we would have already 

had our table and table definition without having to define them as we did in steps 2 and 3.



© 2003-2014 Tableau Software. All Rights Reserved

Ok we have everything defined. Step 4 whether the extract exists and we’re appending to it or whether it’s new, either 

way is to loop through the CSV, to grab all of the data, put it into rows and insert those rows into the table variable. So 

the first thing to do that step is to create this newrow variable. We’ll be using this over and over through each iteration 

of our loop. We create essentially a blank row but it serves as a skeleton for a row defined by the table definition so 

we pass in the tableDef into the argument of that row creator. Now the way we’ll read through this CSV and grab the 

data we need is through this csvReader object. The only thing we need to do to prepare that is to go to the second 

row because the first row in this CSV is the headers, we don’t want to include those when we read them, when we 

read the CSV. Now we’re ready to start looping through the CSV reader and adding the data to our extract. So we’ll 

loop through each line in the CSV reader and grab all of the data. Now the way we grab all of the data is… or the 

way we put all of the data into our Tableau Data Extract is first by putting it into this new row object with newrow.set 

and then the name of the data type that we’re adding. So the 0th column is a charstring so we need to call it newrow.

setCharString. The first argument is the index of the column so this is the 0th so we pass 0. We want this to be a 

string so we’ll be sure to cast it to a string, and what we want to actually pass in is a string representation of the 0th 

column from the CSV so line is our current line in our CSV, we grab our 0th column which we happen to know is Row 

ID, and then we insert it into the 0th column of this newrow variable. Then we’ll repeat the same step for each of the 

other 6 columns. The next column, the first column is type date. Now we need to do a little bit of extra work to get 

this from a timestamp, sorry a datestamp, 12, 31, 19, 82 or whatever and put that into a Python date object so that we 

can then put that into the newrow object. So we imported this module datetime and that has an object called datetime 

which allows us to call this function strptime. That’s a way to kind of parse the datestamp into the correct version. 

What datestamp do we want to grab that’s the first column of the current line in the CSV. Then strptime allows you to 

specify the format which looks like this, so two-digit month and a two-digit day and then a four-digit year. So we’ll grab 

that and then strptime will then return a Python date object and put it into this variable called date. And what will we 

do with that our date object, we’ll insert it into our TDE with newrow.setDate. First argument is the column index which 

is 1. The way that you do setDate is by specifying the year the month and the day. If you were doing setdatetime then 

you would need two more arguments. In this case we just need the year which is from this date object, date.year, date.

month and date.day. The rest of the columns are a little more straight forward we just grab them from the CSV and 

put them into the TDE. So the next one is the Sales, which is a double, so we’ll do a newrow.setDouble 2. We want to 

cast this to a floating point. Line, set to the second column of the current line. The next column is Profit which is also a 

double so I’ll just copy and paste newrow.setDouble and I’ll change both of these 2s to 3s. 

Next column is our Customer Name which is a string so that’s tableDef. Sorry newrow.setCharString. Column number 

4. And no casting needed because CSV reader will just read this as a string. Next is our Zip Code which is an integer. 

In this case we will cast what CSV reader to an integer just in case it reads it as a string or if it’s stored as a string. The 

last one is another string product category. 

So we’ve created our newrow variable, we defined it by our table definition and then we inserted the actual data into 

each of those columns. That newrow now is ready to be inserted into the extract, specifically into the table. So table.

insert. Insert that new row. So this will loop through one line at a time and grab all of the data from the CSV and insert 



© 2003-2014 Tableau Software. All Rights Reserved

it into the TDE. That’s all we need to do in the loop, so after this loop is done executing the table it should be ready 

to go. Once again always be sure to un-indent when you’re done with your loops. Then the last step is a simple one, 

but it’s an important one, close the TDE. You’ll notice that Python, or idle by default had indented. Just make sure that 

you’re un-indented otherwise it’ll try to close the TDE file in every iteration of the loop.

So I’ll go ahead and save that. Then I’ll navigate to it in my file system, here it is csv2TDE. Just make sure it’s there. 

The easiest way to run it is to in idle, go to run, run module. If it executed correctly I shouldn’t see any errors or 

anything like that. Then I can go back to my file system, see that the SuperStoreCSVExtract is there. Now I can 

double-click on it. Open it up in Tableau, we can see that it looks like the data is correct. Then I can open it up and 

then start to do some analysis. Just to show the idea that if we ran this script again it wouldn’t create it from scratch, 

I’ll put on labels here and just keep these numbers in mind, 5.1 million, 3.7 million, 5.9 million. Now I’ll come back to 

idle, and I’ll hit run, run module, I’ll go ahead and run through that again. Now if I open up SuperStoreCSVExtract we 

can go back to Tableau and bring in our product categories again and as we can see, they’re all double because what 

we did is we just read the data again. Of course in real life you wouldn’t just duplicate the data but what you might do 

is have some logic where you’re only grabbing new data or maybe grabbing this month’s data that happens to live in 

its own CSV and only putting in those new rows of data into the extract.

So that’s pretty much it. Hopefully this example taught you how to create more of a real life example of using the 

Extract API. Actually connecting to data, whether it’s using the built-in CSV module or whatever module you’re 

able to find on the internet to fit the needs of your data source. Then creating the table definition either manually or 

dynamically and finally adding the data as you read from it into the Tableau Data Extract. Also I hope you understand 

how it works if you want to insert rows instead of just deleting the extract and starting from scratch. That’s it from this 

video. Hope you’ve learned a little about the Extract API. Have a good day, bye. 


